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We demonstrate that graphs embedded on surfaces are a powerful and practical tool to generate, to characterize,
and to simulate networks with a broad range of properties. Any network can be embedded on a surface with
sufficiently high genus and therefore the study of topologically embedded graphs is non-restrictive. We show that
the local properties of the network are affected by the surface genus which determines the average degree, which
influences the degree distribution, and which controls the clustering coefficient. The global properties of the graph
are also strongly affected by the surface genus which is constraining the degree of interwovenness, changing the
scaling properties of the network from large-world kind (small genus) to small- and ultrasmall-world kind (large
genus). Two elementary moves allow the exploration of all networks embeddable on a given surface and naturally
introduce a tool to develop a statistical mechanics description for these networks. Within such a framework, we
study the properties of topologically embedded graphs which dynamically tend to lower their energy towards a
ground state with a given reference degree distribution. We show that the cooling dynamics between high and
low “temperatures” is strongly affected by the surface genus with the manifestation of a glass-like transition
occurring when the distance from the reference distribution is low. We prove, with examples, that topologically
embedded graphs can be built in a way to contain arbitrary complex networks as subgraphs. This method opens

a new avenue to build geometrically embedded networks on hyperbolic manifolds.
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I. INTRODUCTION

In natural and artificial systems there exists a very broad
variety of networks; indeed, networking is a crucial feature in
information technologies, it is a vital skill in social behavior,
and—more generally—it is at the base of the emergence
of some of the fundamental properties of complex systems
[1-5]. Networks possess a wide range of properties and
their structure can assume different forms depending on
their function, their construction rules, and their evolution
dynamics. From a general perspective, the structural properties
of a network can be divided into two main categories:
(i) the local structure, concerning small portions of the graph
which may vary from place to place and, typically, they are
analyzed statistically (a well-known example is the degree
distribution [2]: the distribution of the number of edges per
vertex); (ii) the global structure, which concerns properties
that involve the entire organization of the graph (a well-
known example is the diameter [2,5]: the longest shortest-path
between any two vertices). Itis understood that local properties
and global properties are related; for instance, it has been
shown that the degree distribution is affecting the diameter
and, in particular, the presence of a few highly connected hub
vertices can reduce significantly the overall diameter [2,5].
However, the local or global relation is in general mediated
through the hierarchical organization of the network and can
result in non-trivial relations. By their nature, local properties
are easier to measure and therefore, so far, they have attracted
most of the attention in the literature. In this paper we show that
by considering networks embedded on surfaces we can control
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an important global measure of complexity which is associated
with the network interwovenness. It is quite intuitive that an
increased interwovenness must be related with an increase
of the complexity of the network structure, however, due to
its global nature, a general quantification of this quantity is
a very challenging task. On the other hand, by considering
the embedding of a network on a surface the interwovenness
can be directly associated with the surface genus which is a
non-negative integer number counting the number of handles
in the surface [6]. Let us recall that a network topologically
embedded on a surface has the property that it can be drawn
on the surface without edge crossings (edges do not have
to be straight). The absence of edge crossing is obviously
a limitation on the degree of interwovenness of the network
and it is therefore a constraint on its overall complexity. A
sphere has no handles and genus g = 0, a torus has one handle
and g = 1, a double torus has g = 2, etc. Intuitively, we can
look at a handle in a surface as a “shortcut” that connects two
distant parts. For instance, by joining the north and south poles
of a sphere and pinching them together one can transform the
sphere into a torus passing from g =0 to g = 1. It is clear
that these shortcuts can be also used by the embedded network
that in this way can link otherwise distant vertices. In this
paper we consider only simple graphs, where no more than
one edge can directly connect two vertices and there are no
loops connecting a vertex to itself. If we take an orientable
surface and we place n vertices on it, we can then connect
with edges couples of vertices up to a point when no further
edges can be inserted without generating edge crossings. We
call this graph a maximal embedded graph [7,8] and, with
the exemption of some special cases, it is a triangulation of
the surface containing n vertices and 3n + 6(g — 1) edges.
Let us note that some maximally embedded graphs on the
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(a)

FIG. 1. (Color online) Exemplification of the two elementary
moves which allow us to explore all possible maximal embedded
graphs on a given surface. (a) The T1 move which consists of the
switching of one edge between four vertices (a, b, ¢, and d); (b) the
T2 move, consisting of the insertion of a vertex (d) inside an existing
triangle.

Euclidean plane (genus equal to zero) have been already
proposed in the complex network literature [9—12] and are
known under the name of random Apollonian networks. By
increasing the genus we can insert an increasingly larger
number of edges in the maximal embedded graph. Any other
graph with n vertices embedded on the same surface must
be a subgraph of a maximal embedded graph (indeed, either
it is a maximal embedded graph, or edges can be added
to make it a maximal embedded graph). Furthermore, it
has been proved that any graph can be embedded on an
orientable surface with sufficiently large genus [13], therefore,
by considering maximal embedded graphs we are embracing
the whole family of all possible graphs. One of the advantages
of considering maximal embedded graphs is that there is a
simple constructive way to build and modify them. In general,
there exists a large number of models and construction methods
that allow us to build networks with desired properties and
structures [2,5]. Ideally, it would be desirable to be able to
consistently generate networks with controlled and tunable
properties both at local and global levels. Such networks must
be able to evolve and adapt following simple mechanisms
and, eventually, allowing for a statistical mechanics kind of
approach to be implemented. Maximal embedded graphs can
be easily generated by starting from an embryonic embedded
structure and then by letting them evolve by means of two
elementary moves, known as T1 and T2 [14-16], which
involve only local changes and do not modify the embedding
(see Fig. 1 and [17] for a toolbox to generate maximally
embedded graphs and evolve them by means of these moves).
It has been pointed out that complex networks naturally live
in hyperbolic spaces [18]. There have been several studies
[19-22] showing that relevant properties of complex networks
can be mapped into properties of the hyperbolic geometrical
space in which they are embedded. An exact relation between
space curvature and network topology is provided by the
discrete version of the Gauss-Bonnet formula [23]. When the
Gauss-Bonnet formula is applied to a triangulation of a surface
it reveals that zero-curvature, Euclidean, space is associated
with an average degree equal to 6, whereas negatively curved
hyperbolic spaces are tiled by triangulation with the average
degree larger than 6 and average degrees smaller than 6 are
associated with elliptic positively curved spaces. The curvature
of the manifold is directly associated with the genus of
the surface with the Euclidean space having g = 1, elliptic
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spaces having g = 0, and hyperbolic spaces having g > 1. Any
network can be embedded on a surface and for any network
one can identify a surface triangulation which contains the
network as a subgraph. Therefore the study of the properties
of maximally embedded graphs gives also insights on the
properties of graphs geometrically embedded in spaces of
arbitrary curvature. The paper is organized as follows: in
Sec. II, we introduce the idea of embedding networks on
surfaces, we discuss the properties that embedded networks
must obey, we describe the elementary moves T1 and T2,
we define a simple energy function, and we present the basis
for a statistical mechanics description of these systems. In
Sec. III, we perform an extensive numerical study of the
properties of maximal embedded networks for the case of
a regular reference degree distribution, discussing the effect
of the surface genus and of the temperature on the structural
and dynamical characteristics of these complex networks. In
Sec. IV, we investigate the case for a power-law reference
degree distribution. In Sec. V, we consider the problem of
embedding an arbitrary network showing, through examples,
that for any arbitrary complex network a surface triangulation
which contains it as a subgraph can always be constructed. In
Sec. VI, conclusions and perspectives are given.

II. MAXIMAL EMBEDDED GRAPHS

A. Topological properties

As mentioned earlier, a maximal embedded graph on a
surface of genus g is a triangulation of the surface. If n is
the number of vertices, u is the number of edges, and ¢ is the
number of triangles, then the Euler’s polyhedron formula [24]
provides us with a very simple relation between these numbers,

n—u+t=21-g). (1)

Furthermore, we have that, in average, each vertex has (k)
incident edges and each edge has two vertices at its extremities
(recall that we consider simple graphs that do not allow
multiple edges between couples of vertices), yielding

(k)n = 2u. @)

Moreover, each triangle has three edges and each edge is
in between two triangles, however some triangles may be
self-neighbors which means that the edge may have the same
triangle in both sides, implying

0 < 3t < 2u, 3)

where the upper bound 3¢ = 2u is associated to the case when
triangles cannot be self-neighbors. By combining the previous
two expressions with the Euler formula, Eq. (1), we get

—1 —1
£ <6128, @)

n n

244

where the upper bound is achieved only when triangles cannot
be self-neighbors.

Incidentally, Eq. (4) provides us with a lower bound for the
genus required to embed any network. Indeed, by construction,
any network embedded on an orientable surface of genus
g must be a subgraph of a maximal embedded graph and
therefore it must have an average degree smaller than or equal
to it. Therefore if (k*) is the average degree of an arbitrary
network (not necessarily a triangulation), then from Eq. (4)
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we have
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Although this bound is achieved by maximally embedded
graphs with no self-neighboring triangles, it is in general a
rather loose bound for complex networks. For instance, we can
note that for a large sparse network with on average less than
six edges per vertex, the right-hand side of Eq. (5) becomes
negative, but g must be a non-negative integer and therefore the
bound becomes ineffective. It must be noted that this bound can
be also applied locally to any subgraph. This may give more
restrictive limits especially when highly compact substructures
are present. For instance, if we have a g clique (a configuration
of g vertices, each one connected with all the others), then for
this substructure we can substitute (k*) =g — 1 in Eq. (5)
obtaining g > (¢ — 3)(q¢ — 4)/12, which is the same bound
proved by Ringel and Young in Refs. [13,25] for the solution of
the map-coloring problem. We can see that a tetrahedral clique
(g = 4) can be embedded on a sphere (g > 0), but a five-clique
(Ks, the complete graph with five vertices) requires already a
larger genus g > 1. This is in agreement with the Kuratowski
theorem [26] which proves that planar graphs cannot contain
Ks or K33 (the complete bipartite graph with six vertices
connected 3 x 3) as minor (a minor of graph G can be obtained
from G by edge deletion of edge contraction—the merging of
two connected vertices).

B. Elementary moves

Maximal embedded graphs can be built by starting from
a seed graph and then by letting it evolve through simple
elementary moves, called T1 and T2 [14-16]. The first move
consists in switching an edge in a local configuration of four
vertices in which two second neighbor vertices become directly
connected and vice versa two first neighbor vertices become
second neighbors. This is shown in Fig. 1(a). New vertices
can be added to the graph by means of the second move, T2,
which consists of the insertion of a vertex within an existing
triangle generating in this way three new triangles, as shown
in Fig. 1(b) [14]. Similarly, vertices can be removed from
the system by applying an inverse T2 move which eliminates
three triangles inside a three clique. These are local moves
that do not change the global embedding of the graph. By
means of T1 and T2 moves, it is easy to build and explore the
entire class of maximal embedded graphs on a given surface
[14,15]. Let us note that some graphs generated by T2 moves
only are known in the network literature under the name of
Apollonian networks [9-12]. A toolkit to generate maximally
embedded graphs on surfaces of arbitrary genera is available
from Ref. [17]. This toolkit has been used to produce most of
the numerical results presented in this paper.

C. Energy

In the previous section we have acquired the tools to build
and modify maximal embedded graphs. Now, in order to
develop a statistical mechanics framework, it is convenient to
introduce a topological energy which can guide us in the explo-
ration of configurations with different degree distributions. Let
consider a model (analogous to the configurational model [2])
where a reference degree k7' is given for each vertex. A simple
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form for the energy associates to the ground state (£ = 0) the
configuration where all vertices have the same degree as the
reference network k; = k7 and a “cost” is instead associated
to the deviations from reference degree:

E =Y (ki —k. (6)
i=1

This energy is a distance measure (the square of an Euclidean
distance) from the ideal network with reference degree
distribution k;. The simplest case is a regular reference degree
distribution with all vertices having the same degree k' = (k*);
this is the model first proposed in Ref. [27] and studied in
several following works [28—32]. In this paper we will consider
both the arbitrary distribution and the regular distribution
cases.

Our approach is to use a combined action of T1 and T2
moves to build a maximal embedded graph with a given
number of vertices n on a surface with given genus g. Once
the graph is built we explore all achievable configurations by
means of T1 moves only.

After a T1 move, two vertices [e.g., k, and k. in Fig. 1(a)]
acquire a new edge and the other two vertices [e.g., k, and k4
in Fig. 1(a)] lose one edge leaving the overall mean degree
(k) unchanged. As a consequence of such a move the energy
change is:

AE = (kg + 1 =k + (ke + 1 = k)
ik — 1=k} 4 (kg — 1 = Kk3)* — (kg — k))?

— (ke — k) = (ky — ky)* — (ka — k})°, (7)
which is
AE = 2(ky — k¥) + 2(ke — k) — 2(kp, — k)
— kg — k) + 4. (8)

Intriguingly, the energy variation as a consequence of a T1
move is linearly dependent on the degrees of the four vertices
involved in the T1 move.

D. Dynamics

A “temperature” B~! can be introduced and a statistical
mechanics description can be implemented. To this end, we
adopt a Glauber-Kawasaki type of dynamics where a T1 move
is performed accordingly with the probability [27]

H(ku’kbskcvkd)
_ 1
14 exp(BAE)
where the Kronecker & enforces a “proper” triangulation.
Specifically, the first two are preventing the vertex degree to

become smaller than 3 and the third avoids the formation of
loops where edges connect a vertex to itself.

(1 - Skhq3)(] - 81{4,3)(1 - Sa,c), (9)

III. REGULAR REFERENCE NETWORK, k; = (k)

Let us first study the simplest case when the reference
network is regular, k¥ = (k*). In this case Eq. (8) becomes

AE =2k, + ke — ky — kg) + 4, (10)
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revealing that the energy variation as consequence of a T1
move does not depend on (k*). One can also note that the
T1 move lowers the system energy if and only if k, + k. <
kp + k4, meaning that the energy is decreased if the nodes
with smaller degree acquire new connections at the expenses
of the nodes with larger degree that lose connections. We
are therefore describing a local averaging process where
inequalities in the degrees are gradually redistributed lowering
in this way the total energy and driving the system towards a
regular network.

A. Mean-field solution

The use of regular reference degree introduces an important
simplification of the form of the energy that becomes nonlocal
and therefore suitable for a mean-field kind of approach.
The maximal embedded graphs studied here have a very
simple energy that depends only on the degree of the nodes.
Nevertheless, interactions between vertices arise unavoidably
from the network topology and its constraints, making any
analytical study extremely challenging [33-38]. However,
from a thermodynamic perspective we note that, at low enough
temperatures, the energy should dominate over the entropy
and it may be possible to describe the equilibrium state
of the system by assuming all vertices as independent and
reducing the topological correlations to a simple constraint on
the average degree. In such a mean-field approximation the
partition function Z, factorizes and it can be written as

n—1 n
Z, =~ (Z exp(— Bk — (k))* + Ak)) : (11)

k=3

where the coefficient X is a Lagrange multiplier associated to
the average degree and it is (implicitly) given by the condition

d
ky = —InZ,. 12
(k) T 12)
The average energy at equilibrium is given instead by
d
(E) =——InZ,, (13)

ap
which can be calculated numerically. An analytical expression
can be obtained in the limit of low temperatures revealing
that the energy should decrease linearly with the temperature:
(E)/n ~ B~!/2.1In the opposite limit of high temperatures, we

have instead that the energy is expected to tend to a constant:
(E)/n = ((k) = 3).

B. Numerical results

We have numerically generated maximal embedded graphs
containing up to n = 20000 vertices embedded on surfaces
with different genera ranging between g = 0 and g = 2n + 1.

1. Random states

Let us start from high temperatures where the transition
probability, Eq. (9), becomes independent on the degrees of the
four nodes (except for the forbidden moves). After alarge num-
ber of moves the resulting equilibrium configurations become
statistically stable and we shall refer to these configurations
as the random states. For g = 0 some properties of this state
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are analytically known [33-38]. For instance, the degree dis-
tribution is p(k) = 16(3/16)K(k — 2)(2k — 2)!/[k!(k — 1)!],
which, in the tail region, is well described by an exponential
law. This is in a satisfactory agreement with the mean-
field description that implies p(k) = ((k) — 3)*3((k) — 2)>7.
However, when the genus increases, the distribution deviates
from the exponential acquiring a power-law behavior in the
region k < (k) and simultaneously assuming a faster than
exponential decay in the region of large degrees k > (k). We
previously reported in Ref. [18] that the degree distribution for
arbitrary genus appears to be well described by the following
functional form p(k) o k=% exp(—Ak”) where the parameters
depend on the genus with £ passing from zero at g = 0 to
about 1 at g = n + 1, A changing from about 0.3 at g = 0 to
about 0.03 at g = n + 1 and y passing from about 1 at g = 0
to about 2 at g = n + 1 [8]. These changes of the parameters
reflect the change in the degree distribution from exponential
to power-law with a faster than exponential cutoff at large k.
A detailed analysis of the properties of this state is reported in
Ref. [8].

2. Equilibrium at finite temperatures

In Fig. 2 we report the average energy measured after
10* x n time steps at a given temperature S~' on maximal
embedded graphs with n = 20 000 vertices. These values are
averages over ten cooling loops and the data refer to two
different embeddings respectively with g =0 and g =n + 1.
The dashed lines are the mean-field predictions from Eq. (13)
(calculated in the limit » — oo and by substituting the sum
with an integral). One can note that there is a range of
temperatures in which the average energy follows very well the
mean-field prediction. This is the regime where the network is
at thermal equilibrium and the quadratic energy is dominating
the degree distribution which is therefore well approximated
by a normal distribution. We can observe that at high temper-
atures (8~! > 1), the average energy saturates to a plateau

3
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] ] 6]
I;L—— ___________
10° .-
o’
1 '/'
Em 5"’0_—-0-___0 ________ (4))
~10
10-1() OO/’
e .
0.1 1 10 1000 1000000

temperature (!

FIG. 2. (Color online) Average energy per vertex (E)/n for the
cooled states after 10* x n simulation steps at a given temperature
B! for maximal embedded graphs with n = 20000. Symbols: (]
g =n+1; O g =0. The dashed lines are the mean-field solutions
associated with the two genera.
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following a qualitatively similar behavior to the mean-field
prediction but with significant quantitative deviations. Indeed,
at high temperatures, the statistical properties of the network
are dominated by the entropic term which is associated to the
number of triangulations that can be built on a surface of a
given genus [33]. On the other hand, the mean-field equations
take into account the topological properties of the network
only by constraining the average degree, and this turns out to
be not sufficient for an accurate quantitative estimation.

3. Freezing dynamics

Starting from high temperatures (8~' > 1) we can observe
from Fig. 2 that the residual energy decreases with the
temperature indicating that—as expected—states at lower
temperatures are less disordered. As mentioned earlier, we ob-
serve that at intermediate temperatures (8~! ~ 1) the system
follows the mean-field prediction, however, around f -1~05
a change in the behavior occurs. At low temperatures, the
residual energy does not longer decrease with the temperature
approaching instead a constant plateau. This is the signature of
a “freezing” phenomena [27-31] typical of glasses [27,39,40].

4. Frozen states

At low temperatures (8! « 1) the maximal embedded
graph should approach the ground state where all vertices
have degree equal to (k) (if it is an integer number). However,
we observe that the system cannot reach the ground state in
any finite time. This freezing phenomenon was first observed
in studies performed on planar triangulations with periodic
boundary conditions (g = 1) [27-31] and here it is retrieved
in the general case of maximal embedded graphs on surfaces of
arbitrary genus. Interestingly, we observe that the complexity
of the embedding surface (e.g., its genus g) is affecting the
freezing dynamics and consequently the properties of the
asymptotic states [8]. In particular, triangulations with large
genus start from random states with higher energies with
respect to the low genus counterparts, but they cool faster
and, within the same number of time steps, they can reach
frozen states with lower residual energy. When the average
degree is an integer, the degree distribution of the frozen states
is characterized by a large fraction of vertices at a degree
equal to the average and by two small fractions of “defective”
vertices respectively with degree one above and one below
the average (see Ref. [8]). A similar distribution is observed
when the average degree is not an integer but it is still close
to a natural number. On the other hand, a different statistics
and a different dynamics are observed when (k) is near a half
integer, an effect due to topological frustration.

5. Topological frustration

When (k) is in the middle between the two integers, k|
and kj, then the energy is minimized by a state with half of
the vertices with degree equal to k; and the other half with
degree equal to k,. This naturally introduces frustration in the
system preventing the formation of a regular ground state. In
particular, the ground state energy passes from E., = 0 for
(k) integer to Eo, = 0.25n for (k) half integer. Intriguingly,
we observe that this also strongly affects the dynamics. In
Fig. 3 we compare the cooling dynamics in three networks with
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0 T 2 3 4
simulation steps x10°

FIG. 3. (Color online) Relative differences between the energy
(E) and the expected energy of the ground state (E ) divided by the
average energy of the random state (Ey) as function of the number of
simulation steps. Symbols: O g = 1, (k) = 6; 1 g = 10000, (k) ~
12; © g =20001, (k) =18; > g =834, (k) = 6.5; V g = 12501,
(k) =17.5; A g =17501, (k) = 16.5.

nearly integer average degrees (namely g = 1, 10,000, 20,001
which correspond respectively to (k) >~ 6,12,18) and in
three other networks with nearly half integer average degrees
(namely g = 834, g = 2,501, g = 17,501, corresponding to
(k) >~ 6.5,7.5,16.5). In all cases, the system is prepared in
the random state at infinite temperature (8 = 0) and then
the temperature is quenched to zero. The figure reports the
difference between the values of the energy during the cooling
dynamics after quenching and the expected energy of the
ground state (Ey) divided by the average energy of the
random state (Ep). In this way, all plots start from 1 and they
must approach 0 if the system is reaching equilibrium. We
observe that the unfrustrated systems with integer (k) freeze
to a plateau energy which decreases with the genus but it
is well above E; = 0 for all the studied cases. We instead
observe that frustrated systems with half integer (k) exhibit a
fast dynamics to E, = 0.25n which is reached in finite times
with exponentially fast relaxation times.

6. Shortcuts

Let us now investigate the effect of the surface genus
on the global properties of maximal embedded graphs. As
mentioned earlier, the presence of a handle in the surface
provides a possible pathway for “shortcuts” between two
distant parts of the network that otherwise could not be directly
connected. It is intuitive to understand that by increasing the
genus one also increases the number of shortcuts that can be
inserted. Consequently the diameter of the graph (maximum
distance between any two nodes) must proportionally decrease
when the genus increases. However, we must stress that we
are investigating a stochastic system that is spontaneously
evolving through random weighted moves and therefore the
relation between network diameter and surface genus is not
straightforward. In Fig. 4 we report the graph diameters for
samples with n = 20000 vertices embedded on surfaces with
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FIG. 4. (Color online) Variation of the graph diameter vs the
genus. Symbols: A random states; V frozen states. The symbols
correspond to averages over ten independent constructions, the error
bars are the standard deviations.

different genus. As expected, we can see that the diameter
decreases with the genus. We observe that this happens both for
networks in the random and in the frozen states. At low genus
the random state has a smaller diameter than the frozen state,
a feature that may be associated with the formation of hubs in
the random configuration. Intriguingly, we can see that at high
genus the relation is reversed and frozen states have smaller
diameters than random states; this may be associated to the
formation of branches in the random state. Very similar results
are retrieved by considering the average distance between
vertices instead of the diameter.

7. Scaling of the graph diameter with network size

We have also investigated the effect of the surface genus
on the scaling properties of maximal embedded graphs.

140

—_ —_
o] o n
o o o

graph diameter
3

g=n+1

v
“ ‘ 4
0 0.5 1 15 2
number of vertices n x10*
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Networks can have different scaling properties which can be
quantified by estimating the dimension [22]. For instance, a
triangular lattice on a two-dimensional Euclidean surface has
a dimension equal to 2. This can be measured by investigating
the scaling of the network diameter with the number of vertices
in the network which, in this case, must scale with the square
of the diameter and therefore we have the relation D o n'/2,
where D is the diameter. More generally, if the relation
between the diameter and the size is a power law, then one
can define a dimension d from D oc n'/4.

In Fig. 5 the graph diameter is plotted vs the number of
vertices for maximal embedded graphs with low genera (g =
0) and high genera (g = n + 1) both for random and frozen
states. As is clearly visible from the plots, the genus strongly
affects the value and the scaling of the diameters.

Incidentally, the dimension of maximal embedded graphs
on spherical surfaces (g = 0) has been studied in the context
of two-dimensional quantum gravity where the (Euclidean)
space-time is associated to a dynamical triangulation with all
edge lengths constant but with variable vertex degree which is
associated to the local space-time curvature [41-44]. Studies
in this context have revealed that the dimension must be equal
to 4 [45], a result confirmed by an analytical calculation via
a transfer matrix formalism [46]. In the present study we
observe that the diameter follows rather well the functional
form D ~ ¢;n'/* + ¢,. However, by looking carefully at Fig. 5
one may note that the power-law behavior is satisfactory for
g = 0 but, instead, for high genus cases, the growth is slower
than any power law. This is made evident in Fig. 6 where
D is plotted as function of In(z) and In[In(n)]. We can see
clearly in Fig. 6(a) that the diameter in low genus networks
grows faster than In(n) indicating a power-law scaling. On the
other hand, we can see from Fig. 6(b) that the diameter in
high genus networks does not grow any faster than In(n) and
the growth may even be consistent with a linear increase with
In[In(n)] suggesting that these networks could be ultrasmall
worlds. Ultrasmall world properties have been observed in
scale-free networks [47] but here—instead—this property is
revealed also in the frozen state with almost regular graphs

graph diameter

100 1000 10000

number of vertices n

FIG. 5. (Color online) Variation of the graph diameter vs the number of vertices. Symbols: A random states; V frozen states. The symbols
correspond to averages over ten independent constructions, the error bars are the standard deviations. (a) Plot with linear-linear axis. (b) Plot

with log-log axis.
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FIG. 6. (Color online) Variation of the graph diameter with the number of vertices. Symbols: A random states; V frozen states. The symbols
correspond to averages over ten independent constructions; the error bars are the standard deviations. (a) Case with g = 0 plotted vs In(n).
(b) Case with g = n + 1 plotted vs In(n). (c) Case with g = 0 plotted vs In[In(n)]. (d) Case with g = n + 1 plotted vs In[In(n)].

with very narrow degree distributions. It must be stressed that
it is beyond the purpose of the present work to establish the
exact scaling laws; indeed, for this purpose, a larger range of
sizes must be explored. However, what we have observed gives
enough qualitative evidence to establish that the surface genus
strongly affects the global properties of maximal embedded
graphs changing the scaling of the diameter with the number
of vertices passing from a large-world kind of behavior to
a small—and possibly even ultrasmall—world behavior. Very
similar results are retrieved by considering the average distance
between vertices instead of the diameter.

8. Clustering coefficient

Another important and widely used graph measure is
the clustering coefficient which quantifies the level of local
interrelations between a set of neighboring vertices. We
measured the clustering coefficient of each vertex by taking
the set of its neighboring vertices and counting the number
of edges between them and then dividing this number by the
maximum possible number of edges between them [which is
k(k — 1)/2 for a vertex with degree k, i.e., all k neighbors
connected among themselves]. In Fig. 7 we plot the average
clustering coefficient for both random and frozen states.

We can observe that maximal embedded graphs have finite
clustering coefficients which decrease with the increasing

0.71

average clustering coefficient

9 x 10"

FIG. 7. (Color online) Variation of the average clustering coef-
ficient vs. the genus. Symbols: A random states; V frozen states.
The line is the prediction for the average clustering coefficient from
¢=2[5+12(g — 1)/n]7! (see text).
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genus. This is related to the fact that the average number
of neighbors increases with the genus [Eq. (4)]. Indeed, in
a triangulation, a vertex with degree k has at least k edges
between its neighbors. This means that, for a vertex with
degree k the clustering coefficient must have the following
lower bond:

2% 2
kk—1) k-1

which is a decreasing function of k. The equality in Eq. (14)
is achieved when the local structure surrounding the vertex
with degree k is a polyhedron with k vertices. If the degree
distribution is narrowly distributed around (k), then we can
substitute (%) ~ (I{)%l and therefore from Eqgs. (4) and (14)
we can derive a lower bound on the average clustering
coefficient: ¢ = g2y = 2[5+ 12(¢ — 1)/n]~". This lower
bond is plotted with a continuous line in Fig. 7. As one can
see, the line overlaps well with the results for the frozen states.
This is intuitively correct because the frozen states are almost
regular graphs with planar local configurations.

c(k) = (14)

IV. SCALE FREE REFERENCE NETWORK

Let us now consider a nonuniform reference degree
distribution, and let us investigate the case where such a
distribution is a power law: p(k*) oc 1/(k*)*+!. Networks with
the power-law kind of degree distribution (scale free networks)
are common to several natural and artificial systems and the
study of their occurrence and properties is therefore of great
interest [1,4].

There are several known methods to build planar triangu-
lations and planar graphs with power-law degree distributions
with different exponents [9,10,12]. For instance, in the previ-
ous section we have shown that, at high genera, the degree
distribution of the random state tends to broaden towards
a power-law-like distribution. However, it has been so far
unclear if, in general, any power-law degree distribution can be

10
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realized by using triangulated surfaces. Here, we investigate
this point by using an energy term with reference degree
per each vertex, k7, that follows a power-law distribution
p(k*) o< 1/(k*)**!. In this case, the genus is set to a value
that leads to an average degree which best a Il)proxmlates
the reference average degree: (k) =6+ 12g (k*) or
conversely g >~ 1 + n({(k*) —6)/12 [see Eq. (4)] We can
see that (k*) = 6 corresponds to g = 1, instead (k*) <6
produces elliptic triangulations (g = 0), and conversely (k*) >
6 produces hyperbolic triangulations (g > 1).

A. Numerical simulations

We generate a triangulation in a random state at high
temperatures and then we quench it down to zero temper-
ature. These simulations have been carried over by using
specifically developed numerical tools which are now made
freely available from Matlab Central, Ref. [17]. The random
state has been already described in the previous section. The
quenching dynamics from the random state to the frozen state
is very similar to the one observed in the case of uniform
reference distribution: the system dynamically slows down
into a frozen state where the ground state is not reached in any
finite time. Such a dynamical freezing is shown in Fig. 8(a)
which reports the average residual energy per vertex, after
10* x n time steps with a Glauber-Kawasaki type of dynamics
[Eq. (9)], at different temperatures 8! for triangulations
with n = 1000 vertices. The frozen distribution for « = 1.6 is
shown in Fig. 8(b). In this case (k) = 6.8 and g = 67. As one
can see, the reference distribution (+ symbols) is reproduced
well by the embedded triangulation (x symbols). Furthermore,
in Fig. 8(c) it is shown that the degree of each vertex k;
satisfactorily approaches the corresponding reference degree
k} with a correlation coefficient between the two series above
99%.

We investigated also several different reference distribu-
tions across a range of power-law exponents & measuring how
well they can be approached by the triangulation. For this

complemetary cumulative distribution

degree k

FIG. 8. (Color online) (a) Residual average energy per node at different temperatures for referential degree distributions with different
values of the exponent «. The maximally embedded graph has n = 1000 vertices and it has been relaxed for 107 steps with a Glauber-Kawasaki
type of dynamics [Eq. (9)]. (b) Complementary cumulative distribution for a hyperbolic maximally embedded graph with « = 1.6. The red

“p

symbols are the reference degree distribution k*, whereas the blue

LN

symbols are the degree distribution attained by the maximally

embedded graph. (c) The inset shows the degree of each vertex, k;, in the max1ma11y embedded graph (y axis) vs the corresponding referential

degree k; (x axis).

036109-8



EXPLORING COMPLEX NETWORKS VIA TOPOLOGICAL ...

3.5
8
c 3
(0]
>
025
=2
e
& 2
2
EIIJ 1.57
S 1
©
2
505
x -
01 2 3 4
exponent o

PHYSICAL REVIEW E 86, 036109 (2012)

(b)

average energy per vertex

exponent o

FIG. 9. (Color online) (a) Kullback-DLeibler divergence between the reference degree distribution and the distribution of the embedded
maximally embedded graph for various values of the exponent «. (b) Residual average energy per vertex; the dotted line is ((k) — (k*))?. The
vertical lines indicate the point @ = 1.74 at which the reference distribution has (k*) = 6. The symbols are averages over ten simulations and

the error bars are the standard deviations.

purpose we considered several power-law reference degree
distributions with exponents in the range 1 < o <4 and
we let the system dynamically evolve with the Glauber-
Kawasaki dynamics [Eq. (9)] towards a zero-temperature
frozen limit. Here we qualify the distance between the
achieved distribution p(k) and the reference distribution
p*(k) by computing the Kullback-Leibler divergence: KL =
>« plk)log, p(k)/p*(k). In Fig. 9(a) we report the values
of the Kullback-Leibler divergence for various exponents «.
One can observe that the two distributions have smallest
differences in the region around o ~ 1.7. Let us here note
that for a power-law distribution, in the limit n — oo, one
can calculate analytically the average degree: (k*) = [¢(«) —
1-2"9]/[¢clc+1)—1-— 2711 with ¢ the Riemann zeta
function. This is a decreasing function of « that diverges
when o — 17 and becomes equal to 6 for o ~ 1.74. We have
therefore that power-law degree distributions with o < 1.74
are associated with hyperbolic triangulations (g > 1) whereas
o > 1.74 are associated with planar or elliptic triangulations
(g = 1 or 0). It appears therefore that power-law distributions
are best retrieved for planar or elliptic triangulations. Interest-
ingly, around these values of the exponents « are associated
to many known natural and artificial scale free networks [1,4].
By looking at the final energy achieved [see Fig. 9(b)] we can
observe that for « > 2 the residual energy per vertex almost
coincides with ((k) — (k*))? indicating therefore that most of
the differences in the distribution are a consequence of the
fact that, in this region of the exponents, the reference average
degree becomes too small and it cannot be matched by the
triangulation.

V. EMBEDDING ANY NETWORK

Let us now discuss the more general case when a reference
network is given (any kind of complex network, not a
triangulation) and a maximally embedded graph containing
this reference network as a subgraph is sought. We know
that this must be possible for a sufficiently high genus and
Eq. (5) gives an insight on the lower bound for g. However,
it is also known that the problem of finding the embedding

for a given graph is NP hard and finding the minimum genus
of the surface on which the embedding can be built is NP
complete (the graph-embedding problem) [48]. Nonetheless,
it is always possible to develop algorithms that can find
suboptimal embeddings in polynomial times. It is expected
that, for such suboptimal embedding, a larger genus must
correspond to faster convergence. Here, we briefly discuss
the case of embedding of scale free networks, searching for
the lower values of the genus associated with convergence
in polynomial time. To this end, here we have developed
a simple procedure that starts with a maximally embedded
network on a surface of genus g containing the same number
of vertices n as the reference network. In this procedure
we first build the network randomly and then we explore
the possible embeddings with two moves: the T1 move,
described previously, and a re-addressing move that changes
the vertex indices trying to connect couples of vertices that
are connected in the reference network. The algorithm accepts
moves that result in a maximally embedded graph with an
increased number of connections among vertices that are
connected in the reference network. By using this simple
procedure we observe that convergence is always achieved
when the genus is sufficiently larger than the bound from
Eq. 5) (g" =1+ %n). On the other hand, when such
a bound is approached, convergence becomes much slower
and—eventually—a solution is not reached within the limits
of the simulation time. This is illustrated in Fig. 10 where
the number of steps to reach the embedding (expressed
in units of n?) are reported as a function of the relative
excess of genus (g — g*)/n for scale-free reference networks.
One can see that for large enough genera the embedding is
always achieved in a time of the order of O(n?) but, when
the genus becomes smaller, the algorithm fails to find the
embedding in O(n?) (see the inset of Fig. 10 for the percent
of failures to reach embedding within 500 x n? simulation
steps). The transition between the phase where embedding is
easily attained to the phase where no solutions are found is
rather sharp and it depends on the network properties. For
instance, Fig. 10 shows the difference between two cases
for scale free networks with &« = 1 and 2 respectively. It is
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FIG. 10. (Color online) These plots illustrate that the convergence
towards a maximally embedded graph that contains a given reference
network as subgraph is always achieved when the genus is large
enough. The y axis reports the number of steps to achieve the
embedding in units of n? and the x axis is the relative excess genus:
(g —g")/n[whereg* =1+ “‘*l#n is the lower bound for the genus
from Eq. (5)]. The symbols are average values and the error bars
are standard deviations over ten runs. The plots refer to the n = 100
case. In the inset, the percent of failures to reach the embedding in
less than 500 x n? simulation steps is shown. The downward triangles
“y” refer to a scale free network with exponent @ = 1; upper triangles
“A” refer to a scale free network with exponent o = 2.

beyond the purpose of the present article to investigate these
convergence issues that also depend on the algorithm used. Our
purpose here has been simply to prove, through examples, that
given an arbitrary reference network, a maximally embedded
graph containing the reference network as sub-graph can be
constructed. We verified that the properties of the maximally
embedded graph are strongly related to the properties of the
reference network. For instance, the degree of each vertex in
the maximally embedded graph and in the reference network
are highly correlated. This also implies that Gauss-Bonnet
space curvature from the maximally embedded graph is highly
correlated, at the local level, with the space curvature required
to naturally embed the reference network. Consequently, by
producing a maximally embedded graph which contains the
reference network as a subgraph we also retrieve a geometrical
embedding of the reference network into an appropriate
hyperbolic manifold.

VI. CONCLUSIONS

We have shown that by considering networks embedded
on surfaces one can develop a powerful methodology that
allows us to study any kind of network within a unified
approach. The surface genus is a very important characteristic
that strongly influences both local and global properties of
the embedded graph. There are two simple, local elementary
moves, T1 and T2, that allow us to explore the entire set of
maximally embedded graphs on a given surface. By means of
these moves one can develop a statistical mechanics approach
which can be used to investigate networks with different
degrees of disorder but with constrained complexity. Within
such a statistical mechanics framework, we find that at high

PHYSICAL REVIEW E 86, 036109 (2012)

temperatures, the network is disordered and it reveals an
exponential degree distribution when the surface genera is low;
instead, at high genera, the equilibrium distribution becomes
a power law with faster than exponential cutoff. At low
temperatures, an energy function can be defined such that the
network degree distribution tends toward a referential degree
distribution. However, we observe that the cooling dynamics
incurs in a slowing down and the ground state cannot be
reached in a finite time. When the reference degree distribution
is regular, we observe that a mechanism of geometrical
frustration, associated with fractional average degree, can
reintroduce fast cooling dynamics showing that the occurrence
of this glassy phase is related to the amount of disorder.
We show that a mean-field model can describe correctly some
of the network properties especially in the range of finite
temperatures.

From a global structural perspective, the surface genus
is constraining the degree of interwovenness of the network
and we have shown that it is affecting the graph diameter.
We found that networks developing on surfaces with small
genera have large-world properties with the diameter scaling
as a power law of the number of vertices; instead high
genera surfaces lead to much smaller networks that might
be small world or even ultrasmall world. Interestingly, this
scaling is observed in networks prepared at high tempera-
tures and possessing broad degree distributions as well as
in networks cooled at low temperature with very regular
degrees.

This methodology is general and it can be used to
study any network. Indeed, we demonstrated that embedded
triangulations can be built in such a way that they contain
an arbitrary network as a subgraph. These are suboptimal
embeddings which can be achieved in polynomial compu-
tational time when the surface genus is large enough in
comparison with the theoretical lower bound g* [Eq. (5)].
We have pointed out that these topological embeddings onto
maximally embedded graphs directly lead to geometrical
embedding into spaces with non-Euclidean curvature (typ-
ically hyperbolic for complex reference networks). Let us
note that our approach is however much richer than a simple
geometrical embedding onto the Poincaré disk; indeed the
surface genus also provides “wormholes” through which the
embedding space offers ways for shortcuts between otherwise
distant points. This further contraction of the embedding
space is a key element that leads to ultrasmall networks. The
resulting geometrical embedding is on a complex hyperbolic
manifold.

Future studies will focus on the application of these
networks to information filtering by constructing maximal
embedded graphs from a similarity measure in analogy with
what was already done in the case of planar maximally
embedded graphs with the planar maximally filtered graph
construction [7,49,50] that in the present context corresponds
to the g = O case.
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