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We develop a sequence of models describing information transmission and decision dynamics for a network
of individual agents subject to multiple sources of influence. Our general framework is set in the context of an
impending natural disaster, where individuals, represented by nodes on the network, must decide whether or not
to evacuate. Sources of influence include a one-to-many externally driven global broadcast as well as pairwise
interactions, across links in the network, in which agents transmit either continuous opinions or binary actions.
We consider both uniform and variable threshold rules on the individual opinion as baseline models for decision
making. Our results indicate that (1) social networks lead to clustering and cohesive action among individuals,
(2) binary information introduces high temporal variability and stagnation, and (3) information transmission over
the network can either facilitate or hinder action adoption, depending on the influence of the global broadcast
relative to the social network. Our framework highlights the essential role of local interactions between agents in
predicting collective behavior of the population as a whole.

DOI: 10.1103/PhysRevE.86.036105 PACS number(s): 89.75.Fb, 89.75.Hc, 87.23.Ge, 89.70.Hj

I. INTRODUCTION

The influences that humans have on one another’s opinions
and subsequent actions can shape large-scale movements
[1–4] and are often facilitated by the sharing of information.
Advances in information technologies are rapidly changing
the way that humans exchange and share information. The
widespread adoption of radio in the 1920s and television
in the 1950s ushered in an era of live broadcast media,
greatly increasing the speed and scope of mass communication
from that of newspapers, which had been the dominant
form of “one-to-many” information dissemination since the
development of the Gutenberg printing press in the 15th
century. The commercialization of the Internet in the late
1990s catalyzed the development of new digital broadcast
services, consumed by a diversity of computing machines that
now include laptop computers, mobile “smart” phones, and
other handheld devices. These devices are now ubiquitous;
by mid-2010, there were more than 5 billion mobile phone
connections worldwide [5], with some regions experiencing
more than 100% penetration (meaning that there is more than
one mobile device per person).

A distinguishing feature of the Internet and these modern
digital devices is that they enable rapid one-to-many and many-
to-many communication, using services such as Facebook and
Twitter, a phenomenon that has come to be known as social
media. By the end of 2011, more than 300 million users were
accessing Facebook using mobile devices [6,7]. In this modern
era, anyone with a digital device and an Internet connection
can publish information, and this is dramatically changing the
roles that individuals and corporations play in traditional media
industries such as books, music, film, and news journalism [8].

There is a general recognition that these technologies allow
information to spread faster and perhaps more effectively.
Such social epidemics, like biological epidemics [9,10], can
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be thought of as the result of single- [11] or multistage [12]
complex contagion processes [13–15] that can propagate
through Facebook [16], news websites [17] and other social
media [18], blogs [19], and Twitter [20].

Recent events on the east coast of the United States have
shown that social media can be helpful during extreme weather
events and natural disasters [21]. In the case of the 5.8 magni-
tude earthquake that occurred in Virginia on 23 August 2011,
the social network service Twitter proved to be more reliable
than cellular phones, which became overloaded by increased
call volume immediately after the event [22], and news of the
event propagated to nearby New York on Twitter faster than
the seismic waves themselves [23]. Social media also allows
for rapid organization of disaster response information. For ex-
ample, during the 7.1 magnitude earthquake in the Canterbury
region in the South Island of New Zealand on 4 September
2010, the University of Canterbury used Facebook and other
web-based technologies as a prominent source of up-to-date
information and support for many months [24]. It is less clear
how this faster information propagation affects the collective
behavior of the individuals who consume it. Social networking
technologies have been credited with facilitating the 2009
revolution in Moldova [25] and the “Arab Spring” uprisings in
2011 [26,27]. More prominently, social media has become an
important component of corporate marketing and advertising,
with considerable effort now directed at determining how to
optimize the use of this new media [28–30].

In this paper, we consider the following question: Do social
networking technologies like Facebook and Twitter “help”
to bring a group of individuals to action? We consider the
specific case of a population of individuals, each of whom
must decide if and when to commit to a binary decision, and
we assume that these individuals are exposed to information
both from broadcast sources and over social media. The study
of information diffusion on social networks has a lengthy
history of illuminating the large-scale spread of rumors, social
norms, opinions, fads, and beliefs [9,13,31–35]. The particular
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set of problems where individual decision making occurs in
the presence of external information is known as “binary
decisions with externalities” [31,36,37]. Here the individual’s
decision is often modeled as a threshold on their underlying
opinion [31,38–41], which is modulated by the opinions of
other individuals. We pose a minimal model of individual
decision making and consider the effect of different forms of
information exchange on the behavior of the group as a whole.

As a concrete example, we focus on a situation where
a population is faced with a pending natural disaster (e.g.,
hurricane or wildfire). In such circumstances, it is know that
each individual culls information from a wide variety of digital,
sensorimotor, and social sources [42] and must decide if and
when to evacuate. We assume that each individual has a
simple decision rule: if the individual believes that the disaster
is sufficiently likely, then he or she will evacuate. Individ-
uals receive information about the disaster from a “global
source” that broadcasts updates to the population as a whole
[see Fig. 1(a)], and these individuals also exchange informa-
tion over a social network that allows them to share opinions
and observe the binary decisions of others [i.e., determine
who has evacuated; see Fig. 1(b)]. By numerically exercising
a series of increasingly complex models, we illustrate the
tensions and trade-offs inherent in social decision dynamics.

Our results suggest that information transmission over
the social network can either facilitate or hinder the action
adoption depending on the influence of the global source
relative to the social network. Further, we find that the sharing
of binary information results in high variability, cascade-like
dynamics in which the time of collective action is difficult to
predict.

Broadcast Network Social Network

global source

individuals

0 1
link weights: p

1 12

(a) (b)

0 1

individuals

link weights: P

Linking Global Source to Individual Linking Individual to Individual

FIG. 1. (Color online) Model construct. Here we illustrate our
multilayered broadcast-social network system composed of a graph
allowing information diffusion between a global source and a
population of 12 individuals (broadcast network) and a second graph
allowing information diffusion between individuals (social network).
(a) The broadcast network structure is a directed bipartite graph
where the link weights are equal to the probabilities that the global
source transmits information to the individual (probabilities given by
the vector p, which varies over multiple numerical simulations M).
(b) The social network structure is an all-to-all undirected graph
where the link weights are equal to the probabilities that an individual
transmits information to another individual (probabilities given by
the matrix P, which varies over multiple numerical simulations). In
concrete terms, Pij can be thought of as the combined rate that agent
i posts and agent j reads the posting on Facebook.

II. MODEL CONSTRUCT

We build a model of decision making and social network
interaction in discrete time. The social networks we study can
be thought of as Facebook- or Twitter-like, in the sense that an
agent posts updates or tweets to these media and subsequently
other agents can check the posting at some rate. In our model
framework, each agent receives a directed update from the
other agents one at a time at prescribed rates.

Let t = 0,1,2, . . . index the discrete time increments. The
social network consists of n individuals, in which each agent
j = 1,2, . . . ,n has two state variables:

(1) Sj (t) = the internal state at time t , where Sj (t) ∈ [0,1];
(2) Xj (t) = the externally observable state at time t , where

Xj (t) ∈ {0,1}.
The internal state assumes continuous values, but the

externally observable state Xj (t) reflects a binary decision
on the part of agent j , derived from the decision rule

Xj (t) =
{

1 if Sj (t) � τj

0 if Sj (t) < τj ,
(1)

and where τj ∈ [0,1] represents a threshold value for agent
j . The use of a threshold for the binary decision Xj (t) is
consistent with long-standing modeling efforts of collective
behavior, beginning with the work of Granovetter in the
1970s [38], and is particularly relevant for decisions that are
inherently costly [31] (such as evacuations).

We think of the internal state information as “private”
in the sense that, for example, it reflects an underlying
belief on the part of the individual. While it is possible
that an individual could share this private information with
another, this exchange requires the individual to volunteer it.
In contrast, the externally observable state is “public” in the
sense that anyone who sees that individual would observe
their binary decision. It has been argued that this separation
between internal opinion and external decision is critical for
an understanding of how convictions are coupled to actions
[43,44].

We represent the internal state of all agents at time t

using S(t) = {S1(t),S2(t), . . . ,Sn(t)}, and we represent the
externally observable state of all agents at time t using
X(t) = {X1(t),X2(t), . . . ,Xn(t)}.

The internal state of an agent changes over time as a result of
information from three different sources: (1) a global source
via a “global broadcast,” (2) the internal state information
of friends via “social sharing,” and (3) the decision state of
neighbors via “neighbor observation.” Each of these sources
is described in more detail below.

Global broadcast. We introduce a special external agent
called the “global source” of information that influences, but is
not influenced by, the other agents. Let G(t) ∈ [0,1] represent
the value that is broadcast by the global source in time period
t . We assume that receipt of a broadcast message by agent j

is binary (i.e., either it happens or it does not). Let uj (t) =
1 represent the successful broadcast from the global source
to agent j at time t , and uj (t) = 0 represent no broadcast.
Thus the vector U (t) = {u1(t),u2(t), . . . ,un(t)} represents the
overall broadcast from the global source at time t . This global
source is the primary “external driver” of dynamics in this
system.
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Social sharing. We assume that the action of social sharing
between agents is binary, either occurring or not occurring at
any point in time. That is, we let aij (t) = 1 if agent i shares
its internal state information with agent j in time period t , and
aij (t) = 0 if not. Thus, the matrix A(t) = {aij (t)} represents
the adjacencies for the exchange of internal state information
among the agents in time period t .

By construction, ajj (t) = 0 for all agents j and all time
periods t . In general, we use symmetric sharing [i.e., aij (t) =
aji(t)] to indicate that any agent may address any other agent;
however, the mathematics here do not require it. In our model,
however, these links are directed in the sense that for a given
sharing event, an agent asks for another agent’s opinion or
state, but does not share its own state. Whether or not there
is sharing symmetry or directionality depends on the specific
application we hope to model. Communication across cell
phones tends to be symmetric and undirected, while that across
Twitter and Facebook is not necessarily so.

Neighbor observation. Similarly, we assume that the ob-
servation of another agent’s external state either happens or
does not in each time period t . Let B(t) = {bij (t)} represent
an adjacency matrix for the exchange of externally observable
binary state information among the agents, where bij ∈ {0,1}.
By construction, bjj (t) = 0 for all agents j and all time periods
t . The matrix B might represent a network of interactions based
on physical location, where nearby individuals literally see one
another even if they do not communicate. For purposes of our
discussion, we refer to agents who are adjacent in the matrix
B as neighbors. That is, we narrowly define two agents as
“friends” if they share internal state information, and we define
two agents as “neighbors” if they can observe the external state
of each other. Again the mathematical formulation here can be
used to model both symmetric and nonsymmetric sharing.

General update rule. In the presence of all three sources of
information, the internal state of agent j evolves according to
the general update rule,

Sj (t + 1)

=
∑

i aij (t)Si(t) + ∑
i bij (t)Xi(t) + uj (t)G(t)∑

i aij (t) + ∑
i bij (t) + uj (t)

. (2)

This update rule is a deterministic averaging of the current
internal state of agent j , the internal state of agent j ’s
friends, the external state of agent j ’s neighbors, and any
global broadcast information. However, we assume that the
coefficients in A, B, and U are stochastic in time; that is, in
any given time period t , the information to agent j might or
might not be received. This stochasticity is consistent with the
fact that communication over these types of networks is likely
to be sparse—due to geographic and energetic constraints—
and dynamic—due to agent movement and constraints on
communication [37].

While opinion dynamics have been studied using a variety
of models [45], the averaging rule given in Eq. (2) is most
consistent with the Hegselmann-Krause model of opinion
dynamics [46], models of “continuous opinion dynamics”
[47], and the many models of coordination and consensus
of autonomous agents [37,48–51]. The discrete nature of this
update rule is consistent with the fact that information is often

issued at some frequency or can be obtained in discrete units
from governmental, social, or technical sources [42,52].

III. COLLECTIVE DECISION DYNAMICS

In what follows, we are interested in the real-time exchange
and mixing of information among the individuals, and how it
affects the decision making of the collective group.

We measure the behavior of the system as a whole in several
ways. Recall that the social network consists of n individuals,
in which each agent j = 1,2, . . . ,n has two state variables:
Sj (t) and Xj (t). We refer to the sequence S(t),t � 0 which
indexes over the j agents as the information state trajectory for
the system, and the sequence X(t),t � 0 similarly as the action
adoption trajectory. Let m = 1,2, . . . ,M index the numerical
trials associated with a particular experiment, and let Sm

j (t)
represent the value of Sj (t) during the mth trial. We compute
the average information state of the population at time t during
experiment m as 〈Sm

j (t)〉n = 1
n

∑n
j=1 Sm

j (t); accordingly, the
sequence 〈Sm

j (t)〉n,t � 0 is the average information state
trajectory for the system during experiment m. We compute
the average information state of individual j at time t as
〈Sm

j (t)〉m = 1
M

∑M
m=1 Sm

j (t); this is the average information
state of any individual in the population. Accordingly, the
sequence 〈Sm

j (t)〉m,t � 0 is the ensemble information state
trajectory of a single individual over the ensemble of nu-
merical trials. Finally, we can estimate the average ensemble
information state trajectory as

Em

〈
Sm

j (t)
〉
n

= 1

M

M∑
m=1

⎡
⎣1

n

n∑
j=1

Sm
j (t)

⎤
⎦

= 1

n

n∑
j=1

[
1

M

M∑
m=1

Sm
j (t)

]
. (3)

It is important to note that the variance of Sj (t) over individuals
could be very different from the variance expected over
numerical trials; for example, one distribution might be normal
and the other heavy tailed. The separation of the individual
and ensemble averages allows us to independently probe these
distinct sources of variability in the system.

We introduce the term N (t) = ∑n
j=1 Xj (t), which counts

the number of individuals whose internal state has exceeded
their decision threshold and who therefore have taken action.
With this definition, we observe that 〈Xj (t)〉 = N (t)/n mea-
sures the fraction of individuals who have chosen the binary
action.

In many cases, we are also interested in the amount of time it
takes for the population to collectively adopt new information
or take action. We define HS(α) = min{t |〈Sj (t)〉 � α} to
be the first hitting time for the population to reach some
average information level α ∈ [0,1]. Similarly, we define
HX(α) = min{t |〈Xj (t)〉 � α} to be the first hitting time for
the population to reach some average adoption level α ∈ [0,1].
For example, HX(0.5) is the amount of time for half of the
population to adopt the binary action.

Conceptually, we can think of two basic types of infor-
mation diffusion; see Fig. 1. The first is the (one-to-many)
broadcast of external information by the global source to the
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agents; we can think of this interaction in terms of a broadcast
network. The second (many-to-many) diffusion occurs on two
different social networks: one network of friends and another
network of neighbors. We study the behavior of the system in
the following specific cases.

Case 1: Information broadcast from the global source only.
In this case, the only information exchange is the broadcast
from the global source, and the update rule is given by

Sj (t + 1) = Sj (t) + uj (t)G(t)

1 + uj (t)
. (4)

In the simple case where Sj (0) = 0 and where the global source
broadcasts G(t) = 1 for all time periods t , the progression of
internal state for agent j goes as 1 − 1/(k + 1) after the kth
update for uj (t) = 1. That is, with each update from the global
source, agent j moves “halfway” to the broadcast value of 1,
reaching it only in the limit as t → ∞.

As noted above, we assume that broadcast messages from
the global source are received stochastically. This could occur
in practice because agent j only “tunes in” to the global
source sometimes or because the global source has limited
success in its ability to reach agent j . For each time period t ,
we generate a vector U (t) as an independent and identically
distributed random vector, where Prob{uj = 1} = pj , and this
probability is independent for each agent j . Thus, E[uj (t)] =
pj captures the expected broadcast “rate” [52] to agent j

(assumed to be stationary for now), and E[U (t)] represents
the overall expected broadcast from the global source in time
period t .

In this simple case, we can derive expected values for
Sj (t) and Xj (t) analytically. Specifically, after t discrete time
units, the probability of agent j having received k � t updates
is given by the binomial distribution, Binom(k; t,pj ). The
expected value of Sj (t) is therefore

E[Sj (t)] =
t∑

k=0

(
t

k

)
(pj )k(1 − pj )t−k

(
1 − 1

k + 1

)
. (5)

In addition, E[Xj (t)] is simply the probability that agent j has
taken action (i.e., has adopted state 1) and can be defined as

E[Xj (t)] = Prob{Sj (t) � τj }

=
t∑

k=0

(
t

k

)
(pj )k(1 − pj )t−k

I{1− 1
k+1 �τj }, (6)

where I{a} is the indicator function, namely, I{a} = 1 when
condition a is true, and I{a} = 0 when condition a is false.

The values E[Sj (t)] and E[Xj (t)] in the simple case of the
global broadcast only serve as a baseline against which we
can evaluate the impact of various types of social network
exchange.

Case 2: Global broadcast with social network exchange.
We now add information exchange among friends alongside
the global broadcast. This gives us the following update rule:

Sj (t + 1) =
∑

i aij (t)Si(t) + uj (t)G(t)∑
i aij (t) + uj (t)

. (7)

Again, we assume that exchange of information between
friends is stochastic in time. Thus, we generate each matrix

A(t) as a weighted matrix, where Prob{aij = 1} = Pij and
this probability is independent for each (i,j ) pair. We let
this probability be stationary in time, based on the com-
mon assumption that the information transmission occurs
on a faster time scale than network changes [53]. Thus,
E[aij (t)] = Pij represents the expected rate at which agent
i influences agent j , and E[A(t)] is the expected information
exchange within the social network of individuals, as might
happen using technologies such as mobile phones, Facebook,
or Twitter.

This case corresponds to a particular type of consensus
problem for which there are analytic results that describe
the convergence of E[Sj (t)], specifically the conditions under
which it is guaranteed and how long it will take. Jadbabaie
et al. [49] consider the case of “leader following” in consensus
problems in which one of the agents never updates its own
variable, but indirectly influences all of the other agents.
The role of the “leader” is equivalent to that of our global
source. (Bertsekas and Tsitsiklis [54] argue that this result is
essentially a special case of the more general result in [55].)
Similarly, Jadbabaie [56] discusses routing in networks in
which nodes iteratively update their coordinate information,
but certain “boundary” nodes retain fixed locations (again,
like our global source). A third related example is the
model of Khan et al. [57], which describes consensus on
random networks in which there are “anchor nodes” (again,
like our global source in that their state does not change)
and “sensor nodes” (like our agents who update through
random mixing). Finally, Galam et al. [58,59] use the term
“inflexible agents” to indicate nodes whose opinions do not
change and find in some cases that these agents drive opinion
dynamics.

Case 3: Global broadcast with binary information only
among neighbors. In this final case, we consider the impact
of binary exchange among neighbors alongside the global
broadcast. This gives us the following update rule:

Sj (t + 1) = Sj (t) + ∑
i bij (t)Xi(t) + uj (t)

1 + ∑
i bij (t) + uj (t)

. (8)

Again, we assume that this type of exchange is stochastic,
and we generate each matrix B(t) as a weighted matrix,
where Prob{bij = 1} = Qij , and this probability is stationary
and independent for each (i,j ) pair. Thus, E[bij (t)] = Qij ,
and E[B(t)] is the expected information exchange within
local neighborhoods. In this case, we analyze the network
of friends separately from the network of neighbors. In future
simulations, it might be interesting to examine the special case
in which the two networks are either identical or change in a
dependent manner.

The behavior of this system is sufficiently complicated that
analytic results do not, to our knowledge, exist for this case.
We therefore turn to numerical simulations in order to analyze
and compare this case to the simpler ones described above.

IV. NUMERICAL EXPERIMENTS

We conduct several numerical experiments in which we
simulate the behavior of n = 100 agents over a maximum of
T = 1000 time units. Each agent j starts with Sj (0) = 0, and
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the global source broadcasts G(t) = 1 for all time periods t .
For each of our three cases, we simulate a total of M = 100
trials, and for each trial we select fixed broadcast rates for each
agent that are uniformly distributed on the interval [0,1] (that
is, pj ∼ U [0,1]).

Similarly, for each trial, we select social sharing rates Pij or
neighbor observation rates Qij , each of which remains fixed
within an individual trial. We define a symmetric matrix R
whose diagonals decrease in value:

Ri,i+|k| = (n − k + 1)/n∀k ∈ {1,2, . . . ,(n − 1)}. (9)

The matrix R can be thought of as a probabilistic form of
a regular lattice network. We choose P and Q as randomly
scrambled versions of R, where the scrambling maintains the
symmetry of the matrix. In general, this approach provides

flexibility for the examination of topological structures be-
tween random and regular graphs. In this work, we focus
on random topologies to understand benchmark behavior.
The distribution of probabilities across agents provides a
weighted counterpart to degree heterogeneities examined
in other studies of opinion dynamics [60,61], which have
important consequences for collective action.

For each of our three cases, we investigate the evolution of
information states and action adoption for individual agents
and the collective group as a whole.

A. Average information state

Figure 2 compares the evolution of information states
across the three case studies. Figure 2(a) shows the
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FIG. 2. (Color online) Information diffusion under three types of communication. (a), (d), (g): Information state trajectory for a single,
randomly selected agent j as a function of time. (b), (e), (h): Information state trajectories for a population of n = 100 agents. Information
states (color) for each individual (row) are shown as a function of time (x axis). (c), (f), (i): Average information state variable 〈Sj 〉 averaged
over M = 100 numerical simulations as a function of time. Note that the simulated curve (solid black line) in (c) is accompanied by a curve
that was analytically calculated from Eq. (5) (dashed red line).
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FIG. 3. (Color online) Action adoption under three types of communication. (a), (d), (g): Adoption state trajectories for a population of
n = 100 agents. Adoption states (color) for each individual (row) are shown as a function of time (x axis). Note that the color white indicates
that the individual has taken action. (b), (e), (h): Average adoption state variable 〈Xj 〉 averaged over M = 100 numerical simulations as a
function of time. (c), (f), (i): Dependence of average adoption state variable 〈Xj 〉 on the threshold level τ , which we have varied in this figure
from 0.1 to 0.9. Note that the simulated curve (solid black line) in (b) is accompanied by a curve that was analytically calculated from Eq. (6)
(dashed red line).

stepwise trajectory Sj (t) for a single agent, and Fig. 2(b)
shows the overall population of agents who independently
update their state information in the presence of the global
broadcast only. Figure 2(c) presents the average information
state trajectory for the collective group calculated both through
simulation (solid black line) and through the analytic solution
given in Eq. (5), which agree well.

Figures 2(d)–2(f) present the equivalent results for the
case of global broadcast and social network sharing. We
observe that in the presence of social networking, individual
agents [Fig. 2(d)] as well as the entire group of agents
evolve their state information in a collectively smooth manner
[Fig. 2(e)]. However, the overall rate of increase for the

average information state in the case of social network sharing
[Fig. 2(f)] is slower than in the case of the global broadcast
only [Fig. 2(c)].

Figures 2(g)–2(i) present the equivalent results for the case
of neighbor observation in which the only agent-to-agent
information exchange comes from observing the external
state of other agents. For the given parameters (n = 100,
d = 1, M = 100; for a description of d, see later sections),
we observe that none of the individuals ever raises their
information state significantly from the starting value of zero.
This case represents an extreme of the previous one in which
social network sharing through neighbor observation slows
any increase of the information state. (Note: See later sections
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for other areas of the state space in which potentially more
interesting behaviors like cascades and stagnation occur.)

B. Average adoption state

Figure 3 displays the adoption trajectories for the three
cases, when each individual agent j has a decision threshold
τj = 0.5. In Fig. 3(a), we observe that under only global broad-
cast, the information state of individual agents evolves in a
manner consistent with Fig. 2(b), except that we terminate each
trajectory when the individual crosses the decision threshold.
Figure 3(b) shows the average adoption state trajectory for
a single trial calculated both through simulation and through
the analytical solution given in Eq. (6), which agree well.
Importantly, to remain comparable to our simulations in which
p is chosen ∼U [0,1], Eq. (6) was calculated for a range of
0 < pj < 1, and the average is plotted in Fig. 3(b). We note
that the action adoption curve for a population with fixed pj

is not equivalent to that for a population with distributed pj .
Finally, Fig. 3(c) shows the effect of different threshold values
τ on the average adoption state.

Figures 3(d)–3(f) present the equivalent results for the case
of global broadcast and social network sharing. As before, we
observe that in the presence of social networking, the entire
group of agents evolves their state information in a collectively
smooth manner [Fig. 3(d)]. Since this groups shares a common
decision threshold, we observe that action adoption now occurs
abruptly [Fig. 3(e)] and that the onset of this abrupt change
depends primarily on the threshold level τ [Fig. 3(f)].

In the case of neighbor observation and global broadcast,
Figures 3(g)–3(i) again show that none of the individuals
ever raises their information state significantly from the
starting value of zero. These results are consistent with those
shown in Figs. 2(g)–2(i) and represent an extreme of social
inertia keeping the information state at very low values.
(Again, see later sections for other areas of the state space
in which arguably more interesting behaviors like cascades
and stagnation can occur.)

C. Heterogeneous decision thresholds

Up to this point, we have assumed that individual agents
share a common decision threshold τj . In practice, this is
unlikely to be the case and recent theoretic and experimental
work suggests individual variability in decision thresholds
might significantly alter the dynamics of the population
[62,63]. We now consider the implications of a heterogeneous
population of agents where the threshold for agent j is
uniformly distributed, τj ∼ U [0,1]. Figure 4 displays the
impact of variation in underlying τj on the mean adoption state
of the collective group as a function of time when averaged over
multiple trials, given by Eq. (3), as well as the corresponding
variance of the adoption state of the collective group as a
function of time.

We note that in the case of the global broadcast only, the
distribution of thresholds, whether homogeneous or heteroge-
neous, has little effect on the mean or variance of the adoption
state trajectories [Figs. 4(a) and 4(b)].
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FIG. 4. (Color online) Action adoption under heterogeneous
thresholds. Thresholds are either chosen to remain constant over all
individuals (“homogeneous”; black lines) or to vary over individuals
[“heterogeneous”; red (dark gray) lines]. (a), (c), (e): Average
adoption state variable 〈Xj 〉 averaged over M = 100 numerical
simulations as a function of time. (b), (d), (f): The variance (over
M = 100 numerical simulations) of the average adoption state
variable 〈Xj 〉 as a function of time. Note that the curves shown in
(d) are on such different scales that we have plotted them in separate
subplots to enhance visualization.

However, in the case of global broadcast and social network
sharing, having a homogeneous distribution of thresholds
over the population leads to a “tipping point,” where at one
time point, no one has taken action, while a few time steps
later, everyone has taken action [Fig. 4(c), black line]. For
heterogeneous thresholds, this drastic adoption is no longer
evident, and instead the transition from zero adoptions to all
adoptions is smooth and gradual [Fig. 4(c), red (dark gray)
line]. Consistent with these results, we find that the variance
in the adoption states across individuals is large precisely at
the tipping point for homogeneous thresholds [Fig. 4(d), black
line] and is small for all times when heterogeneous thresholds
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are used [Fig. 4(d), red (dark gray) line], suggestive of the
formation of a “collective.”

In the case of neighbor observation and global broadcast,
Fig. 4(e) shows that for this set of parameters (τj = 0.5 or τj ∼
U [0,1]), when the threshold is distributed homogeneously, the
population is unable to take action (black line), but when it
is distributed heterogeneously, the population can take action
[red (dark gray) line]. The fact that the population cannot
take action when τj = 0.5 is true for all simulations, leading
to a zero variance over simulations [Fig. 4(f), black line]. In
contrast, the action adoption trajectories for the population
vary over simulations when τj ∼ U [0,1], and they do so
particularly for time points close to the point of maximum
adoption [Fig. 4(f), red (dark gray) line].

D. Stagnation and Cascades

The adoption state trajectories reported in the previous sec-
tion were averaged over M numerical simulations. However,
in order to fully understand the case of neighbor observation
and global broadcast, it is important to examine individual
simulation trials in addition to their average.
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showing (1) stagnation, (2) partial cascade and then stagnation, (3)
late partial cascade, and (4) full cascade. (b) The complementary
cumulative distribution function (CCDF) of the first hitting time
for the population to reach the average adoption level of 0.5 [e.g.,
HX(0.5)] for a set of M = 5000 simulations as a function of the
influence parameter d .

In Fig. 5(a), we show information state trajectories for
all individuals in a population in four different simulated
trials. These four examples highlight several possible group
behaviors, including stagnation [Fig. 5(a1)], partial cascades
occurring either early [Fig. 5(a2)] or late [Fig. 5(a3)], and
full cascades [Fig. 5(a4)]. This high variability is an im-
portant factor that sets Case 3 (neighbor observation and
global broadcast) apart from the other two cases. Cascade
behavior has previously been demonstrated in a wide variety
of topological structures and update rules [31,41,64–66],
and understanding when and how cascades occur is
of particular importance for predicting large-scale social
movements.

We can study this behavior more systematically by examin-
ing the first hitting time for the population to reach an average
adoption level of 0.5 [e.g., HX(0.5)]. We define a “converging
simulation” as one for which HX(0.5) is identified within
1000 time steps and a nonconverging simulation as one for
which it is not. In Fig. 5(b), we show the complementary
cumulative distribution functions (CCDFs) of converging
simulations for this model (upper red line). We note that
the majority of converging simulations reach the target
average adoption level in relatively short times. However, the
distribution is heavy tailed such that much longer times are
consistent with the statistics. In fact, out of a total of 5000
simulations, only 2127 solutions converged in 1000 time
steps, indicating that stagnating periods can extend beyond the
studied temporal window (0 < t < 1000). In the next section,
we will further explore this behavior as a function of the
amount of exchange between social and global information
sources.

E. Impact of exchange rates

The behavior of the system under all three cases highlights
the role of different types of information exchange. We observe
that our stylized form of social network exchange tends to
move the group as a whole.

In this section, we introduce an influence parameter 0 �
d � 1, which serves to tune the network effects in Case 2
(social sharing) and Case 3 (neighbor observation), respec-
tively, as follows:

Sj (t + 1,d) = Sj (t) + d
∑

i 	=j aij (t)Si(t) + uj (t)

1 + d
∑

i 	=j aij (t) + uj (t)
(10)

and

Sj (t + 1,d) = Sj (t) + d
∑

i 	=j bij (t)Xi(t) + uj (t)

1 + d
∑

i 	=j bij (t) + uj (t)
. (11)

When d = 1, these cases remain unchanged and the social
network has full influence, but when d = 0, these cases each
reduce to global broadcast only where the social network has
no influence. This is illustrated in Figs. 6(a) and 6(f), where we
see that for low values of d, the information state trajectories
are similar to those found in Case 1 [global broadcast only;
compare to Fig. 3(b)]. The concept of network influence is
akin to the concept of information credibility, which varies
over modern information transmission technologies [67,68]: a
network with high credibility could be modeled as one with
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FIG. 6. (Color online) Effect of the influence parameter in (a)–(e) Case 2 (global broadcast with social network sharing) and (f)–(j) Case 3
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greater influence and a network with low credibility could be
modeled as one with lesser influence.

As d increases, we find that the variance in information
state trajectories across agents decreases [Figs. 6(b) and 6(g)],
which is consistent with the formation of a single collective
state as the social network becomes stronger. As d increases,
we also find that it takes longer for agents to reach any given
state value, indicating that the social network is maintaining
some inertia and holding agents closer and closer to their
original states [Figs. 6(c) and 6(h)]. These general behaviors
are also evident in a more continuous phase diagram of the
state space of the system [Figs. 6(d), 6(e), 6(i), and 6(j)]. We
note that the rightward tail of nontrivial behavior in Fig. 6(i) in
comparison to Fig. 6(d), and the extension of low 〈Sj 〉 to longer
times in Fig. 6(j) in comparison to Fig. 6(e), are a result of the

stagnation followed by cascading behavior present for the case
of neighbor observation. These results indicate a wider range
of active change or variability in model behavior relative to
the case of social network sharing.

Importantly, the high variability in population behavior in
Case 3 in the previous section is present over a wide range of
influence parameter values [Fig. 5(b)]. Here we study the first
hitting time for the population to reach an average adoption
level of 0.5 [e.g., HX(0.5), when 50 out of a possible 100
agents have adopted the action]. Accumulating data over
5000 numerical simulations, we find that the first hitting time
displays heavy tailed behavior: in the majority of simulations,
it takes a short time for those 50 agents to take action, but in
a few simulations, it takes a very long time. Furthermore, this
heavy-tailed behavior is sensitive to the influence parameter
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d and therefore the strength of the social network. For low
values of d, more numerical simulations have shorter first
hitting times, which is consistent with what we would expect
for situations that approximate Case 1 (global broadcast only).
This result is consistent with the fact that the social network
retards information state progress.

F. Does the social network help or hinder?

An important tradeoff is evident in Figs. 6(c) and 6(h) for
low values of d. When d = 0.0001, the average information
state trajectory curve rises the fastest initially but then slows
for later values of t . In fact, for a slightly larger value of
d = 0.001, the average information state trajectory curve lags
the d = 0.0001 initially and then surpasses it later. This result
suggests that the social network—if weakly present—can help
the entire population take action sooner. However, when the
social network becomes stronger (e.g., d = 0.01 and d = 1),
it acts like a cage, keeping information states of all individuals
from rising swiftly.

We investigate this behavior more systematically in Fig. 7,
where we observe three distinct behaviors: (1) facilitation of
information propagation for small rates of social exchange
[e.g., small values of the influence parameter d; Fig. 7(a),
bottom], (2) hinderance of information propagation for large
rates of social exchange [e.g., large values of d; Fig. 7(a), top],
and (3) a combination of, first, hinderance and then facilitation
for intermediate rates of social exchange [e.g., intermediate
values of d; Fig. 7(a), middle]. Transitions between these three
distinct behaviors are smooth, as demonstrated in Fig. 7(b).

These results demonstrate that the social network can both
hinder and facilitate information state changes and, by exten-
sion, action adoption. When the influence of the social network
is large, the inertia of popular opinion dampens the effect of
the global source attempting to inject new information into the
system. On the other hand, when the influence of the social net-
work is small, the added mixing facilitates the dissemination
of the new information provided by the global source.

V. DISCUSSION

Our long-term objective is to develop a framework that
enables predictive modeling of collective decision dynamics in
situations involving multiple sources of information. Modern
communication technologies and social networking applica-
tions provide fast, global means of information dissemination.
The need to determine the impacts of these technologies
on individual decisions and by extension collective action
make it essential to understand the interplay between multiple
information sources.

This paper lays the foundation of such a framework, by sys-
tematically exploring a sequence of models that aims to capture
tradeoffs and tensions that arise when a global broadcast source
competes with information transmission between individual
agents. Despite our necessarily simplified scenario, we find
that information transmission over the network can either
facilitate or hinder action adoption, depending on the relative
influence of the global and social information sources. In most
situations, the social network acts overall as a damping force,
homogenizing opinion states and delaying action adoption in
the population.

In this work, we report results from both numerical sim-
ulations and analytical solutions. Importantly, this theoretical
framework allows us to probe the effects of multiple diffusion
mechanisms separately in order to disentangle their relative
effects on collective behavior. However, it is also important
to compare these theoretical results to recent experimental
findings. Two recent studies have measured the relative
influence of global and internal mechanisms of information
diffusion [69,70]. In both cases, global influences—including
exogenous factors and external events—appeared to be greater
drivers of behavior than internal social influences, consistent
with the theoretical findings reported here.

A. Insights from biology

Biological insights for the model behavior can be obtained
by drawing comparisons between the multilayer information
system and animal herding behavior [71–73]. The combination
of the averaging update rule and the decision threshold forms
the mathematical framework for herding or social conformity
[74,75] in the sense that an animal can act based on inferences
from the information of other animals. In humans, models
of such information diffusion processes are built on a long
history of empirical work in sociology known as diffusion of
innovations [35,76,77].

For a wide range of animals including humans, group
decisions to move (for food or travel) often depend on
social interactions among group members [71], only a few
of whom have pertinent information (e.g, food location or
migration route). So-called informed individuals correspond to
our global broadcast, while uninformed individuals correspond
to our agents on the social network. Unlike work investigating
individuals who have no decision preference [73], our update
rule hard-codes the fact that agents in our system have a
preference for retaining decision states. Such an inertia is
consistent with the observation that individual beliefs are
continually evolving variables that depend both on past beliefs
[78] and newly acquired information, and in particular become
less malleable as time passes [79,80].
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B. Insights from statistical mechanics

Physical insights for the model behavior can be obtained
by drawing an analogy with the nonequilibrium statistical
mechanics of a spin system [81,82]. Our global broadcast
plays the role of a uniform external field, while the information
and adoption state variables of each agent can be thought of
as continuous or binary spins on a directed lattice [45]. The
initial state corresponds to all spins being initialized at zero,
with the external field fixed at unity. The interaction between
individual spins and the field is sampled stochastically, leading
to a noisy dynamical transition from inaction to action (a global
attractor).

Inclusion of the social network corresponds to pairwise,
directed interactions between spins on a random lattice [83–85]
that compete with the external field. Because the spins are
initialized at zero (opposite the field), the social network
initially tends to hinder action adoption, and in some cases
prevents action adoption entirely. Here inclusion of the
network homogenizes the collective behavior because the
interaction between spins described by the update rule is
intrinsically stabilizing, damping the opinions of outliers back
toward the collective.

A familiar characteristic from the statistical physics of
spins on a lattice that is not observed in our model is the
separation of agents and spins into spatially localized domains
characterized by action or inaction [86,87]. Two potential
contributing factors are the damping effect of our update rule
and the mixing effect of the random social network lattice, both
of which inhibit local propagation of injected information. Our
preliminary investigations suggest that the update rule is the
larger predictor of behavior and therefore we expect that within
our general framework, clustering would occur for different
broadcast and opinion update rules. Exploiting parallels with
well-understood systems in nonequilibrium statistical physics,
operations research, and graph theory are likely to provide
pathways for systematically unraveling the role of underlying
network structure, communication, and influence of collective
behavior of populations.

C. Future directions

(a) Update rule. Our focus here is on the collective impact
of individual decision making for when to evacuate, rather than
the specifics of transportation and routing. We implemented an
unbiased rule for opinion updates, in which the weight assigned
to state variables is independent of the state value and the time
since the last update. This deliberately avoids destabilizing
mechanisms promoting microscopic propagation that arise in
other contexts, such as the spread of infectious diseases [88]. In
the case of evacuations, it is plausible that recent information
might be weighted more heavily or travel preferentially along
specific paths [89,90] in opinion updates, or an agent with new
information might be more likely to share information on the
social network. However, inclusion of these effects requires
more sophisticated assumptions about the individual agents
that must be justified with cognitive and behavioral data. While
extracting influence and decision rules from network databases
remains a challenging problem in model identification, studies
in behavioral psychology, economics, and risk [91,92] might
provide useful insights for more realistic representations of

how individual opinions are updated and decisions are made
in the context of social networks.

(b) Network topology. In this initial investigation, our
model construct is deliberately chosen to be generic, abstract,
and random, setting a baseline for future work. The global
broadcast is accessed at random by individuals, and the
topology of the social network is random as well. In most
situations, the social network acts overall as a damping force,
homogenizing opinion states and delaying action adoption
in the community, which is a behavior that has also been
identified in experimental studies [93]. However, even in this
scenario, there are situations in which the social network
accelerates action adoption [94].

In each case, design and optimization could naturally
play a role in policy decisions for specific scenarios. For
example, the topology of the social network, both in terms
of connectivity and rate of information flow, could be based
on realistic measurements of network traffic as measured by
cellular communication [95], Twitter [96], or Facebook [97].
Or more generally, one could employ mechanistic models
to construct networks whose topologies closely match those
of empirical social networks. For example, models based on
collisions between particles have been shown to match the
clustering, degree distribution, degree-degree correlations, and
community structure in a variety of friendship and sexual
contact networks [94,98,99].

Alternatively, the social network for transmission of in-
formation pertaining to action adoption during an evacuation
might be chosen to correspond to the geospatial layout of
neighborhoods in a community [100–103]. For a given topol-
ogy, global broadcast rates and/or transmission to individuals
could be tailored to the connectivity, and optimized for
effectiveness as a guideline for policy. The clustering inherent
in such models will likely decrease the cascade effects seen in
our data [33,104].

(c) Threshold decisions. Our use of a uniform or random
threshold rule for action adoption at the individual level
is a traditional starting point used in the decision-making
literature [38] to study collective population dynamics. Other
factors that might influence decision making could incorporate
a time-dependent effect—is an individual more likely to adopt
an action when the rate of action adoption is increasing in
the population as a whole? Moreover, the coupling between
multiple networks—e.g., human decisions and transportation
systems used for evacuation—can play a vital role in the col-
lective behavior [105] (e.g., when road congestion prevents the
group from evacuating effectively). A fundamental question is
whether these and other feedbacks are a cause or an effect of
the underlying decision process.

D. Concluding remarks

In a broader context, the systematic development of a
framework for understanding the impact of social networks
on collective behavior corresponds to the development of a
nonequilibrium statistical mechanics for the impact of policy
on decision making in populations. Historically, many fields
in the social and life sciences have taken a phenomenological
approach to estimating the impact of deliberate policy and
other externalities on the behavior of populations. In this
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context, the study of social networks corresponds to an
underlying statistical mechanics for the collective behavior,
and must be understood systematically to obtain predictive
behavior of the population as well as a characterization of the
variability within the population.

It is increasingly recognized, across a broad range of
fields, that understanding network phenomena is essential
to characterizing behavior of the system as a whole. In
the specific context of social systems, interactions between
individuals can for example give rise to financial crashes
[106], political revolutions [107], successful technologies
[108], and cultural market sensations [109]. Constructing a
statistical mechanics for these problems is only a starting
point. Feedback, design, optimization, and robustness are all
critical ingredients, mandating an interdisciplinary approach
to developing a reliable, predictive framework that is useful for

policy. Policy issues related to individual decisions, including
the impact of training, identification of leaders, and signatures
of stress and fatigue, will be important topics of future research.
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