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Analysis of complex contagions in random multiplex networks
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We study the diffusion of influence in random multiplex networks where links can be of r different types, and,
for a given content (e.g., rumor, product, or political view), each link type is associated with a content-dependent
parameter ci in [0,∞] that measures the relative bias type i links have in spreading this content. In this setting,
we propose a linear threshold model of contagion where nodes switch state if their “perceived” proportion of
active neighbors exceeds a threshold τ . Namely a node connected to mi active neighbors and ki − mi inactive
neighbors via type i links will turn active if

∑
cimi/

∑
ciki exceeds its threshold τ . Under this model, we obtain

the condition, probability and expected size of global spreading events. Our results extend the existing work on
complex contagions in several directions by (i) providing solutions for coupled random networks whose vertices
are neither identical nor disjoint, (ii) highlighting the effect of content on the dynamics of complex contagions,
and (iii) showing that content-dependent propagation over a multiplex network leads to a subtle relation between
the giant vulnerable component of the graph and the global cascade condition that is not seen in the existing
models in the literature.
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I. INTRODUCTION

In the past decade, there has been increasing interest
in studying dynamical processes on real-world complex
networks. An interesting phenomenon that seems to occur in
many such processes is the spreading of an initially localized
effect throughout the whole (or a very large part of the)
network. These events are usually referred to as (information)
cascades and can be observed in processes as diverse as
adoption of cultural fads; the diffusion of belief, norms, and
innovations in social networks [1–3]; disease contagion in
human and animal populations [4,5]; failures in interdependent
infrastructures [6–14]; the rise of collective action to join a
riot [15]; and global spread of computer viruses or worms on
the Web [16,17].

The current paper focuses on a class of dynamic processes
usually known as binary decisions with externalities [1]. In
this model, nodes can be in either one of two states: active
or inactive. Each node is initially given a random threshold
τ in (0,1] drawn independently from a distribution Pth(τ ).
Then, starting from a small number of active vertices, nodes
update their states (synchronously) in discrete time steps. An
inactive node with m active neighbors and k − m inactive
neighbors will be activated only if the fraction m

k
exceeds

τ ; once active, a node cannot be deactivated. This model is
sometimes referred to as the Watts’ threshold model. However,
it was motivated by the seminal work of Schelling [18], who
employed a threshold model to gain insight into residential
segregation. Granovetter [15] also studied this model in a fully
mixed population (i.e., one where each individual can affect
any other one regardless of network topology) to characterize
riot behavior.

The starting point of the current work is the following basic
observation. Most existing studies on this subject are based on
the assumption that all the links in the network are of the
same type; i.e., it is assumed that the underlying network
is simplex. However, in reality, links might be classified
according to the nature of the relationship they represent, and
each link type may play a different role in different cascade

processes. For example, in the spread of a new consumer
product among the population, a video game would be more
likely to be promoted among high school classmates rather
than among family members [19]; the situation would be
exactly the opposite in the case of a new cleaning product.
Several other examples, both intuitive and real world, can
be given to show the relevance of link classification. A
few of them include belief propagation in a coupled social-
physical network (links between distant Facebook friends
vs. links between close officemates), cascading failures in
interdependent networks (power links that are vulnerable to
natural hazards vs. computer links that are vulnerable to
viruses), and spread of worms or viruses over the Internet
(worms that spread via E-mail contacts vs. worms that exploit
particular system vulnerabilities; e.g., see the Internet (Morris)
worm of November 2, 1988 [20]).

With this motivation in mind, in this paper we study the
cascade processes in multiplex networks [21–24]: Assume that
the links in the network are classified into r different types
1, . . . ,r . For a given content (a product, view, rumor, or a
source of failure), consider positive scalars c1, . . . ,cr , such
that ci quantifies the relative bias a type i link has in spreading
this particular content; i.e., the larger the constant ci , the more
likely it is for the content to spread via type i links. We then
assume that an inactive node with threshold τ gets activated if

c1m1 + c2m2 + · · · + crmr

c1k1 + c2k2 + · · · + crkr

� τ, (1)

where mi (respectively, ki) is the number of active neighbors
(respectively, the number of neighbors) that the node is
connected via a type i link. In other words, instead of
using the fraction m/k of one’s active neighbors, we use the
content-dependent quantity

∑r
i=1 cimi/

∑r
i=1 ciki , hereafter

referred to as the perceived proportion of active neighbors.1

1The notion of perceived proportion of active neighbors was first
suggested by Granovetter [15, p. 1429] as a way of taking the social
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This formulation allows a more accurate characterization of a
node’s influence on others’ behavior with respect to spreading
of various contents; the original case can easily be recovered
by setting c1 = · · · = cr = 1.

Under the condition (1) for adoption, we are interested
in understanding whether a single node can trigger a global
cascade; i.e., whether a linear fraction of nodes (in the
asymptotic limit) eventually becomes active when an arbitrary
node is switched to the active state. For ease of exposition,
we consider the case where links are classified into two types;
extension to r types is straightforward. Assuming that each
link type defines a subnetwork which is constructed according
to the configuration model [25], we find the conditions under
which a global cascade is possible; the precise definition of the
model is given in Sec. II. In the cases where a global spreading
event is possible, we find the exact probability of its taking
place, as well as the final expected cascade size.

These results constitute an extension of the results by
Watts [1] in several directions: First, our work extends the
previous results on single networks with arbitrary degree
distribution to multiple overlay networks [26] where the vertex
sets of the constituent networks are not disjoint (as in modular
networks [27]). Second, by introducing the condition (1)
for adoption, our model is capable of capturing the relative
effect of content in the spread of influence, and our theory
highlights how different content may have different spreading
characteristics over the same network. Third, our analysis
indicates that content-dependent propagation over a network
with classified links entails multiple notions of vulnerability
(with respect to each link type), resulting in a directed subgraph
on vulnerable nodes. This leads to a subtle relation between
the giant vulnerable component of the graph and the global
cascade condition in a manner different than the existing
models [1,27–30].

Very recently, Brummitt et al. [24] also studied the
dynamics of cascades in multiplex networks but under a
formulation that differs from ours. There, they assumed that
a node becomes active if the fraction of its active neighbors
in any link type exceeds a certain threshold. With the notation
introduced so far, this condition amounts to

max
i=1,...,r

(
mi

ki

)
� τ. (2)

In setting (2), the authors studied the threshold and the size
of global cascades and concluded that multiplex networks
are more vulnerable to cascades as compared to simplex
networks. Although formulation (2) might be relevant for
certain cases, it cannot capture the effect of content in the
cascade process. Furthermore, condition (1) proposed here
enables more general observations in terms of the vulnerability
of multiplex networks: Depending on the content parameters
c1, . . . ,cr , a multiplex network can be more, less, or equally

structure into account in the study of cascading processes. There, he
suggested, as an example, that the influence of friends would be twice
that of strangers in a fully mixed population; in the formulation (1),
this amounts to setting (with r = 2) c1 = 2 and c2 = 1, where links
of type 1 are considered as friendship links, whereas links of type 2
are considered as links with strangers.

vulnerable to cascades as compared to a simplex network with
the same total degree distribution; e.g., see Sec. IV. In fact, it
always holds that

min
i=1,...,r

(
mi

ki

)
�

∑r
i=1 cimi∑r
i=1 ciki

� max
i=1,...,r

(
mi

ki

)
.

However, it is worth noting that the results obtained here do
not contain those of Ref. [24] since one cannot select c1, . . . ,cr

such that
∑r

i=1 cimi/
∑r

i=1 ciki = maxi=1,...,r (mi/ki) holds
for all possible {mi,ki}ri=1.

The paper is structured as follows. In Sec. II we give the
details of the system model. Analytical results regarding the
condition, probability, and the size of global cascades over
the system model are given in Sec. III, while in Sec. IV we
present numerical results that illustrate the main findings of
the paper. We close with some remarks in Sec. V.

II. MODEL DEFINITIONS

For illustration purposes we give the model definitions in
the context of an overlay social-physical network. We start
with a set of individuals in the population represented by nodes
1, . . . ,n. Let W stand for the physical network of individuals
that characterizes the possible spread of influence through
reciprocal (i.e., mutual) communications; a link represents
a reciprocal communication if there is a message exchange
in both directions over the link. Examples of reciprocal
communications include face-to-face communications, phone
calls, chats, or mutual communications through an online
social networking Web site. Next, we let F stand for a
network that characterizes the spread of influence through
nonreciprocal communications in an online social networking
Web site, e.g., Facebook.2 We assume that the physical network
W is defined on the vertices N = {1,2, . . . ,n}, implying
that each individual in the population is a member of W.
Considering the fact that not everyone in the population is a
member of online social networks, we assume that the network
F is defined on the vertex set NF where

P [i ∈ NF ] = α, i = 1, . . . ,n. (3)

In other words, we assume that each node in N is a member
of F with probability α ∈ (0,1] independently from any other
node.

We define the structure of the networks W and F through
their respective degree distributions {pw

k } and {pf

k }. In other

2We note that these definitions are given merely for illustration
purposes and do not affect our technical results. Our intuition is
to distinguish people with close relationships (as understood from
their engagement in two-way communications) and those that are
merely Facebook friends who receive information and status updates
from one another but never talk to each other. Recent statistics show
that [49], on average, a user with 500 friends in Facebook engages
in a mutual communication with only 13 of them; a number likely to
represent one’s close relationships. Also, we refer to the network W as
a physical one since its links appear between people that have close
relationships. For instance, we regard a mother using Facebook to
communicate with her daughter (who lives abroad) as if they belong
to each other’s physical network.
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words, for each k = 0,1, . . . , a node in W (respectively,
in F) has degree k with probability pw

k (respectively, p
f

k ).
This corresponds to generating both networks (independently)
according to the configuration model [31,32]. Then, we
consider an overlay network H that is constructed by taking
the union of W and F. In other words, for any distinct pair
of nodes i,j , we say that i and j are adjacent in the network
H, denoted i ∼H j , as long as at least one of the conditions
{i ∼W j} or {i ∼F j} holds.

The overlay network H = F ∪ W constitutes an ensemble
of the colored degree-driven random graphs studied by
Söderberg [33,34]. Let {1,2} be the space of possible colors (or
types) of edges in H; specifically, we let the edges in network
F be of type 1, while the edges in network W are said to
be of type 2. The colored degree of a node i is given by an
integer vector ki = (ki

1,k
i
2), where ki

1 (respectively, ki
2) stands

for the number of F-edges (respectively, W-edges) that are
incident on node i. Clearly, the plain degree of a node is given
by k = k1 + k2. Under the given assumptions on the degree
distributions of W and F, the colored degrees (i.e., k1, . . . ,kn)
will be independent and identically distributed according to a
colored degree distribution {pk} such that

pk = (
αp

f

k1
+ (1 − α)1[k1 = 0]

)
pw

k2
, k = (k1,k2) (4)

due to independence of F and W. The term (1 − α)1 [k1 = 0]
accommodates the possibility that a node is not a member of
the online social network, in which case the number k1 of
F-edges is automatically zero.

Given that the colored degrees are picked such that
∑n

i=1 ki
1

and
∑n

i=1 ki
2 are even, we construct H as in Refs. [33–35]: Each

node i = 1, . . . ,n is first given the appropriate number ki
1 and

ki
2 of stubs of type 1 and type 2, respectively. Pairs of these

stubs that are of the same type are then picked randomly and
connected together to form complete edges; clearly, two stubs
can be connected together only if they are of the same type.
Pairing of stubs continues until none is left.

Now, consider a complex contagion process in the random
network H. As stated in the Introduction, we let each node
i be assigned a binary value σ (i) specifying its current state,
active (σ (i) = 1) or inactive (σ (i) = 0). Each node is initially
given a random threshold τ in (0,1] drawn independently from
a distribution Pth(τ ). Nodes update their states synchronously
at times t = 0,1, . . .. An inactive node will be activated at time
t if, at time t − 1, its perceived proportion of active neighbors
exceeds its threshold τ . Namely, for a given content, let c1,
c2 be positive scalars that model the relative importance of
type 1 and type 2 links, respectively, in spreading this content.
Then, with k = (k1,k2) denoting its colored degree, and m =
(m1,m2) denoting its number of active neighbors connected
through a type 1 and type 2 link at time t − 1, respectively, a
node will become active (at time t) with probability

P

[
c1m1 + c2m2

c1k1 + c2k2
� τ

]
:= F (m,k).

Hereafter, F (m,k) will be referred to as the neighborhood
influence response function [2,38]. To simplify the notation a
bit, we let c := c1/c2 for c1,c2 > 0 so that we have

F (m,k) = P

[
cm1 + m2

ck1 + k2
� τ

]
. (5)

The effect of content on the response of nodes can easily
be inferred from (5): For instance, c < 1 (respectively, c > 1)
means that the current content is more likely to be promoted
through type 2 edges (respectively, type 1 edges). The special
case c = 1 corresponds to the situations where both types
of links have equal effect in spreading the content and the
response function (5) reduces to that of a standard threshold
model [1]. In the limit c → 0 (respectively, c → ∞), we see
that type 1 (respectively, type 2) edges have no effect in
spreading the content and the network H becomes identical
to a single network W (respectively, F) for the purposes of the
spread of this particular content.

III. ANALYTIC RESULTS

A. Condition and probability of global cascades

We start our analysis by deriving the condition and proba-
bility of global spreading events in the overlay social-physical
network H. In most existing works [1,27–29], the possibility
of a global spreading event hinges heavily on the existence of
a percolating cluster of nodes whose state can be changed by
only one active neighbor; these nodes are usually referred to as
vulnerable. In other words, the condition for a global cascade
to take place was shown to be equivalent to the existence of a
giant vulnerable cluster in the network; i.e., fractional size of
the largest vulnerable cluster being bounded away from zero
in the asymptotic limit n → ∞. The probability of triggering
a global cascade was then shown to be equal to the fractional
size of the extended vulnerable cluster, which contains nodes
that have links to at least one node in the giant vulnerable
component.

Here, we will show that the situation is more complicated
unless the content parameter c is unity. The subtlety arises
from the need for defining the notion of vulnerability with
respect to two different neighborhood relationships. Namely,
a node is said to be W-vulnerable (respectively, F-vulnerable)
if its state can be changed by a single link in W (respectively,
in F) that connects it to an active node; a node is simply said
to be vulnerable if it is vulnerable with respect to at least
one of the networks. Note that unless c = 1, a node can be
F-vulnerable but not W-vulnerable or vice versa. Therefore,
an active vulnerable node does not necessarily activate all
of its vulnerable neighbors, and the ordinary definition of
a vulnerable component becomes vague. Here, we choose a
natural definition of a vulnerable component in the following
manner: A set of nodes that are vulnerable with respect to
at least one of the networks are said to form a vulnerable
component if in the subgraph (of H) induced by this set of
nodes, activating any node leads to the activation of all the
nodes in the set.

In fact, the above definition of a vulnerable component
coincides with that of a strongly connected component [25,37]
in a directed graph. To see this, consider the subgraph
of vulnerable nodes in H. This subgraph forms a directed
network, where a (potentially bi-directional) F-link between
nodes i and j will have the direction from i to j (respectively,
j to i) only if j (respectively, i) is F-vulnerable; similar
definitions determine the directions of W-links. There exist
several definitions for the components of a directed graph, but
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we use that given by Boguñá and Serrano [38] which is adopted
from Ref. [37]. Namely, for a given vertex, its out-component
is defined as the set of vertices that are reachable from it.
Similarly, the in-component of a vertex is the set of nodes
that can reach that vertex. Then, the giant out-component
(GOUT) of a graph is defined as the set of nodes with infinite
in-component, whereas the set of nodes that have infinite
out-component defines the giant in-component (GIN). Finally,
the giant strongly connected component (GSCC) of the graph
is given by the intersection of GIN and GOUT. By definition,
any pair of nodes in the GSCC are connected to each other via
a directed path.

The picture is now clear. According to the definition
adopted here, the giant vulnerable component of network
H corresponds to the GSCC of its subgraph induced by
vulnerable nodes. Moreover, global cascades can take place
if there exists a linear fraction of vulnerable nodes whose
out-component is infinite; i.e., the global cascade condition
corresponds to the appearance of GIN among the vulnerable
nodes of H. Finally, the probability of triggering a global
cascade will be given by the fractional size of the extended GIN
(EGIN) that contains GIN and vertices that are not vulnerable
but, once activated, can activate a node in GIN.

In principle, it is possible for a directed network to have
GIN but no GSCC,3 raising the possibility of observing global
cascades even when there is no giant vulnerable cluster in
the network; this possibility would contradict the previous
results [1,27–29]. However, in all models that appeared in
the literature to date [37–39], it was shown that GIN, GOUT,
and GSCC appear simultaneously in the network. In our case,
since the condition and probability of global cascades can be
obtained by analyzing only GIN (and EGIN), we do not give
an analysis to show the simultaneous appearance of GIN and
GSCC; instead, this step is taken via simulations in Sec. IV.
From here onward, GSCC, GOUT, and GIN refer to respective
components of the vulnerable nodes in H even if it is not said
so explicitly.

We now turn to computing the probability (and condition)
of triggering a global cascade by finding the size of EGIN
of vulnerable nodes in the network H. This will be done by
considering a branching process which starts by activating an
arbitrary node and then recursively reveals the largest number
of vulnerable nodes that are reached and activated by exploring
its neighbors. Utilizing the standard approach on generating
functions [25,35], we can then determine the condition for
the existence of GIN as well as fractional size of EGIN; note
that by definition EGIN exists if and only if GIN does. This
approach is valid as long as the initial stages of the branching
process is locally treelike, which holds in this case as the
clustering coefficient of colored degree-driven networks scales
like 1/n for n large [40].

3Consider a network on vertices {1, . . . ,n} with edges 1 → 2 →
3 → · · · → n − 1 → n, where i → j refers to an edge directed from
i to j . In the limit n → ∞, a positive fraction of nodes have infinite
in- and out-components, but the network has no strongly connected
component since for each node, its in-component and out-component
are disjoint.

Throughout, we use ρk,1 (respectively, ρk,2) to denote
the probability that a node is F-vulnerable (respectively,
W-vulnerable). In other words, ρk,1 (respectively, ρk,2) is
the probability that an inactive node with colored degree
k becomes active when it has only one active neighbor
in F (respectively, in W) and zero active neighbor in W

(respectively, in F). We also use ρk,1∩2 to denote the probability
that a node with colored degree k is both F-vulnerable and
W-vulnerable. In the same manner, we use ρk,1∩2c , ρk,1c∩2, and
ρk,1c∩2c to denote the probabilities that a node is F-vulnerable
but not W-vulnerable, W-vulnerable but not F-vulnerable,
and neither F-vulnerable nor W-vulnerable, respectively. More
precisely, we set

ρk,1∩2 = P

[
c

ck1 + k2
� τ and

1

ck1 + k2
� τ

]

ρk,1c∩2 = P

[
c

ck1 + k2
< τ and

1

ck1 + k2
� τ

]
.

Similar relations define ρk,1, ρk,2, ρk,1c∩2, and ρk,1c∩2c . It is
clear that if c = 1, ρk,1 = ρk,2 = ρk,1∩2, whereas ρk,1c∩2 =
ρk,1∩2c = 0.

We now solve for the survival probability of the aforemen-
tioned branching process by using the mean-field approach
based on the generating functions [25,35]. Let g1(x) [respec-
tively, g2(x)] denote the generating functions for the finite
number of nodes reached by following a type 1 (respectively,
type 2) edge in the above branching process. The generating
functions g1(x) and g2(x) satisfy the self-consistency equa-
tions

g1(x) = x
∑

k

k1pk

〈k1〉 ρk,1g1(x)k1−1g2(x)k2

+ x0
∑

k

k1pk

〈k1〉 (1 − ρk,1), (6)

g2(x) = x
∑

k

k2pk

〈k2〉 ρk,2g1(x)k1g2(x)k2−1

+ x0
∑

k

k2pk

〈k2〉 (1 − ρk,2). (7)

The validity of (6) can be seen as follows: The explicit factor
x accounts for the initial vertex that is arrived at. The factor
k1pk/〈k1〉 gives the normalized probability that an edge of type
1 is attached (at the other end) to a vertex with colored degree
k. Since the arrived node is reached by a type 1 link, it needs to
be F-vulnerable to be added to the vulnerable component. If the
arrived node is indeed F-vulnerable (happens with probability
ρk,1) it can activate other nodes via its remaining k1 − 1 edges
of type 1 and k2 edges of type 2. Since the number of vulnerable
nodes reached by each of its type 1 (respectively, type 2) links
is generated in turn by g1(x) [respectively, g2(x)], we obtain
the term g1(x)k1−1g2(x)k2 by the powers property of generating
functions [25,35]. Averaging over all possible colored degrees
k gives the first term in (6). The second term with the factor
x0 = 1 accounts for the possibility that the arrived node is
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not F-vulnerable and, thus, is not included in the cluster. The
relation (7) can be validated via similar arguments.

Using the relations (6)–(7), we now find the finite number of
vulnerable nodes reached and activated by the above branching
process. With G(x) denoting the corresponding generating
function, we get

G(x) = x
∑

k

pkg1(x)k1g2(x)k2 . (8)

Similarly to (6)–(7), the relation (8) can be seen as fol-
lows: The factor x corresponds to the initial node that is
selected arbitrarily and made active. The selected node has
colored degree k = (k1,k2) with probability pk. The number
of vulnerable nodes that are reached by each of its k1

(respectively, k2) branches of type 1 (respectively, type 2) is
generated by g1(x) [respectively, g2(x)]. This yields the term
g1(x)k1g2(x)k2 and averaging over all possible colored degrees,
we get (8).

We are interested in the solution of the recursive relations
(6)–(7) for the case x = 1. This case exhibits a trivial fixed
point g1(1) = g2(1) = 1 which yields G(1) = 1 meaning that
the underlying branching process is in the subcritical regime
and that all components have finite size as understood from the
conservation of probability. However, the fixed point g1(1) =
g2(1) = 1 corresponds to the physical solution only if it is an
attractor; i.e., a stable solution to the recursion (6)–(7). The
stability of this fixed point can be checked via linearization of
(6)–(7) around g1(1) = g2(1) = 1, which yields the Jacobian
Jp given by

Jp =
⎡
⎣

〈(k2
1−k1)ρk,1〉

〈k1〉
〈k1k2ρk,1〉

〈k1〉
〈k1k2ρk,2〉

〈k2〉
〈(k2

2−k2)ρk,2〉
〈k2〉

⎤
⎦ . (9)

If all the eigenvalues of Jp are less than one in absolute
value [i.e., if the spectral radius σ ( Jp) of Jp is less than or
equal to unity], then the solution g1(1) = g2(1) = 1 is stable
and G(1) = 1 becomes the physical solution, meaning that
with high probability GIN does not exist. In that case, a
global spreading event is not possible and the fraction S of
influenced individuals always tends to zero. However, if the
spectral radius of Jp is larger than unity, then another solution
with g1(1),g2(1) < 1 becomes the attractor of (6)–(7), yielding
a solution with G(1) < 1. In that case, global cascades are
possible, meaning that switching the state of an arbitrary node
gives rise to a global spreading event with positive probability,
Ptrig. In fact, the deficit 1 − G(1) corresponds to the probability
that an arbitrary node, once activated, activates an infinite
number of vulnerable nodes, which in turn corresponds to the
probability of triggering a global cascade; i.e., we have

Ptrig = 1 − G(1).

We close this section by noting that G(x) corresponds to
the size of the extended component EGIN, not GIN; i.e.,
1 − G(1) gives the asymptotic size of EGIN as a fraction of the
number of nodes n. This is because, in (8), we have ignored the
possibility of the initial node being not vulnerable; this makes
sense since, in the cascade process, the initially selected node
is forced to be active regardless of its state of vulnerability. In
order to obtain the size of GIN, one should consider another

generating function H (x) that is given by multiplying (8) with
the probability (1 − ρk,1c∩2c ) that the initial node is vulnerable
and adding the term x0 ∑

k pkρk,1c∩2c . The asymptotic size of
GIN (as a fraction of n) would then be given by 1 − H (1).

B. Expected cascade size

We now compute the expected final size of a global cascade
when it occurs. Namely, we will derive the asymptotic fraction
of individuals that eventually become active when an arbitrary
node is switched to active state. Our analysis is based on the
work by Gleeson and Cahalane [41] and Gleeson [27] who
derived the expected final size of global spreading events on a
wide range of networks. Their approach, which is built on the
tools developed for analyzing the zero-temperature random-
field Ising model on Bethe lattices [42], is also adopted by
several other authors; e.g., see Refs. [24,28,29,36].

The discussion starts with the following basic observation:
If the network structure is locally treelike (which holds here as
noted before [40]), then we can replace H by a tree structure
where, at the top level, there is a single node say with colored
degree k = (k1,k2). In other words, the top node is connected
to k1 nodes via F-links and k2 nodes via W-links at the next
lower level of the tree. Each of these k1 (respectively, k2) nodes
have degree k′ = (k′

1,k
′
2) with probability k′

1pk′
〈k1〉 (respectively,

with probability k′
2pk′
〈k2〉 ), and they are in turn connected to k′

1 − 1
(respectively, k′

1) nodes via F-links and k′
2 (respectively,

k′
2 − 1) nodes via W-links at the next lower level of the tree;

the minus one terms are due to the links that connect the nodes
to their parent at the upper level.

In the manner outlined above, we label the levels of the
tree from � = 0 at the bottom to � → ∞ at the top of the
tree. Without loss of generality, we assume that nodes update
their states starting from the bottom of the tree and proceeding
towards the top. In other words, we assume that a node at
level � updates its state only after all nodes at the lower levels
0,1, . . . ,� − 1 finish updating. Now define q1,� (respectively,
q2,�) as the probability that a node at level � of the tree, which
is connected to its unique parent by a type 1 link (respectively,
a type 2 link), is active given that its parent at level � + 1 is
inactive. Then consider a node at level � + 1 that is connected
to its parent at level � + 2 by a type 1 link. This node has
degree k = (k1,k2) with probability k1pk

〈k1〉 and the probability
that i of its F-neighbors and j of its W-connections are active
is given by
(

k1 − 1
i

)
qi

1,�(1 − q1,�)k1−1−i

(
k2

j

)
q

j

2,�(1 − q2,�)k2−j . (10)

The −1 term on k1 accommodates the fact that the parent of
the node under consideration is inactive by the assumption
that nodes update their states only after all the nodes at the
lower levels finish updating. Further, the probability that a
node becomes active when i of its k1 F-connections and j of
its k2 W-connections are active is given by

F ((i,j ),k), k = (k1,k2)

by the definition of the neighborhood response function
F (m,k).
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Arguments similar to the above one lead to analogous
relations for nodes that are connected to their unique parents by
a type 2 link. Combining these, and averaging over all possible
degrees and all possible active neighbor combinations, we
arrive at the recursive relations

q1,�+1 =
∑

k

k1pk

〈k1〉
k1−1∑
i=0

k2∑
j=0

F ((i,j ),k)

(
k1 − 1

i

)
qi

1,�

×(1 − q1,�)k1−1−i

(
k2

j

)
q

j

2,�(1 − q2,�)k2−j , (11)

q2,�+1 =
∑

k

k2pk

〈k2〉
k1∑

i=0

k2−1∑
j=0

F ((i,j ),k)

(
k1

i

)
qi

1,�

× (1 − q1,�)k1−i

(
k2 − 1

j

)
q

j

2,�(1 − q2,�)k2−1−j ,

(12)

for each � = 0,1, . . . . Under the assumption that nodes do not
become inactive once they turn active, the quantities q1,� and
q2,� are nondecreasing in � and, thus, they converge to a limit
q1,∞ and q2,∞. Further, the final fraction of active individuals
S is equal (in expected value) to the probability that the node
at the top of the tree becomes active. Thus, we conclude that

S =
∑

k

pk

k1∑
i=0

k2∑
j=0

F ((i,j ),k)

(
k1

i

)
qi

1,∞(1 − q1,∞)k1−i

×
(

k2

j

)
q

j

2,∞(1 − q2,∞)k2−j . (13)

Under the natural condition F ((0,0),k) = 0, q1,∞ =
q2,∞ = 0 is the trivial fixed point of the recursive equations
(11)–(12). In view of (13), this trivial solution yields S = 0,
pointing out the nonexistence of global spreading events.
However, the trivial fixed point may not be stable and another
solution with q1,∞,q2,∞ > 0 may exist. In fact, the condition

for the existence of a nontrivial solution can be obtained by
checking the stability of the trivial fixed point via linearization
at q1,� = q2,� = 0. The entries of the corresponding Jacobian
matrix Js is given by

Js =
⎡
⎣

〈(k2
1−k1)ρk,1〉

〈k1〉
〈k1k2ρk,2〉

〈k1〉
〈k1k2ρk,1〉

〈k2〉
〈(k2

2−k2)ρk,2〉
〈k2〉

⎤
⎦ .

By direct inspection, it is easy to see that the spectral radius
of Js is equal to that of the matrix Jp defined in (9);
this follows from the facts that Js(i,i) = Jp(i,i) for i = 1,2
and Js(1,2) · Js(2,1) = Jp(1,2) · Jp(2,1). Hence, as would
be expected, we find that the recursive relations (11)–(12)
give the same global cascade condition [namely, σ ( Jp) > 1]
as the recursive relations (6)–(7) obtained through utilizing
generating functions. Nevertheless, the generating functions
approach is useful in its own right as it enables quantifying the
probability Ptrig of global cascades.

IV. NUMERICAL RESULTS

We now illustrate our findings by numerical simulations.
In our first example we consider n = 5 × 105 nodes in the
physical network W and assume that only half of these nodes
are members of the network F; i.e., we set α = 0.5. Following
Refs. [1,24,27,43] we fix the thresholds at τ = τ � = 0.18 and
assume that both F and W are Erdös-Rényi networks [31]
with mean degrees z1 and z2, respectively. Figure 1 shows the
fractional size of the giant vulnerable cluster Sv , the triggering
probability Ptrig, and the expected cascade size S with respect
to z1 = z2 for two different contents. For the first content C1

we assume that c = 0.25, meaning that type 2 links are four
times as important as type 1 links in spreading this content,
and plot the corresponding results in Fig. 1(a). For the second
content C2, we assume that both types of links are equivalent
with respect to spreading the content, i.e., c = 1, and show
the results in Fig. 1(b). In all cases, lines correspond to our
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FIG. 1. (Color online) The fractional size of the giant vulnerable cluster, Sv , the final cascade size S, and the triggering probability Ptrig

are plotted for n = 5 × 105, α = 0.5, where τ is fixed at τ � = 0.18 and F and W are Erdös-Rényi networks with mean degrees z1 and z2,
respectively. The content parameter is taken to be (a) c = 0.25 and (b) c = 1. The lines correspond to the analytical results obtained from
Eqs. (8) and (13), whereas symbols represent experimental results averaged over 100 independent realizations for Sv and S and over 5000
realizations for Ptrig. (Insets) The same plots at a higher resolution on z1 = z2 near the lower phase transition.
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analysis results from Eqs. (8) and (13), whereas symbols are
obtained from computer simulations: For each parameter set,
we generated independent realizations of the graphs F and
W and then observed the cascade process over the graph H

upon activating an arbitrary node. The size Sv of the giant
vulnerable component is computed by finding the GSCC
of the directed graph induced by the vulnerable nodes as
described in Sec. III A. The results are given by averaging
over 100 (respectively, 5000) independent runs for Sv and S

(respectively, Ptrig).
Figure 1 leads to a number of interesting observations.

First, we see an excellent agreement between the analytical
results and simulations, confirming the validity of our analysis;
the discrepancy near the upper phase transition is due to
finite-size effect. Second, we see how content might affect
the dynamics of complex contagions over the same network.
For content C1 we see that global cascades are possible when
1.0 � z1 = z2 � 4.9, whereas C2 can spread globally only if
0.7 � z1 = z2 � 3.9. We also see that on the range where
global cascades are possible for both contents (namely 1.0 �
z1 = z2 � 3.9), the probability of them taking place can still
differ significantly; e.g., if z1 = z2 = 3, we have Ptrig = 0.84
for C1, while for C2 we have Ptrig = 0.65. Finally, simulations
confirm the simultaneous appearance of the GSCC and GIN in
the subgraph of vulnerable nodes in H as understood from the
identical parameter ranges that give positive values for S, Ptrig,
and Sv; see also the inset of Fig. 1(a). Therefore, the possibility
of observing global cascades without a giant vulnerable cluster
is ruled out in our model, although this possibility exists in
general.

For a better demonstration of the effect of content on the
probability and size of global cascades, we now consider a
different experimental setup. This time, for three different
cases, we fix all the parameters, except the content parameter
c, and observe the variation of Ptrig and S with respect to
c. The results are depicted in Fig. 3. In all cases, we set
n = 5 × 105, α = 0.5, τ = τ � = 0.18, and assume that F and
W are Erdös-Rényi networks with mean degrees z1 and z2,
respectively. In Fig. 2(a), we consider the case z1 = 1.5 and
z2 = 5.5, and see that global cascades are possible only for
0 � c � 0.27, and c � 3.22, but no global cascade can take
place in the range 0.28 � c � 3.21. This can be explained as
follows: When c is too small, the spreading of the content is
governed solely by network W (with average degree z2 = 5.5),

on which large global cascades are possible with very low
probability; in other words network W is close to the upper
phase transition threshold. As c increases, the effect of F-links
becomes considerable, and the connectivity of the overall
network (with respect to the spread of the current content)
increases. This eventually causes global cascades to disappear
due to the high local stability (i.e., connectivity) of the nodes.
However, further increase in c shifts the bias towards F-links,
and, due to lower average degree in F, this causes a decrease
in the local stability of the nodes and brings global cascades
back to existence.

In Fig. 2(b), we set z1 = z2 = 0.7. This time, we see an
exactly opposite dependence of cascade sizes on the parameter
c. Namely, global cascades are not possible when c is too small
or too large, but they do take place in the interval 0.5 � c �
2.5. This is because, under the current setting, both networks
F and W have limited connectivity, so that global cascades do
not take place in either of the networks separately. Therefore,
if c is too small (respectively, too large), only W (respectively,
F) can spread the content and all triggering events have finite
size, as confirmed in the plot by the nonexistence of global
cascades for c � 0.4 and c � 2.6. But, for c relatively close
to unity, the two networks spread the content collaboratively,
yielding a high-enough connectivity in the overall network H

to achieve a positive probability of global cascades.
The situation differs somewhat in the case of Fig. 2(c),

where we have z1 = 6.0 and z2 = 1.5: For contents that mainly
spread over W-links, i.e., for c close to zero, global spreading
events take place with positive probability since network W

(with average degree z2 = 1.5) satisfies the global spreading
condition. However, as c increases, the high average degree
in network F (and, thus, the high local stability of the nodes)
makes it harder for the content to spread in the overall network
H, eventually causing the probability of global cascades drop
to zero. This is confirmed in Fig. 2(c) as we see that global
cascades take place only for contents with c � 0.5 and any
content with c � 0.6 dies out before reaching a nontrivial
fraction of the network.

We continue our simulation study by depicting the variation
of the cascade window with respect to content parameter c in
Fig. 3(a). We see that for each τ �, the parameter c changes
the range of z1 = z2 for which global cascades can occur in a
nontrivial way. For instance, none of the three regions cover
one another. In fact, the cascade window for c = 4 is contained
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FIG. 2. (Color online) We see the variation of cascade probability Ptrig and cascade size S with respect to the content parameter c, when
α = 0.5, τ = τ � = 0.18, and F and W are Erdös-Rényi networks with mean degrees z1 and z2, respectively. We set (a) z1 = 1.5, z2 = 5.5,
(b) z1 = z2 = 0.7, and (c) z1 = 6.0, z2 = 1.5.
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FIG. 3. (Color online) (a) We see the cascade windows for several c values when α = 0.5, τ = τ �, and F and W are Erdös-Rényi networks
with mean degrees z1 and z2, respectively. In other words, the lines enclose the region of the (τ �,z1 = z2) plane for which the global cascade
condition σ ( Jp) > 1 is satisfied; outside the boundary, we have σ ( Jp) � 1 and global cascades cannot take place. (b) Global cascade size S

when F and W are random clustered networks with degree distributions given by (14). We take n = 105, α = 0.5, τ = τ � = 0.18, and c = 0.5.
The line corresponds to analytical prediction from (13), whereas symbols are obtained from simulations by averaging over 50 independent
realizations. (Inset) Average clustering coefficient [45] versus 2z1 = 2z2.

in that of c = 1 for most of the τ � values, but, with z1 = z2 = 4
and τ � in (0.17,0.18), cascades do not occur for c = 1 while
they do for c = 4. We also see that the content parameter c

can affect the maximum threshold τ � for which global cascades
are possible. When c = 1 and c = 0.1, cascades can take place
for τ � � 0.25, whereas the upper bound is reduced to 0.23 for
c = 4.

Finally, we test our theory for networks which are not
locally tree like. In fact, most real networks are known [44] to
exhibit a phenomenon often called clustering (or transitivity),
informally defined as the propensity of a node’s neighbors
to be neighbors as well. Since our theory is developed for
networks that do not have clustering, we do not expect our
results to provide good estimations for clustered networks; in
the case of Watts’ threshold model, it is already shown [36] that
clustering can have a significant impact on the size of global
cascades. Nevertheless, we would like to provide the first
step in showing the effect of clustering on content-dependent
cascading processes in multiplex networks.

To this end, we generate random clustered networks F

and W as prescribed by Newman [45] and Miller [46].4

Namely, we consider distributions p
f
st and pw

st that give the
probability of a node being connected to s single edges
and t triangles; conventional degree distributions are then
given by p

f

k = ∑
s,t p

f
st δk,s+2t and pw

k = ∑
s,t pw

st δk,s+2t . For
convenience, we consider a doubly Poisson distribution for
pst ; namely we set

p
f
st = e−z1

zs
1

s!
· e−z1/2 (z1/2)t

t!
, s,t = 0,1, . . . (14)

4There exists several methods in the literature for generating random
clustered networks (e.g., see Refs. [44,50]) and some of them may
be more suitable than the others in certain applications. Here, the
algorithm proposed in Refs. [45,46] is chosen for convenience.

and define pw
st similarly with z1 replaced by z2. Notice that

average degrees are now given by 2z1 and 2z2 in networks F

and W, respectively. With n = 105, α = 0.5, τ = τ � = 0.18,
and c = 0.5, we show in Fig. 3(b) the variation of the cascade
size S with respect to average degrees 2z1 = 2z2. As before,
the line corresponds to the analytical solution [obtained from
Eq. (13)], whereas symbols are obtained from simulations
by averaging over 50 experiments for each point. Also,
in the inset of Fig. 3(b), we plot the average clustering
coefficient [45] observed for networks W and F; with
z1 = z2 both networks have (statistically) identical clustering
coefficients. The observed curve for the average clustering
coefficient matches perfectly the prescribed [45] quantity
〈2t/((s + 2t)(s + 2t − 1))〉 under the distribution (14).

As expected, we do not see a good match between the
predictions of our analysis (zero clustering) and the actual
cascade size from experiments (positive clustering). However,
these results agree with the double-faceted picture drawn in
Ref. [36] for the effect of clustering on cascade sizes in Watts’
model: When average degrees are small, clustering decreases
the expected size of global cascades, whereas, after a certain
value of average degree, clustering increases the expected
cascade size.

V. CONCLUSION

We have determined the condition, probability, and size of
global cascades in random networks with classified links. This
is done under a new contagion model where nodes switch
states when their perceived (content-dependent) proportion
of active neighbors exceeds a certain threshold. Our results
highlight the effect of content and link classification in the
characteristics of global cascades and show how different
content may have different spreading characteristics over the
same network. Further, the results given here extend the
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existing work on complex contagions to multiple overlay
networks with overlapping vertex sets.

Our findings also contain some of the existing results as
special cases. For instance, our results may be applied to a
wide range of processes on the network H by appropriately
selecting the neighborhood response function F (m,k). In
particular, the general results of Sec. III include the solutions
for bond percolation and simple contagion5 processes by
setting ρk,1 = ρk,2 = T for some transmissibility T in [0,1].
The threshold model of Watts [1] is also covered by our theory
by setting the content parameter c to unity in all cases.

We believe that the results presented here give some inter-
esting insights into the cascade processes in complex networks.
In particular, our results might help better understand such

5Simple contagions are defined as diffusion processes where nodes
become infected (or active) after only one incident of contact with
an infected neighbor. Examples include spread of diseases and
information.

processes and may lead to more efficient control of them.
Controlling cascade processes is particularly relevant when
dealing with cascading failures in interdependent structures as
well as when marketing a certain consumer product. Finally,
the formulation presented here opens many new questions in
the field. For instance, the dynamics of cascade processes are
yet to be investigated on degree-correlated networks under the
content-dependent threshold model introduced here. Another
challenging problem would be to formalize the results given
in this paper without using a mean-field approach; in fact, very
recently Lelarge and coworkers [47,48] have obtained rigorous
results for the condition and size of global cascades in Watts’
threshold model.
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