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With a simple phenomenological metapopulation model, which characterizes the invasion process
of an influenza pandemic from a source to a subpopulation at risk, we compare the efficiency of
inter- and intrapopulation interventions in delaying the arrival of an influenza pandemic. We take travel restriction
and patient isolation as examples, since in reality they are typical control measures implemented at the inter-
and intrapopulation levels, respectively. We find that the intrapopulation interventions, e.g., patient isolation,
perform better than the interpopulation strategies such as travel restriction if the response time is small. However,
intrapopulation strategies are sensitive to the increase of the response time, which might be inevitable due to
socioeconomic reasons in practice and will largely discount the efficiency.

DOI: 10.1103/PhysRevE.86.032901 PACS number(s): 87.23.Kg, 87.10.Ed, 87.19.X−

I. INTRODUCTION

During the past decades, extensive efforts have been
made to investigate the spread of epidemics. Besides various
epidemiological models having been proposed to explore
virus transmission in a closed population [1], the study of
network spreading uses structured populations to understand
the evolution of epidemics in more realistic social settings
[2–5]. These studies have contributed a great deal of insightful
findings, such as the absence of epidemic threshold [6], the
reaction-diffusion process, and metapopulation [7,8], to name
a few. These significant advances have raised new issues on
how to limit or control the spread of infectious diseases in
human society.

To curb the spatial spread of diseases from city to city,
a variety of strategies are recommended, according to World
Health Organization (WHO) or United States (US) response
plans [9]: (i) Vaccination of prior groups or dynamic mass
vaccination; (ii) antiviral drugs for prophylaxis and treatment;
(iii) community-based prevention and control; and (iv) travel-
related containment measures. Except for the fact that travel-
related measures are implemented at the intercity level, other
strategies are mainly performed at the intracity level. The first
two pharmaceutical interventions cut down the number of po-
tential susceptibles or allay the virus transmission rate, respec-
tively. Community-based strategies might affect individuals
(e.g., patient isolation, self-isolation, quarantine), groups, or
entire communities (e.g., cancellation of public gatherings,
school closures) in a city. Travel-related measures mainly
result in the restriction or cancellation of nonessential trips.

By supposing that the outbreak of a pandemic is under-
way, many works have studied the efficiency of strategies
by using the metapopulation model, which harnesses the
reaction-diffusion framework to sketch human daily contacts
and mobility. The epidemic reaction takes place inside each
subpopulation due to personal contacts, and the infectious
disease cascades subpopulation by subpopulation via the
travel of individuals (here each city is represented by a
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subpopulation). The importance of various strategies in de-
creasing the attack rate or prevalence has been extensively
studied in Refs. [10,11], mainly by computational simulations.
Particularly by analyzing the delay of arrival time of the
disease [12–16], it has been shown that the efficiency of
travel restriction in slowing down the international spread of
pandemic influenza is limited.

In these seminal works, the intra- and interpopulation
interventions are seldom compared with each other to provide
a holistic picture about their value in delaying disease invasion.
This should give us pause for thought. Whether it is reasonable
to discard the tactic of travel restriction might also depend on
how good the intrapopulation strategies perform. In an attempt
to study this issue, we theoretically analyze the efficiency of
two kinds of typical containment strategies, namely, travel
restriction and patient isolation, which are implemented at the
inter- and intrapopulation levels, respectively. We mainly use
a simple phenomenological model following Refs. [16,17],
which considers the importation of an infectious disease from
a source to a region at risk during the early stage of a pandemic
outbreak. Since the spreading process cascades subpopulation
by subpopulation, this two-subpopulation version [15] is a
simple model but rational approximation of the initial stage of
the pandemic. We mainly focus on the impact of strategies to
delay the arrival time of disease in the subpopulation at risk,
because no outbreak will occur in an unaffected region before
the introduction of infectious seeds. After the disease lands in
the subpopulation, the ongoing endogenous transmission will
become the mainstream of infections [11,15]. Thus the first
arrival time of infectious travelers is an important quantity
characterizing the timing of the disease outbreak [16,18,19].

II. MODEL DESCRIPTION

To build the model, we first specify the mechanism of
individual mobility between subpopulations x,y. Following
Refs. [16–19], at every time step, each individual may travel
from his current location x(y) to a neighboring subpopulation
y(x) with a per capita diffusion rate ωxy(ωyx). We define the
unit time as 1 day. The model proceeds with discrete time steps.
In reality, the amount of transportation flows, e.g., air traffic,
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between cities is often symmetric [18–20], which indicates
a detailed balance for the traffic flows. For simplicity, we
assume that the subpopulations x,y have the same population
size Nx = Ny = N and diffusion rate ωxy = ωyx = ω. Thus
there are on average ωN individuals departing from each
subpopulation per day. Note that relaxing these two restrictions
does not change the main results of this Brief Report as
long as we maintain a detailed balance condition. While
mobility couples different locations, the epidemic reaction
process occurs in each subpopulation, where the population is
mixing homogeneously. We consider a standard susceptible-
infective-removed (SIR) compartment model to represent the
influenzalike illness [7,8,10]. At a given time t , the number of
susceptible, infectious, and recovered individuals in x(y) are
defined as Sx(t),Ix(t),Rx(t) [Sy(t),Iy(t),Ry(t)], respectively.
The SIR reaction is governed by the transition rates μ

and β [1]. In a unit time, an infectious one recovers and
becomes immune at the rate μ. The parameter β characterizes
disease transmissibility, which reflects the combined factors
of the virus transmission rate and individual contact rate
per unit time [8]. A susceptible individual might acquire
infection by contact with infectious ones staying in the same
subpopulation. With the mean-field approximation, at time t ,
the probability for a susceptible one in subpopulation x(y)
to acquire infection is found by multiplying the density of
infectious Ix(t)/N [Iy(t)/N] by β [1]. In this baseline case,
the transfer of susceptible and infectious individuals is ruled
by the diffusion rate ω. The epidemic threshold is determined
by the basic reproductive number R0 = β/μ, which identifies
the expected number of secondary infections produced by an
infected individual during his infectious period in an entire
susceptible population [1].

We next specify the dynamics under interventions. Since
many socioeconomic factors might defer the implementation
of strategies, we define a response time t0 representing the
time interval between the actual inception of an outbreak
and the time when the strategies become available. Travel
restriction (TR) mainly affects individual mobility between
two subpopulations. We define the parameter α as the intensity
of TR, which means that a reduction of fraction α in travel
begins at time t0, i.e., in the model, we decrease the diffusion
rate from ω to (1 − α)ω after time t0.

Patient isolation (PI) mainly impacts individual compart-
ment transitions. The effect of PI may relate to enforcement
by local authorities, or is attributed to the self-isolation of
infected individuals. For simplicity, we do not distinguish
between these two aspects. The parameter η is defined to
reflect the intensity of PI. It means that on average a fraction
η of infectious persons will be isolated per unit time after t0.
We introduce the PI by adding an isolation process that each
infectious one has a likelihood to be isolated with rate η per
unit time. Since these isolating individuals have little chance to
cause infection, we remove them as long as they are isolated.

III. ANALYTICAL AND SIMULATION RESULTS

Initially, an infectious individual is introduced into subpop-
ulation x. Thus the initial condition is Ix(0) = 1, Iy(0) = 0.
We first analyze the efficiency of TR in slowing down disease
invasion to subpopulation y. The key issue is to evaluate its

impact on delaying the first arrival time (FAT) of infectious
travelers from x. With the Poisson process assumption that the
diffusion of any individual is independent from that of others,
the probability that the first infectious individual arrives in
subpopulation y at time ty = t is

P (ty = t) = [1 − (1 − ω)Ix (t)]
t−1∏

ti=1

(1 − ω)Ix (ti ), (1)

which describes that at least one successful transfer of
infectious individuals from subpopulation x to y occurs at
time t , and none at previous time steps [18,19]. In reality,
it is general that the number of travelers per day is several
orders of magnitude smaller than the total population of a
city, where only small amounts of people leave to travel
per day. Empirical evidence of worldwide or US domestic
air transportation [7] suggests that the daily diffusion rate of
individuals on each flight route is of the order 10−4 or less. We
here assume ω = 10−4, N = 106. Using the Taylor expansion,
Eq. (1) becomes P (ty = t) = ωIx(t) exp[−ω

∑
0<ti<t Ix(ti)].

Based on many seminal works [10–16], we assume a
pandemic influenza with R0 = 1.75 and the infectious period
μ−1 = 3 days. In this case, the Malthusian parameter λ,
the real-time exponential growth rate at the early stage of
an outbreak [21,22], is β − μ = 0.25. Since ω � λ, the
SIR reaction happens at a time scale much faster than the
diffusion process, thus the number of infectious individuals
in subpopulation x grows sufficiently before subpopulation
y is invaded. Meanwhile, at this early stage, the infectious
ones only make up a small fraction of the total population
in x,Ix(t) � N . With a mean-field approximation for the
evolution of infectious individuals, we have [3,18,19] Ix(ti) �
Ix(0) exp(λti), ti � ty . Using the continuum approximation∑

0<ti<t Ix(ti) = ∫ t

0 dτIx(τ ), we obtain the probability density
of FAT, P (t) = ω exp[λt − (ω/λ) exp(λt)], with the mean
value 〈tF 〉 = (1/λ)[ln(λ/ω) − γ ] [18,19], where γ is the Euler
constant. With the above given parameters, this characteristic
time scale of FAT is 〈tF 〉 � 29 days.

In the TR scenario, when the FAT is smaller than
the response time t0, the probability density of FAT
is still P (t); however, when the FAT is larger than t0,
this probability density becomes Pα(t) = {1 − [1 − (1 −
α)ω]Ix (t)} ∏

0<ti<t0
(1 − ω)Ix (ti )

∏
t0�tj <t [1 − (1 − α)ω]Ix (tj ) �

(1 − α)ω exp[λt − (1 − α)ω exp(λt)/λ − αω exp(λt0)/λ]. We
numerically calculate the average FAT through
〈tFα 〉 = ∫ t0

0 τP (τ )dτ + ∫ ∞
t0

τPα(τ )dτ , and get the delay
of FAT, 	t(α), by solving

	t(α) = 〈
tFα

〉 − 〈tF 〉. (2)

If the response time t0 is negligible (t0 = 0), Eq. (2) is
simplified as

	t(α)|t0=0 = − ln(1 − α)/λ, (3)

which recovers the results obtained by the cumulative probabil-
ity P (ty � t) in Refs. [15,16]. Note that Eq. (3) is independent
from the values of ω,N . With λ = 0.25, unless the intensity α

is increased to an unpractically high level (α > 0.97), 	t(α)
cannot be longer than 2 weeks.

To study the PI scenario, we first consider the case
where the FAT is larger than t0. At this early stage,
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FIG. 1. (Color online) The analytical results of the relation between the delay of FAT, 	t , and the intensity of strategies. (a) Travel
restriction. (b) Patient isolation. The colored squares, circles, and diamonds refer to the cases of t0 = 0, 10, and 20 days, respectively.

we still have the approximation Ix(ti) � exp(λti) when
time ti � t0; after t0, the Malthusian parameter becomes
λη = λ − η, and thus we have I ′

x(tj ) � exp(ηt0) exp(ληtj )
when t0 < tj � ty . The probability density in this case is
Pη(t) = [1 − (1 − ω)I

′
x (t)]

∏
0<ti�t0

(1 − ω)Ix (ti )
∏

t0<tj <t (1 −
ω)I

′
x (tj ) � ωI ′

x(t) exp[−ω
∫ t0

0 Ix(τ )dτ ] exp[−ω
∫ t

t0
I ′
x(τ )dτ ] =

ω exp[
(t0)] exp[ληt − ω exp(ηt0 + ληt)/λη], where 
(t0) =
ηt0 − ω exp(λt0)/λ + ω exp(λt0)/λη. If the response time
is negligible (t0 = 0), we simplify the former expression
as Pη(t)|t0=0 � ω exp[ληt − ω exp(ληt)/λη], which leads
to the average FAT, 〈tFη 〉|t0=0 = ∫ ∞

0 τPη(τ )|t0=0dτ �
[ln(λη/ω) − γ ]/λη. In this case, we get the relation between
	t and η by solving the equation

	t(η)|t0=0 = 〈
tFη

〉∣∣
t0=0 − 〈tF 〉. (4)

If t0 > 0, the average FAT is numerically integrated via the
equation 〈tFη 〉 = ∫ t0

0 τP (τ )dτ + ∫ ∞
t0

τPη(τ )dτ . We therefore
have the relation between 	t and η as

	t(η) = 〈
tFη

〉 − 〈tF 〉. (5)

With Eq. (4) and λ = 0.25, we find that an intermediate
level of the strategy intensity η = 0.12 can adequately suspend
the arrival of disease to subpopulation y for more than 3 weeks.
When the response time t0 = 0, we conclude that the strategy
of PI performs better than the TR. This is mainly because
the TR alone cannot mitigate the initial exponential growth
of infectious ones in the source. However, the strategy of PI
is highly sensitive to the increase of the response time t0. As
shown in Fig. 1, when t0 increases from 0 to 20 days, there is
an evident decline for the delay 	t(η) in the PI scenario, while
the delay 	t(α) actualized by implementing the TR is robust
to the increase of t0.

We further use the dynamic Monte Carlo method to simulate
the epidemic evolution under different interventions. The
simulations are performed with discrete time steps, and we
update each individual’s behavior in parallel per unit time. The
parameters are N = 106, ω = 10−4, R0 = 1.75, and μ−1 = 3
days. Initially, an infectious individual is introduced into
subpopulation x, and thus the initial condition is Ix(0) = 1,

Iy(0) = 0. When the containment strategies are excluded, the
epidemic reaction and diffusion at each unit time proceed as
follows. (i) Reaction: Inside each subpopulation, individuals
are mixing homogeneously. At time t , the probability for
any susceptible in subpopulation x(y) to acquire infection
is βIx(t)/N [βIy(t)/N ]. The number of new infections in
x(y) at time t is extracted from a binomial distribution with
probability βIx(t)/N [βIy(t)/N ] and the number of trials
Sx(t) [Sy(t)]. The number of recovered individuals in x(y)
is also extracted from a binomial distribution with probability
μ and the number of trials Ix(t) [Iy(t)]. (ii) Diffusion: After
all individuals have been updated for the reaction, we simulate
their diffusion. The number of susceptible travelers departing
from each subpopulation per unit time is also extracted from
a binomial distribution with probability ω and the number of
trials Sx(t) [Sy(t)]. The number of infectious and recovered
travelers is obtained in the same way.

We first study the effects of TR in delaying the arrival
of disease to subpopulation y. To assemble this factor into
the simulation, we rescale the per capita diffusion rate ω

by a multiplier 1 − α, where the parameter α reflects the
intensity of TR. The strategy is activated after a given response
time t0. Figure 2 provides a holistic view about the relation
between the delay of FAT, 	t(α), and the restriction intensity
α. Since the disease might die out due to randomness, every
data point is obtained by averaging the simulations with the
successful transfer of infectious ones among 104 times of
Monte Carlo random experiments, each of which is simulated
with 500 time steps. The gray stars are the analytical results
obtained by Eq. (3), which agree well with the simulations.
When α = 0.3, 0.6, and 0.9 and t0 = 0, the simulations show
that 	t(α) � 2, 4, and 11 days, respectively. Even if the
restriction intensity is elevated to an unpractically high level,
e.g., α = 0.97, 	t(α) is still less than 3 weeks. It is clear that
	t is small if the time scale of the initial exponential growth
1/λ is small [see Eq. (3)]. We further study the impact of the
response time on the efficiency of TR. In Fig. 2, unless t0
approaches 〈tF 〉, which is the average FAT without TR, and α

is large, there is no evident decline for the simulation results
of 	t(α).
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FIG. 2. (Color online) The relation between the delay of FAT,
	t(α), and the intensity of travel restriction. The gray stars are the
analytical results with t0 = 0. The other colored symbols are the
simulation results with various response times t0 = 0, 10, 15, 20, and
25 days.

We next study the effects of PI in delaying disease invasion.
To introduce this factor in the model, we add an isolation
process before the reaction process at each time step after t0.
The parameter η reflects the intensity of PI. Per unit time, the
number of newly isolated individuals in subpopulation x(y)
is extracted from a binomial distribution with probability η

and the number of trials Ix(t) [Iy(t)]. Figure 3(a) presents
the relation between the delay of FAT, 	t , and the isolation
intensity η with t0 = 0. For each η, we perform 104 times of
Monte Carlo random experiments, each of which is simulated
with 500 time steps. Due to the randomness embedded in the
dynamical process, the infectious individuals in source x might
be totally eradicated before traveling to subpopulation y. With
a given η, we measure 	t(η) by averaging the simulations
that the infectious ones from source x successfully jump
to subpopulation y. The results are highlighted by the red
squares in Fig. 3(a). The gray stars are the analytical results
obtained by Eq. (4). If the isolation intensity η is at a small
or intermediate level (η � 0.18), the simulation results agree

well with the theoretical predications. However, if the intensity
η is extremely large, the simulations obviously deviate from
the analytical results. In this latter case, since the Malthusian
parameter λη is quite small, there is a huge likelihood of totally
eradicating the infectious individuals at the early stage of an
outbreak due to randomness. For instance, when η = 0.2 and
0.22, the fraction of eradication in all independent modeling
realizations reaches 97.7% and 99.2%, respectively, while for
η = 0.12, the fraction of eradication is only 75.6% [see the
dark cyan diamonds in Fig. 3(a)]. If η � 0.25, the Malthusian
parameter λ � 0, the disease hardly persists in the population.
With the same condition that t0 = 0, the strategy of PI is more
efficient than TR: An intermediate level of isolation intensity η

can adequately delay the arrival of disease for about 1 month.
Figure 3(b) shows the impact of the response time t0 on the

delaying effects of PI. For a small t0, e.g., t0 = 10, which is
much smaller than 〈tF 〉, an intermediate level of PI (e.g., η =
0.14) still suspends the arrival of disease for about 3 weeks.
This achievement exceeds the performance of TR even with
an extremely high restriction intensity. The simulations also
illuminate that the PI is sensitive to the increase of t0. There is
a remarkable decline in the simulation results of 	t(η) when t0
approaches 〈tF 〉. For instance, 25 days of waiting to implement
the strategy (t0 = 25) will only postpone the arrival of disease
in subpopulation y for about 2 weeks at most.

Actually, other intrapopulation interventions can also be
analyzed under this framework. For instance, social distancing
limits public activities to reduce personal contacts, which can
be reflected by rescaling the disease transmission rate β with
a multiplier 1 − ϕ when time t � t0. At the initial stage of
an outbreak, the Malthusian parameter becomes λϕ = (1 −
ϕ)β − μ. From a mathematical point of view, we can adjust
the parameters ϕ,η to allow λϕ = λη. Therefore, the above
analysis can cover this scenario.

IV. SUMMARY

In sum, the intrapopulation interventions, e.g., patient
isolation, perform better than the interpopulation strategies
such as travel restriction if the response time is small.

FIG. 3. (Color online) The effects of patient isolation in delaying disease invasion. (a) The relation between the delay of FAT,	t(η), and
the isolation intensity η with t0 = 0. The dark cyan diamonds show the fraction of eradication. (b) The simulation results with t0 = 0, 10, 15,
20, and 25.
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Therefore, the intrapopulation strategies are more beneficial
in delaying the spatial spread of pandemic influenza if they
are implemented very promptly. However, the intrapopulation
measures are sensitive to the increase of response time,
which might be inevitable due to miscellaneous socioeconomic
reasons in reality and largely discounts the efficiency.
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