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Motion-dependent levels of order in a relativistic universe
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Consider a generally closed system of continuous three-space coordinates x with a differentiable amplitude
function ψ(x). What is its level of order R? Define R by the property that it decreases (or stays constant) after
the system is coarse grained. Then R turns out to obey R = 8−1L2I,where quantity I = 4

∫
dx∇ψ∗ · ∇ψ is

the classical Fisher information in the system and L is the longest chord that can connect two points on the
system surface. In general, order R is (i) unitless, and (ii) invariant to uniform stretch or compression of the
system. On this basis, the order R in the Universe was previously found to be invariant in time despite its Hubble
expansion, and with value R = 26.0 × 1060 for flat space. By comparison, here we model the Universe as a
string-based “holostar,” with amplitude function ψ(x) ∝ 1/r over radial interval r = (r0,rH ). Here r0 is of order
the Planck length and rH is the radial extension of the holostar, estimated as the known value of the Hubble
radius. Curvature of space and relative motion of the observer must now be taken into account. It results that a
stationary observer observes a level of order R = (8/9)(rH /r0)3/2 = 0.42 × 1090; while for a free-falling observer
R = 2−1(rH /r0)2 = 0.85 × 10120. Both order values greatly exceed the above flat-space value. Interestingly, they
are purely geometric measures, depending solely upon ratio rH /r0. Remarkably, the free-fall value ∼ 10120 of
R approximates the negentropy of a universe modeled as discrete. This might mean that the Universe contains
about equal amounts of continuous and discrete structure.
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I. WHAT IS ORDER?

Consider a closed system of continuous coordinates
x = (x1, . . . ,xK ), K arbitrarily obeying a probability den-
sity function (PDF) p = p(x) for some property such as
mass.

A. Candidate measures of order

The order of, by comparison, a discrete system, character-
ized by a probability law Pi , i = 1, . . . ,N of discrete states i,
is long known to be its “negentropy,”

RH ≡ +
N∑

i=1

Pi ln Pi. (1)

See, e.g., Ref. [1]. This measure satisfies our defining criterion
that it decrease under coarse graining (see below). More
generally, consider the Kullback-Leibler or “cross entropy”
measure HKL ≡ ∑

i Pi ln(Pi/Qi). Probability law Qi is some
chosen “reference” law, and HKL is a measure of the “distance
between” the two laws. It was shown [2] that HKL also satisfies
the coarse-graining criterion.

But our system p(x) is continuous, not discrete. And the
measure (1) cannot be converted into continuous form: its
continuous limit Pi → p(x)dx is not well defined, since then
RH → ∑

i p(xi)dx ln p(xi)dx, which contains the unbounded
term

∑
i p(xi)dx ln dx → 1 × ln dx = ∑

i ln dxi → −∞.
However, the measure HKL does hold in the continuous

limit. Then the cross entropy HKL remains a candidate measure
of order for our continuous system.

B. Fisher order measure

In recent work [3,4] the order in this continuous case was
found to be

R = 8−1L2I, where I = 4
∫

dx∇ψ∗ · ∇ψ,

ψ = ψ(x), p ≡ |ψ |2, (2)

again using the coarse-graining requirement. Here I is Fisher’s
information measure [5,6]. Amplitude function ψ(x) is gener-
ally complex, and the asterisk denotes a complex conjugate.
In a three-dimensional system, parameter L is the maximum
chord length connecting two system surface points [4]. That
the order R in measure (2) should increase with system size
L is intuitive. For example, consider the order in a typical
apartment building of height L. The structural details of each
story is ordinarily about the same. This suggests that the total
order should increase with the number of stories L.

Still, the problem remains that with both measures R and
HKL satisfying the coarse-graining requirement, which should
be used? In this regard note that HKL contains an arbitrary
reference law Qi. However, to apply the mathematical measure
consistently HKL to all systems requires deciding upon
one definite law Qi . A possibility is Qi = const., making
HKL effectively the negentropy RH . However this choice is
disqualified since (as found) it becomes unbounded for our
continuous coordinates.

Next, consider the choice Qi = p(xi − �x), �x → 0. This
reference function is simply the infinitesimally shifted system
PDF. This causes [7] the proportionality HKL ∝ I . Then
by Eq. (2) HKL ∝ R, and the two measures convergeto the
common measure (2), which we use.
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II. COARSE GRAINING

A coarse-graining operation on a system merges its finest
microstates into larger or coarser macrostates [2]. Thus, a
coarse-grained description of a system is limited to its grosser
subcomponents.

The measure R obeying form (2) derives [3,4] uniquely
from a single physical requirement: After a continuous
systemp(x) is coarse grained during a tiny time interval �t ,
R must either decrease or stay the same,

�R � 0 for �t > 0. (3)

Uses of RH as an alternative order measure are limited to
systems that are very close to thermodynamic equilibrium.
But of course most natural systems are not near equilibrium.
It is therefore apt that in the derivation [3,4] of Eq. (2), p(x) is
by definition an arbitrary system state.

Coarse graining is often used for describing the transition
from a quantum variable to its observed value or, more grandly,
from a quantum universe to a classical one [8–10]. Indeed, our
“holographic universe” below will be seen to incorporate into
its definition both classical (relativistic) and quantum (string)
features.

III. SOME PROPERTIES OF THE FISHER-BASED
ORDER MEASURE

Inspection of Eq. (2) shows that R is (a) unitless which,
like negentropy, has the benefit of allowing completely
different phenomena to be compared for their levels of order;
(b) invariant under uniform stretch yk = akxk , k = 1, . . . ,K ,
with the ak = const., of all its coordinates (showing that R

is an intensive quantity); and (c) measures the total number
of ordered “details” within the system, rather than the density
of their structure. For example, for a one-dimensional system
p(x) = (2/a) sin2(nπx/a), 0 � x � a, the order R = 4π2n2.

This is explicitly independent of system extension a, and
purely a rapidly increasing function of the total number n

of waves within the system, i.e., its structural complexity.

A. Comparisons with the Kolmogoroff-Chaitin measure

Parameter n is also the number of nodes (zeros) in the above
sinusoidal system p(x). The Kolmogoroff-Chaitin (K-C)
complexity [11] is another widely used measure of complexity.
The K-C is likewise proportional to n2 in application to the
Dijkstra [12] routing algorithm. The K-C measure also equals
the total number n of statements in a computer program; the
total number n of switches within a network; or the shortest
description of a string in some fixed universal language.

B. Past applications of Fisher order measure R

Past applications of R have been to biology [4], in evaluat-
ing the order of an E coli bacterium undergoing compression,
and in cosmology: Despite the common impression that the
Hubble expansion of the Universe causes a relentless loss
of its order, it was shown [13] that the order R obeying
Eq. (2) actually remains constant under Hubble expansion.
This assumes the Universe to obey the Robertson-Walker

metric

ds2 = (cdt)2 − a2(t)(dx2 + dy2 + dz2), (x,y,z) ≡ r. (4)

This constant value of R was later found [14], assuming
flat space and ignoring general relativity (GR). However, any
cosmological model includes the presence of mass, and mass
implies space curvature, by GR [15]. Our model, below, will
include the GR effects of space-time curvature in application
to (a) a freely falling (geodesic) observer, and (b) a stationary
observer.

IV. APPLICATION TO HOLOGRAPHIC UNIVERSE
WITH STRING STRUCTURE

A. The holostar

Bekenstein [16] proposed that the entropy of a black hole
(bh) is proportional to the area of its event horizon in Planck
units (c = G = h̄ = k = 1). A recently discovered, exact, non-
bh solution to the Einstein field equations shares this property
[17]. The solution, called the “holostar,” also satisfies Eq. (2)
for R, requiring that the system be continuous and of finite size
L. It consists of matter with a string equation of state bounded
by a real spherical membrane located at radius rH . The metric
outside rH is the Schwarzschild vacuum metric.

To serve as a realistic model for the observable Universe, the
radius rH of the boundary membrane must be larger than the
current local horizon (or Hubble) radius of the observable part
of the Universe. The junction conditions at the radial position
rH of the boundary membrane require rH = 2M + r0, where
M is the gravitational mass of the holostar, as measured by an
observer in the exterior Schwarzschild metric. This boundary
membrane has the same properties as the (purely fictitious)
“membrane” attributed to a Schwarzschild bh by the membrane
paradigm.

The interior matter density obeys an equation of state for
radially aligned strings. To avoid infinite matter density at the
origin r = 0, we regard the interior region r � r0, where r0 ∼
Planck length, as a Minkowski vacuum of zero gravitational
mass M (by rH = 2M + r0 with rH = r0). This also obeys
Birckhoff’s theorem. This justifies replacement of this region
with a Minkowski vacuum region without changing the metric
for r > r0. The proviso is a second real (inner) boundary
membrane at r = r0, with a fixed level of surface tension.
Thus, mass exists only over the radial interval r0 � r � rH .

This holostar model well fits all currently known cosmo-
logical data. For example, its nearly unaccelerated expansion
is compatible with recent supernova measurements [17].
However, as cautionary notes, (i) the model has not yet
been shown to explain milestone effects such as big bang
nucleosynthesis constraints or cosmic microwave background
features; and the approach here is not fully rigorous because
(ii) Eq. (2) for R is not derived within the context of general
relativity and (iii) the inverse-square law form for ρ(r) is (as
below) ultimately a heuristic assumption.

The holographic metric within the region of nonzero matter
density r0 � r � rH is given by

ds2 =
(

r0

r

)
dt2 −

(
r

r0

)
dr2 − r2d�. (5)
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B. A simple model for the Universe

The geometric properties of this new solution allow it to
serve as an alternative model for the Universe. Far away
from the holostar’s center, the geodesic motion of massive
particles is virtually indistinguishable from that of a uniformly
stretched (expanding or contracting) Friedmann-Robertson-
Walker (FRW) universe. We want to know the level of order R

that is contained within such a universe over its radial values
r0 � r � rH .

In order to accommodate GR, the calculation of order R

must take into account that the holostar space-time is curved.
In the metric given by Eq. (5) the curvature produces length
distortions only in the radial direction (ds = √

r/r0 dr =√
grr dr); the azimuthal φ and polar θ coordinates have the

same meaning as spherical coordinates in flat space. Therefore
all integrations (derivatives) in the second Eq. (2), must be
multiplied (divided) by the square root of the radial metric
coefficient

√
grr = √

r/r0.

C. Dependence of order upon relative motion of observer

The metric-induced distortion ds = √
r/r0 dr along the

radial direction must be complemented by special relativistic
effects due to the motion of the observer within the metric. In
Ref. [17] it was shown that a geodesically moving (free-falling)
observer moves ultrarelativistically and nearly radially through
the coordinate system. Assume that any object falling into
the holostar from far away initially has a rather low velocity,
i.e., a γ factor of order 1. Then [15] the relative radial
velocity component βr ≡ vr/c in the holostar’s interior obeys
β2

r = 1 − r0/r . This approaches 1 (speed of light) whenever
r 
 r0 (far from the center r0), indicating ultrarelativistic
motion except near the center.

It is convenient to use the special relativistic gamma

factor obeying 1/γ 2 = 1 − β2, so that γ 2
r = r/r0 in this

case. Consequently, its Lorentz contraction will transform any
proper radial distance ds measured in the stationary (r,θ,φ)
coordinate system into a much larger distance dl = γr ds

in the system of the free-falling observer. Multiplying the
radial metric coefficient grr in the integral for the free-
falling observer by a factor γ 2

r = r/r0 converts it into the
corresponding integral for the free-falling observer.

As one would expect, the (a) free-fall and (b) stationary
observers will “see” different levels of order R. These are
found below.

D. Choice of density function p(r)

To find R we need an appropriate density function p(r).
The energy density ρ(r) of the string-type matter at any radial
position r on interval (r0,rH ) is the quantity in the 00 slot
of the stress-energy tensor, i.e., ρ(r) = 1/(8πr2). Thus, the
finiteness of r0 avoids an infinity in ρ(r).

However, there are problems with representing p(r) by
the energy density ρ(r) of the string-type matter. First, ρ is
a component of the rank-2 stress-energy tensor. In order to
compute I we must take the square root of the density function,
but the square root of a single component of a multi-component
tensor is not well defined. Second, in GR a single component
of a multicomponent tensor does not have any coordinate-

independent meaning; the results would then generally depend
on the particular coordinate system used. Both objections are
overcome by heuristically choosing for p(r) the trace of the
stress-energy tensor T = ρ − Pr − 2P⊥ = 1/(4πr2). Finally,
it is interesting that the density function p(r) ∝ 1/r2 agrees
with that proposed for a typical galaxy [18].

V. CALCULATION OF ORDER

The calculation of order R is carried through for the two
metric cases grr of an observer in (a) free fall and (b) stationary
in the coordinate system. In both cases we calculate the order
over total interval r0 � r � rH , regardless of any limitations
imposed on an interior observer due to his local horizon radius.
Stepwise:

(1) The density function p(r) ∝ 1/r2 ≡ A2/r2 is normal-
ized, fixing the constant A. Next, its square root is taken to give
the amplitude function ψ(r), assuming that its phase is zero
(quantum effects ignored). The latter is justified at regions
r 
 r0 of low curvature, where a huge number of quantum
strings exist whose quantum states, when coarse grained, be-
have like classical macroscopic states by Ehrenfest’s theorem.

(2) The gradient ∇ψ is then taken. The result is substituted
into Eq. (2) to compute I.

(3) Finally, chord length L is computed, and the results are
substituted into the first Eq. (2) to give R.

A. Order of free-falling observer, metric grr = (r/r0)2

Here, in case (a), the proper distance dl is obtained by
the application of two transformations, one general- and one
special-relativistic: First we translate radial coordinate dis-
tances dr into proper distances ds, which requires multiplying
dr by the square root of the radial metric coefficient, e.g.,
ds = √

r/r0 dr . However, ds is the proper distance measured
by an observer at rest in the (r,θ,φ) coordinate system. In order
to transform to the free-fall frame, we must multiply ds by
the special relativistic gamma factor of the motion, dl = γ ds.
Coincidentally γ = √

r/r0 is exactly equal to the radial metric
coefficient grr . Formally we can absorb the second factor into
the metric coefficient grr → γ 2 grr , resulting in a modified
radial metric coefficient grr = (r/r0)2 for the free-falling
observer.

(1) Normalization requires

1 ≡ 4π

∫ rH

r0

dr
√

grr (r)r2p(r) = 4π

∫ rH

r0

dr(r/r0)r2p(r). (6)

Using p(r) ≡ A2/r2 gives

p(r) = A2/r2, A2 = r0

2π
(
r2
H − r2

0

) , (7)

and the amplitude

ψ(r) ≡
√

p(r) = A/r (8)

assuming zero phase.
(2) Next, we have to evaluate ∇ψ(r) = dψ/ds = dψ/

(
√

grr dr) = (r0/r)dψ/dr , so by Eq. (8),

∇ψ(r) = r0

r

d

dr

(
A

r

)
= − r0A

r3
. (9)
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Then by Eq. (2),

I = 4
∫

dx∇ψ∗ · ∇ψ = 4(4π )
∫ rH

r0

dr(r/r0)r2

(
r0A

r3

)2

= 4r−2
H . (10)

(3) With the central region r � r0 being a Minkowski
vacuum, the longest chord L just passes straight through the
center region (with a diameter of 2r0), so its length is simply

L = 2r0 + 2
∫ rH

r0

√
grrdr = r2

H + r2
0

r0
. (11)

Finally, using results (10) and (11) in Eq. (2) gives an order

R = 8−1L2I = 1

2

(
rH

r0
+ r0

rH

)2

= 1

2

(
rH

r0

)2

(12)

since rH 
 r0. The free-falling observer in the holostar “sees”
the order going as the square of the very large ratio rH /r0.

As was mentioned, the boundary radius rH must be
larger than the local horizon (Hubble) radius of the currently
observable part of the Universe. Not knowing how much
larger it is, to get actual numbers we use the Hubble radius
for rH . Since all expressions for order R increase with
rH , the resulting values for R will be lower bounds to
the true order. Using the current values rH = 13.76 × 109

light-years = 1.302 × 1026 m, and r0 = 1.00 × 10−35 m,
the order value (12) is

R = 0.85 × 10120. (13)

B. Order of stationary observer, metric grr = (r/r0)

In this case (b) the same three steps as above were followed.
For brevity, we just give the results:

(1) Here we have ds = √
grr dr , with the unmodified metric

grr = (r/r0), giving

ψ(r) ≡
√

p(r) = A/r. (14)

(2) Next, we evaluate ∇ψ(r) = dψ/(
√

grr dr) = (r0/r)1/2

dψ/dr. By Eq. (2),

I = 4
∫

dx∇ψ∗ · ∇ψ = 4(4π )
∫ rH

r0

dr(r/r0)1/2r2

(
r

1/2
0 A

r5/2

)2

= 4r
−1/2
0 r

−3/2
H . (15)

(3) The longest chord length L, as in Eq. (11), is now

L = 2r0 + 2
∫ rH

r0

√
grrdr = 4

3

r
3/2
H

r
1/2
0

+ 2

3
r0. (16)

Finally, using results (18) and (19) in Eq. (2) gives

R = 8

9

(
rH

r0

)3/2

, (17)

after using rH 
 r0. For the stationary observer in the holostar,
the order goes as the 3/2 power of the large ratio (rH /r0). This
power 3/2 dependence upon (rH/r0) is significantly slower
than in Eq. (12) for the freely falling observer.

Using the current values rH = 13.76 × 109 light-years =
1.302 × 1026 m, and r0 = 1.00 × 10−35 m, the order value
(20) is

R = 0.42 × 1090. (18)

C. Comparison of results

The strong difference between theoretical forms (12) and
(17) for the order, and their numerical values (13) and (18),
show that, as with other relativistic effects, the order depends
upon the relative motion of source and observer. Oddly enough,
the free-falling observer sees effectively the same level of
order whether he is outside or inside the holostar. He also
“sees” much more order than the stationary one. Why is
this?

By Eq. (2) the order depends upon the values of L2 and I.

Comparing results (11) and (16) indicates that the stationary
observer sees the holostar as having an apparent size L that
is much less (by factor

√
r0/rH ) than that of the free falling

observer. Then the contribution of L to R in Eq. (2) gives
advantage to the free-falling observer. However, comparing
results (10) and (15) for values of I gives advantage to the
stationary observer. The key effect is that definition (2) of R

depends much more strongly (quadratically) upon the size of L

than upon I , so that values (13) and (18) for R give advantage
to the free-falling observer.

VI. DISCUSSION

Results (12) and (17) show that the structural order in
the holostar model of the Universe is a purely geometrical
property. It depends only upon the holostar’s size rH . Of
course all local baryonic and nonbaryonic matter-energy
configurations such as clusters of galaxies and stars must
inevitably contribute to total order, so that Eqs. (12) and (17)—
which ignore these—actually give lower bounds to the total.
However, the holostar does include small-scale structure,
namely, near its center where r → Planck length r0, so that
gradients ∇ψ ∼ r−3 or r−5/2 [cases (a) or (b)] are immense,
strongly increasing order (2).

That R in Eqs. (12) and (17) depends upon both boundary
values r0 and rH is consistent with the “holographic principle,”
by which the physics within the hologram depends upon the
entire boundary of the universe.

The relativistic levels R = 0.85 × 10120 in Eq. (13) and
R = 0.42 × 1090 in Eq. (18) are to be compared with the
much smaller value R = 26 × 1060 recently found [14],
which ignored all effects of GR. As we find, allowing for
the curvature of space-time greatly increases the level of
order.

Finally in Ref. [19] the maximum possible negentropy RH

of a discrete universe is computed by Penrose as roughly
10120, assuming it eventually collapses into one massive bh.
Interestingly, this coincides with result (13) for the order R of
our continuous holostar universe. That the two mathematically
different measures (1) and (2) numerically agree is interesting,
suggesting that the Universe contains about equal levels of
discrete and continuous structure. There is also a fundamental
physical agreement since both the holostar and Penrose models
obey the Bekenstein entropy-area property.
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