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We considered a multiblock molecular model of biological evolution, in which fitness is a function of the mean
types of alleles located at different parts (blocks) of the genome. We formulated an infinite population model
with selection and mutation, and calculated the mean fitness. For the case of recombination, we formulated a
model with a multidimensional fitness landscape (the dimension of the space is equal to the number of blocks)
and derived a theorem about the dynamics of initially narrow distribution. We also considered the case of lethal
mutations. We also formulated the finite population version of the model in the case of lethal mutations. Our
models, derived for the virus evolution, are interesting also for the statistical mechanics and the Hamilton-Jacobi
equation as well.
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I. INTRODUCTION

The investigation of biological evolution models [1–5] is
one of the most fruitful applications of statistical mechanics
or theoretical physics to biological problems [6–23]. To solve
the evolution models, one can apply the whole machinery
of modern theoretical physics: spin-glass physics methods
[11], quantum statistical mechanics [12,15–18], quantum field
theory [15,18], and the Hamilton-Jacobi equation (optimal
control) [19–21].

The genome, a collection of genes with different types,
could be considered as a particular spin configuration of
a statistical system, where the fitness (the rate to produce
offspring of the given genome) is equivalent to the Hamiltonian
of the spin system. In evolution theory, the notion of fitness
is central in defining the general features of evolution or in
modeling a concrete experiment. Fitness is a complicated
function of gene content (types of genes) of the genome in
sequence space; this function is assumed to have a mean-
field like behavior. Most of the investigations have been
devoted to the symmetric fitness case, when there is a master
(reference) sequence, and fitness (energy) is a simple function
of the Hamming distance from that sequence [2]. In [18], a
generalization of symmetric fitness landscape was considered,
when there are some K reference sequences, and the fitness
is a function of K Hamming distances from these reference
sequences. In [24–26], there were suggested evolution models
where the genome consists of different blocks and the fitness
is a function of the gene mean types at different blocks. In
the current article, we follow the idea of [24], considering
an infinitely long genome, a collection of a finite number of
blocks, defining mean “magnetizations” at any such block and
the fitness as a function of block magnetizations. We then use
the Hamilton-Jacobi equation [19] to solve the equation. This
approach is more powerful and technically easier than that
used in [18]. Thus, in the present paper we can calculate the
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mean fitness of a recombination model in a multidimensional
fitness landscape.

Recombination is one of the key factors in evolution.
The mathematical aspects of recombination were analyzed
in [27–29]. Recently, there was good progress in the statics
of recombination [22,23] and there was some advance in the
dynamics [30]. We formulate the recombination model in a
multidimensional fitness landscape for a many-loci haploid
model with two alleles (type of gene) at any locus (position of
a gene in the genome).

The rest of the paper is organized as follows: In Sec. II,
we formulate and solve (calculate the mean fitness for) the
evolution model with selection and mutation in a multidimen-
sional fitness landscape, including the case of lethal mutations
[31,32]. We consider two-block models for the lethal mutations
and an asymmetric initial distribution. In Sec. III, we formulate
the recombination model in a multidimensional space. While
we could not calculate the mean fitness, we derive a general
result regarding the dynamics of population for the initial
narrow distribution. In Sec. IV, we summarize our results and
discuss problems for further research.

II. THE MULTIDIMENSIONAL MODEL

A. The model

We identify the alleles as spins and consider the genome
as a collection of L spins taking the values ±1. In the peak
configuration, all spins take the value +1. Our model is a
simple generalization of the Crow-Kimura model [4,12]. The
genome is a collection of H pieces (blocks), with the length
Ln,1 � n � H , such that

∑H
n=1 Ln = L.

Any sequence is characterized by l1, . . . ,LH , the number
of “−” (negative) spins in the blocks. We introduce the
“magnetization” mn, defined as

mn = 1 − 2ln

Ln

, (1)

at the nth piece of genome for all of n with 1 � n � H . Our
fitness r is a function of (l1, . . . ,lH ). Thus, we define rl1,...,lH ≡
Lf (m1, . . . ,mH ). The discrete variables ln are defined in the
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interval [0,Ln], while the magnetizations mn are becoming
continuous at the limit N → ∞ and −1 � mn � 1. We define
the function f (m1, . . . ,mH ) as a fitness function.

The description of the mutation process is the principal
point in the definition of the model. In order to describe
mutations we use the coefficients x±(ln,Ln):

x+(ln,Ln) = Ln − ln

Ln

, x−(ln,Ln) = ln

Ln

, (2)

where Ln denotes the length of the nth piece, and x+(ln,Ln)
and x−(ln,Ln) are the fractions of + and − spins in the nth
piece, respectively.

If the initial distribution of the population is symmetric, i.e.,
all the sequences with the same ln have the same probability,
we describe the system through the p(l1, . . . ,lH ,t), the
probability of all sequences having l1, . . . ,lH minus spins in
corresponding blocks. Then we write the following system of
equations:

dp(l1, . . . ,lH ,t)

dt

= (rl1,...,lH − LR)p(l1, . . . ,lH ,t) − Lp(l1, . . . ,lH ,t)

+
∑

β=±1,n

Lnxβ(ln − β,Ln)p(l1, . . . ,ln − β, . . . ,lH ,t),

R = 1

L

∑
0�ln�Ln

p(l1, . . . ,lH ,t)rl1,...,lH . (3)

The sum over n extends from 1 to H and R and is the mean
fitness. We considered mutations independently at all pieces
of the genome; thus, in the middle line at the right hand
side of Eq. (3) we changed an ln at the position n, where
n changes from 1 (first piece of genome) until H (the last
piece of genome).

The current configuration (l1, . . . ,ln, . . . ,lH ) could be
obtained from either (l1, . . . ,ln + 1, . . . ,lH ), reversing one of
the ln + 1 − spins, or from the (l1, . . . ,ln − 1, . . . ,lH ) con-
figuration, reversing one of (Ln − ln + 1) + spins. There are
(ln − 1) such possibilities for the first case, and (Ln − ln + 1)
for the second case. Dividing by Ln, we derived the coefficients
x−(ln + 1,Ln) and x+(ln − 1,Ln) in Eq. (3). For H = 1, Eq. (3)
coincides with the Crow-Kimura model [4,13,16].

Let us consider the linear part of the latter equation and
write an equation for P (m1, . . . ,mH ,t) ≡ p(l1, . . . ,lH ,t):

dP (m1, . . . ,mH ,t)

dt

= L(f (m1, . . . ,mH ) − 1)P (m1, . . . ,mH ,t)

+
∑

β=±1,1�n�H

Ln

(
1 + βmn

2
+ 1

Ln

)

×P

(
m1, . . . ,mn + 2β

Ln

, . . . ,mH ,t

)
. (4)

Following [33,34], we define the mean fitness in the steady
state of Eq. (3) as the largest eigenvalue of the quadratic matrix
on the left hand side of Eq. (4).

Following [19], we assume an ansatz:

P (m1, . . . ,mH ,t) = exp[Lu(m1, . . . ,mH ,t)]. (5)

Then with 1/L accuracy we get the following Hamilton-Jacobi
equation (HJE):

∂u(m1, . . . ,mH )

∂t

= −H

(
m1, . . . ,mH ;

∂u

∂m1

, . . . ,
∂u

∂mH

)
,

−H (m1, . . . ,mH ; P̂1, . . . ,P̂H ) = f (m1, . . . ,mH )

−1 +
∑

1�n�H

Ln

L

(
1 + mn

2
e2P̂n + 1 − mn

2
e−2P̂n

)
, (6)

where we missed O(1/L) terms and introduced the momenta
P̂n = ∂u/∂mn.

Considering the asymptotic solution

u(m1, . . . ,mH ,t) = Rt + u0(m1, . . . ,mH ), (7)

we get an equation

R = f (m1, . . . ,mH ) − 1

+
∑

1�n�H

[
Ln

L

1 + mn

2
e

2 ∂u0(m1 ,...,mn,...,mH )
∂mn

+Ln

L

1 − mn

2
e
−2 ∂u0(m1 ,...,mn,...,mH )

∂mn

]
. (8)

On the other hand, we have a condition that at any point m,
our R should be higher than the minimum of the right hand
side, considered as a function of momenta ∂u0(m1,...,mn,...,mH )

∂mn
=

∂u/∂mn = P̂n. We define

U (m1, . . . ,mH ; P̂1, . . . ,P̂H ) = min

[
f (m1, . . . ,mH ) − 1

+
∑

1�n�H

[
Ln

L

1 + mn

2
e2P̂n + Ln

L

1 − mn

2
e−2P̂n

]]
.

Examining the solution of the minimum problem with respect
to (P̂1, . . . ,P̂H ) and looking at different points m, we find

R � max[U (m1, . . . ,mn)]|m1,...,mH
,

U (m1, . . . ,mH ) = f (m1, . . . ,mH ) − 1

+
∑

1�n�H

Ln

L

√
1 − m2

n. (9)

In Eq. (9) we take the maximum in the domain −1 � mn � 1.
The function U (m1, . . . ,mH ) is the equivalent of the potential
in classic mechanics.

Following [19], we identify the mean fitness [the maximum
eigenvalue of the matrix on the right hand side of Eq. (4)] with
the lower bound of Eq. (9),

R = max[U (m1, . . . ,mH )]|m1,...,mH
. (10)

One can calculate the mean fitness R by differentiating the
function U (m1, . . . ,mH ).

Thus, we defined the mean fitness for the general multidi-
mensional mean-field like fitness landscape for the evolution
model with selection and mutation.
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FIG. 1. (Color online) The comparison of analytical result
(smooth line) with the numerics (dots) for the 3D model with
L1 = L2 = L3 = 20. The whole genome mutation rate is 1. The first
part of the genome has a fitness f1(m1) = km2

1/2. In the second part
all the mutations are lethal. For the fitness contribution from this part,
we have a zero for the sequences with zero mutations in this block and
−∞ for the nonzero mutations. Part three is described by a single peak
fitness landscape with fitness J = 3 for the peak subsequence and
zero for other subsequences. Thus, the fitness function is defined as
f (m1,m2,m3) = km2

1/2 − [1 − δ(m2 − 1)]∞ + Jδ(m3 − 1), where
the discrete δ(x) function is equal to 1 at zero and is equal to 0
otherwise. The mean fitness is given as k[1 − 1/(3k)]2/2 + 3 − 2/3.

Figure 1 gives the comparison of our analytical result for
Eq. (9) with numerics of the three-dimensional (3D) model.

B. The multidimensional model with lethal mutations

Let us now consider a model where there exists some
probabilities of lethal mutations: the fitness in parallel model
is becoming −∞ [30].

At any piece of the genome, we consider the master
subsequence having nonlethal Ln(1 − λ) neighbors with single
mutations, where 0 � λ < 1 is a parameter describing the
fraction of lethal mutations. When the fitness is a function
of the Hamming distance from the reference sequence, we
simplify the evolution equations using this symmetry. We
define some mutations from the reference sequence as lethal
mutations and assume that any sequence having at least one
lethal mutation (plus some nonlethal mutations) has a −∞
fitness. Therefore, at the lth Hamming class we have

Nl,λn
= Ln(1 − λn)!

[Ln(1 − λn) − l]!l!

viable l point mutants, and, as a maximal l, we take Ln(1 −
λn). For a small l � Ln, there is a dilution of the sequence
space via a factor (1 − λn), while the total number of viable
sequences is

Ln(1−λn)∑
l=0

Nl,λn
= 2(1−λn)Ln . (11)

We define now the fitness function as

rl1,...,lH ≡ Lf (m1, . . . ,mH ), (12)

where, instead of Eq. (1), we now define

ln = Ln

1 + mn

2
(1 − λn). (13)

Then the calculation, identical to those in [30], gives

R = max
m

[
f (m1, . . . ,mH ) − 1

+
∑

n

Ln

L
(1 − λn)

√
1 − m2

n

]
. (14)

C. The model in multipeak fitness landscape

We formulated the model by Eq. (3) for a rather general
case. The multipeak model, considered in [18], could be
derived as a particular case of our solution.

Let us choose H = 2K−1 and consider K reference se-
quences with our sn

i spins, 1 � i � L,1 � n � H . At any
position i along the genome, we are looking at the alignment
of spins in our K reference sequences. We have chosen the first
configuration with all + spins and define the alignment of spin
along the ith reference sequence at the nth piece of genome
as αi,n. We group together the configurations sn

i = αi,n and
sn
i = −αi,n, where αi,n = ±1 and these two cases have a joint

probability Ln/L. The magnetization of the ith sequence Mi

is defined through our mn as

Mi =
H∑

n=1

Ln

L
αnimn. (15)

We then take a fitness which is a function of our H reference
sequences. Thus, we should find the maximum of

F (M1, . . . ,MK ) − 1 +
∑

1�n�H

Ln

L

√
1 − m2

n

+
∑

i

hi

[
−Mi +

H∑
n=1

Ln

L
αnimn

]
, (16)

where we introduced the auxiliary variables hi . The maximum
condition gives

hi = ∂F (M1, . . . ,MK )

∂Mi

,
∑

i

hiαni = mn√
1 − m2

n

. (17)

The last system of equations coincides with the one derived
in [18] with the mapping

mn = 1

1 + ( ∑K
i=1 αn,iHi

) , (18)

where Hi are the fields, conjugate to the Mi in Eq. (10) of [18].
A single difference is that in [18] we defined Ln/L for 2K

situations [misprints in Eqs. (9) and (24) of [18], in which 2K

should be replaced by 2K−1], instead of 2K−1 in the current
article.
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D. The two-dimensional case

1. The definition of the model

Let us consider the two-dimensional (2D) case. We have a
system of equations:

dp(l1,l2,t)

dt
= (

rl1,l2 − L − LR
)
p(l1,l2,t)

+
∑

β=±1

L1xβ(l1,L1)p(l1 − β,l2,t)

+L2xβ(l2,L2)p(l1,l2 − β,t),

R = 1

L

∑
0�ln�Ln

p(l1,l2,t)rl1,l2 . (19)

We have a HJE for this case:

∂u(m1,m2)

∂t

= −H

(
m1,m2;

∂u

∂m1

,
∂u

∂m2

)
,

−H (m1,m2; P̂1,P̂2) = f (m1,m2)

−1 +
∑

1�n�2

Ln

L

(
1 + mn

2
e2P̂n + 1 − mn

2
e−2P̂n

)
. (20)

The mean fitness R is defined through the equations

R = f (m1,m2) − 1 +
∑

1�n�2

Ln

L

√
1 − m2

n,

(21)

f ′
1(m1,m2) = L1

L

m1√
1 − m2

n

, f ′
2(m1,m2) = L2

L

m2√
1 − m2

n

.

2. The two-block model with lethal mutations

In Fig. 2 we compare the analytical results with the numer-
ics for the two-block model, where one part has the length
(L − n) with a lethal mutation (all the spin configurations of
the block besides the one have −∞ fitness), and the other block
has the length n and a fitness f (m1) = km2

1/2. We obtain the

20 40 60 80 100 n

0.05
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0.15

0.20

0.25

R

FIG. 2. (Color online) The mean fitness R versus the length of
the first block in the 2D model with a fitness f (m1) = m2

1 for the first
block with the length n and lethal mutations for the second block,
with zero fitness for the peak configuration of the second block. The
total length of the genome is 100. The analytical results are given by
the smooth line.

0.0 0.5 1.0 1.5 2.0 t0.0
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FIG. 3. (Color online) The dynamics of m,m1,m2 for the model
by Eqs.(19),(24) with m1(0) = 1,m2(0) = 0.2,L1 = L/2,L2 = L/2.
The middle line corresponds to the m by Eq. (24) or the Crow-Kimura
model by Eq. (23) with m(0) = 0.6.

mean fitness of this model as

R = k

2

(
1 − n

k(n + m)

)2

− m

n + m
. (22)

3. The asymmetric original distribution

We consider the original distribution m(0) = 0.6 for the
symmetric distribution, only considering the one-dimensional
(1D) (Crow-Kimura) model:

f (m) = k

2
m2. (23)

Later we take the simplest asymmetric distribution, where the
part L1 spins have l1 minus spins and original narrow distri-
bution with m1 = 1 − 2l1/L1. Another part has l2 minus spins
and original narrow distribution around m2 = 1 − 2l2/L2. We
consider the model by Eq. (19) with the fitness

f (m1,m2) = k

2
m2, m =

(
m1

L1

L
+ m2

L2

L

)
. (24)

Figure 3 gives the results of the dynamics for m,m1,m2.

4. The population distribution for the 2D case

Let us investigate the population distribution. We consider
a fitness

f (m1,m2) = 1

2

∑
ij

Aijmimj ,

(25)
A11 = k1, A22 = k2, A12 = k3.

Assuming an ansatz

P (x) = πL
√

det(G)

2
exp

[
−L

〈x|G|x〉
2

]
(26)

u(x) = −〈x|G|x〉
2

, 
x = 
m − 
s,

we obtain for the correlation

Kij ≡
∫

dx
p′

i(x)p′
j (x)

p(x)
=

∑
l,n

GliGnj 〈xlxn〉 = Gij . (27)
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TABLE I. Mean fitness for the 2D model by Eq. (25). L1 = L2 =
L/2, k2 = k1.

L 100 100 100 100 100

k1 4 8 4 4 3
K3 3 2 5 6 7
Rtheor 7.0312 9.025 8.0277 9.025 9.025
Rnum 7.0315 9.0251 8.0280 9.025 9.0251
g1+g3
k1+k3 theor

1. 1 1 1 1
g1+g3
k1+k3 num

0.991 0.984 0.992 0.993 0.994

Differentiating the HJE (20) for the steady state by x1,x2, and
putting p1 = 0,p2 = 0, we obtain

Aij sj − Gij sj . (28)

For the symmetric fitness case

A11 = A22 = k1,A12 = k3,
(29)

G11 = G22 = g1,G12 = g3,

s1 = s2 and Eq. (28) gives

k1 + k3 = g1 + g3. (30)

We verified the validity of Eq. (30) by the numerics in Table I.

III. RECOMBINATION IN A MULTIDIMENSIONAL
FITNESS LANDSCAPE

A. The model

In order to describe the recombination (horizontal gene
transfer), we follow [22,23]. We consider the following system
of equations:

dp(l1, . . . ,lH ,t)

dt

= (
rl1,...,lH − LR

)
p(l1, . . . ,lH ) − Lp(l1, . . . ,lH ,t)

+
∑

β=±1,n

Lnxβ(ln − β,Ln)p(l1, . . . ,ln − β, . . . ,lH ,t)

+c

[( ∑
β=±1,n

Lnxβ(ln,Ln)
1 − βsn

2
− 1

)
p(l1, . . . ,lH ,t)

+
∑

β=±1,n

Lnxβ(ln − β,Ln)
1 + βsn

2

×p(l1, . . . ,ln + β, . . . ,lH ,t)

]
, (31)

where the sum over n extends from 1 to H , and

sn =
∑

l1,...,lH

p(l1, . . . ,lH ,t)
Ln − 2ln

Ln

(32)

is the equivalent of surplus or “surface” magnetization. The
simple symmetric fitness landscape (K = 1) has one surplus
parameter, but now there are H parameters.

The term −Lp(ll , . . . ,lK,t) describes the mutations of the
whole genome with a rate of 1 per allele; the following
line describes the mutation. Using a coefficient c, we define
the diagonal recombination terms: −c is the total rate of

changing the given sequence, and xβ(ln,Ln) 1−βsn

2 describes
the recombination event when we replace a spin from our
current sequence with the same kind of spin from the pool
of spins at the same position in the population. In the second
term inside “[· · ·],” we define the recombination terms as the
change in the current configuration: we replace a spin with an
opposite spin from the spin pool.

Let us derive the Hamilton-Jacobi equation. We used the
same ansatz, Eq. (5), as before; the simple derivations give

∂u

∂t
= H (m1, . . . ,mK ; s1, . . . ,sH ; u′

1, . . . ,u
′
H ),

−H = f (m1, . . . ,mH ) − f (s1, . . . ,sH ) − 1 − c

+
∑

β=±1,1�n�H

ln

L

(
1 + mn

2
e2u′

n + 1 − mn

2
e−2u′

n

)

+ c

(∑
n

ln

L
(
(1 + mn)(1 + sn)

4
+ (1 − mn)(1 − sn)

4

)

− 1 +
∑

n

ln

L

[
(1 + mn)(1 − sn)

4
e2u′

n

+ (1 − mn)(1 + sn)

4
e−2u′

n

]
, (33)

where we denote un = ∂u(m1,...,mH ,t)
∂mn

. The function u(m1, . . . ,

mH ,t) has the maximum at the point (m1, . . . ,mH ) =
(s1, . . . ,sH ).

We do not see a simple way to calculate the asymptotic
solution of the last equation.

B. An approximate solution of recombination dynamics

Let us consider the dynamics of the initial normal distribu-
tion,

P (m1, . . . ,mH ,0)

= exp

{
−L

∑
ln

yln

2
[ml − sl(0)][mn − sn(0)]

}
. (34)

Equation (34) describes a narrow distribution around some
Hamming classes.

We assume that for some not too large periods of time, we
have a similar solution,

P (m1, . . . ,mH ,t)

= exp

{
−L

∑
ln

yln

2
[ml − sl(t)][mn − sn(t)]

}
, (35)

where yln describes the normal distribution.
We get the following system of equations for dsn(t)/dt

using our Hamiltonian form Eq. (33):

−
∑

n

yln

dsn

dt
= −dH (s1, . . . ,sH ; s1, . . . ,sH ; 0, . . . ,0)

dml

+
∑

n

dH (s1, . . . ,sH ; s1, . . . ,sH ; 0, . . . ,0)

dpn

yln.

(36)
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Let us prove that the last two terms do not depend on c. From
the first line we obtain

−dH (s1, . . . ,sH ; s1, . . . ,sH ; 0, . . . ,0)

dml

= ∂f (m1, . . . ,mH )

∂ml

.

(37)

For the rest we derive

−2
∑

l

Ll

L
slyln. (38)

Eventually, putting the results of Eqs. (37) and (38) into
Eq. (36), we derive

∑
n

yln

dsn

dt
= f ′

n(s1, . . . ,sH ) − 2
∑

n

Ll

L
slyln. (39)

Thus, for the initially narrow distribution of population by
Eq. (34) and mean-field like fitness landscape, the recombi-
nation does not have any impact on the relaxation dynamics
for some period of time T . If the number of mutations and
recombination per genome per replication is on the order of
1, then we have the following condition for this time period:
1 � T � L.

C. Asymmetric recombination

The theorem from the previous section is not valid for the
asymmetric recombination, since we have different recombi-
nation rates for the allele changes to up and down. Consider
the simple case of a one-dimensional fitness landscape:

dPl

dt
= [(rl − LR)] Pl + (l + 1)Pl+1 + [1 − (l − 1)]Pl−1

−L

[
c1

(
1 − l̄

L

)
l

L
Pl + c2

l̄

L

(
1 − l

L

)
Pl

]

+L

[
c1

(
1 − l̄

L

)
l + 1

L
Pl+1

+ c2
l̄

L

(
1 − l − 1

L

)
Pl−1

]
, (40)

where c1,c2 describe the recombination rates to the up and
down directions in Hamming classes and l̄ = ∑

l Pll.
Using an ansatz Pl = exp[Lu(m,t)], we derive the follow-

ing HJE:

du

dt
= f (m) − f (s) − c1

(1 + m)(1 − s)

4
− c2

(1 − m)(1 + s)

4

+ e2u′ 1 + m

2

[
1 + 1 − s

2
c2

]
− 1

+ e−2u′ 1 − m

2

[
1 + 1 + s

2
c1

]
. (41)

Now we take u(t) = −y[m − s(t)]2/2 and get an equation

y
ds

dt
= f ′(s) − 2ys(t) − (c1 − c2)

2
[1 − s(t)2]y. (42)

We see that the recombination immediately starts to change
the distribution; see Fig. 4 for the illustration.

0.0 0.1 0.2 0.3 0.4 0.5
t0.0

0.2

0.4

0.6

0.8
m

FIG. 4. (Color online) The dynamics of m ≡ 1 − 2n/L, where
n is the mean number of mutations in the model by Eqs. (40)
and (41) with f (m) = m2, L = 1000. The top line corresponds to
the model without recombination, the middle line to the model with
symmetric recombination with the rate c = 1, and the bottom line
to the asymmetric recombination with c1 = 1.5, c2 = 0.5. The time
scale is chosen as in Eq. (41). For the zero selection case at time
period 1 almost all the alleles in the genome are mutated.

D. The recombination model with lethal mutations

In order to describe the lethal mutations, we consider the
genome which consists of two parts with the length L1 = λL

and L(1 − λ). In the first piece, there is only one sequence
with the fitness 0, and any mutation in this part gives a lethal
sequence with the −∞ fitness.

We can investigate the situation using our model by
Eq. (40). Previously we used the mutation rate 1. Now we
introduce the mutation rate μ0 per nucleotide and c as a
recombination rate per nucleotide.

We just write the equations for p(0,l) ≡ pl , identifying also
r(0,l) ≡ rl :

dpl

dt
= rlpl − plμ0L

+L̄

[
μ0

(
l − 1

L̄
pl+1 + L̄ − l + 1

L̄
pl−1

)

+c

(
l − 1

L̄

1 + sn

2
+ L̄ − l + 1

L̄

1 − sn

2
− 1

)
pl

+c

(
l − 1

L̄

1 − sn

2
pl−1 + L̄ − l + 1

L̄

1 + sn

2
pl+1

)
,

(43)

where we denoted the length of the genome without lethal
mutations as L̄ = L(1 − λ). While in the previous models we
took μ0 = 1, now we write formulas for general μ0.

Let us define

m = 2l − L̄

L̄
, rl = f (m)L̂, (44)

then we can use the results of [23] to calculate the mean fitness.
If we define the potential U (m,s),

U (m,s) = f (m) +
√

(1 − m2)C + cms

2
− c

2
,

(45)

C =
[(

μ0 + c

2

)2
− c2s2

4

]
,

031920-6



BIOLOGICAL EVOLUTION IN A MULTIDIMENSIONAL . . . PHYSICAL REVIEW E 86, 031920 (2012)

then the mean fitness of the genome is defined as

max[L̄(U (m,s) − Lμ0)], LR = Lf (s)(1 − λ). (46)

E. The finite population version of the model
with lethal mutations

In the case of HIV, there are highly variable parts of the
genome with about 100 nucleotides [35]. In [35] the use of
an evolution model with shorter effective genome length to
describe the virus evolution in such a case was suggested;
later this idea was applied in [36]. We assume that the usage of
an effective genome length is reasonable for the zero epistasis
case, while in the case of lethal mutations as well, we cannot
use an ordinary model with the short genome length.

Extending the ideas in [37], we suggest the following
finite population versions of the model. The genome consists
of two parts. The first part has a length Lλ where all the
mutations are lethal, while the n mutations from the part with
the length L(1 − λ) give a mutant with the fitness function
rn. The population is described via L − n̄ viable sequences
and the n̄ lethal ones, and the total population size N is fixed.
We describe the population via the number of viruses, nl , in
the lth Hamming class, 0 � l � L and n̄. We have a conserved
population size, n + ∑L

l=0 nl = N .
During the time period δt , there are μδt(1 − λ) nonlethal

mutations and μδtλ lethal mutations.
We consider the following steps during the evolution:
(a) a birth of δn̄ new lethal mutants which is a binomial

random process with the probability parameter δtλ and (N −
n̄) trials;

(b) a birth of δnl new viruses in the lth class, which is
a binomial random process with nl trials and a probability
parameter rlδt ;

(c) forward nonlethal mutations fl , which are described
via binomial random process with a probability parameter
δt(1 − λ) l

L
and nl trials, and backward nonlethal mutations

bl , which are described via the binomial random process
with probability parameter δt(1 − λ)L−l

L
and nl trials (thus,

after these mutation processes, nl → nl − fl − bl , nl+1 =
nl+1 + fl , nl−1 = nl−1 + bl); and

(d) the dilution of the model, where we reduce the virus
population via n̄ + ∑L

l=0 δnl numbers, uniformly distributed
via L + 2 classes.

IV. CONCLUSION

We formulated and solved the evolution model on the
multidimensional fitness space, where we considered the
genome as a collection of several pieces and the total fitness
as the function of the allele type fractions of the pieces. Such
a model is more general and more realistic than the multipoint

fitness landscape considered in [18]. The numerics confirmed
our analytical results well.

We calculated the mean fitness of this model, including the
case of lethal mutations, and found a simple way of deriving
the results of the multipeak fitness models.

We formulated the recombination model in the multidi-
mensional fitness space. While we could not calculate the
mean fitness, we derived the Hamilton-Jacobi equation for the
dynamics of the population and deduced an important theorem
about the dynamics. For the initially narrow initial distribution
and mean-field fitness landscape, the recombination does not
affect the dynamics of the population for a rather long period
of time (see Fig. 2). This theorem is not valid in the case of
asymmetric recombination.

We formulated the finite population version of the model
with lethal mutations. Our results could be applied to model
virus experiments, prescribing to different parts of the genome
either lethal mutations or negative or positive selection. For
example, we can apply our model in the case of the dengue
virus, where 95% of the genome is epistasis free while there
are strong correlations between the gene contributions of the
remaining 5% [38].

The main open mathematical problem in the investigation
of multidimensional evolution is the calculation of the surplus
and the distribution around the peak of distribution. While we
calculated the mean fitness, we failed to calculate the surplus.
In classical mechanics, one can easily define the ground state
energy and the position of the interacting particles, looking for
the minimum of potential energy. Now, for our Hamiltonian
by Eqs. (20), the situation is highly nontrivial. One should
consider the asymptotic solution for the characteristics (the
solutions of Hamilton equation), looking for the steady states.
Another problem, which is important for applications, is to
define the quadratic expansion of the solution u(m1,m2) near
the maximum of distribution. Again, the situation is highly
nontrivial, and different statistical physics phases are possible
like the phases in [39]. While we found some relations,
Eqs. (28) and (30), we failed to find the complete solution
of distribution. We hope that it is possible to succeed using the
advanced methods of HJE to address this open problem.
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