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I reanalyze the hydrodynamic theory of fluid, polar-ordered flocks. I find new linear terms in the hydrodynamic
equations which slightly modify the anisotropy, but not the scaling, of the damping of sound modes. I also find
that the nonlinearities allowed in equilibrium do not stabilize long-ranged order in spatial dimensions d = 2,
in accord with the Mermin-Wagner theorem. Nonequilibrium nonlinearities do stabilize long-ranged order in
d = 2, as argued by earlier work. Some of these were missed by earlier work; it is unclear whether or not they
change the scaling exponents in d = 2.
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I. INTRODUCTION

One of the most interesting and ubiquitous phenomena
exhibited by active matter is collective motion, variously
known as flocking [1–6], swarming [7,8], or by a variety of
other names. Such motion can be coherent over enormous
numbers of self-propelled entities, and a wide range of of
length scales: from kilometers (herds of wildebeest) to microns
(microorganisms [7,8]; mobile macromolecules in living cells
[9,10]). It is also [2] a dynamical version of ferromagnetic
ordering. A “hydrodynamic” theory of flocking [3–6] shows
among other things that, while useful, the analogy to equilib-
rium ferromagnets is far from perfect. In particular, flocks do
not obey the Mermin-Wagner theorem [11]: that is, they do

spontaneously break a continuous symmetry (rotation invari-
ance) by developing long-ranged order [in the case of flocks, by
developing a nonzero average velocity 〈�v(�r,t)〉 �= �0] in spatial
dimensions d = 2, even with only short-ranged interactions.

The mechanism for this apparent violation of the
“Mermin-Wagner” theorem [11] is fundamentally nonlinear.
A number of nonlinear terms in the hydrodynamic equations
of motion become “relevant,” in the renormalization group
(RG) sense, as the spatial dimension d is lowered below 4,
leading to a breakdown of linearized hydrodynamics [12]
which suppresses fluctuations enough to stabilize long-ranged
order possible in d = 2.

In this paper, I revisit the formulation of the hydrodynamic
theory of what I’ll call “fluid, polar-ordered flocks”, by which
I mean flocks that are spatially homogeneous, on average,
and have 〈�v(�r,t)〉 �= �0. I find a few differences with the results
of [3–6]. Some of these are minor: a few linear terms, that
produce only minor modifications of the damping of the
propagating sound modes predicted in [3–6], were missed in
that earlier work.

My more important conclusions concern the scaling laws of
two-dimensional flocks. It was originally argued [3–6] that the
exponents characterizing the scaling of fluctuations in flocks
that results from the breakdown of hydrodynamics could be
determined exactly in d = 2. In this paper, I will argue that
those arguments were incorrect, because they neglected certain
other, equally important, symmetry-allowed nonlinearities in
the hydrodynamic equations. These additional nonlinearities
invalidate the earlier arguments, and render it impossible to
determine the exact scaling laws in d = 2, or, indeed, in any
spatial dimension d � 4.

If these new nonlinearities should prove to be irrelevant,
in the RG sense, in d = 2, then the exact exponents predicted
by [3–6] would, in fact, hold in d = 2. At the moment, however,
there is no compelling theoretical argument that they are
irrelevant, though there is also none that they are not.

All of these nonlinearities involve density fluctuations.
Hence, in systems in which density fluctuations are suppressed,
it is possible to obtain exact exponents in d = 2. One class
of such systems—flocks with birth and death—has been
treated elsewhere [13]; others, such as incompressible systems
[14], and systems with long-ranged interactions [15], will be
addressed in future work [16].

The reanalysis presented here correctly predicts that
one naively relevant nonlinearity in the flocking hydro-
dynamic equations that is allowed even in equilibrium
systems [17] does not lead to any corrections to scal-
ing (or, indeed, to any qualitatively new long-wavelength
physics whatsoever); this means that the equilibrium sys-
tems described by such a model does not exhibit long-
ranged order in d = 2 (in accord with the Mermin-Wagner
theorem [11]).

My discussion here is limited to “ordered” flocks moving
on a substrate: i.e., one in which the flocking organisms
spontaneously pick a direction to move together via purely
short-ranged interactions that make neighbors tend to follow
each other, but which do not pick out any a priori preferred
direction for this motion. That is, the flocking spontaneously
breaks rotation invariance, as equilibrium ferromagnetism
does. Flocks moving without a substrate conserve momentum,
and so have very different hydrodynamics, which has been
considered elsewhere [18]; I will not discuss these here. One
specific realization of a flock on a substrate is the Vicsek
algorithm [2] in its ordered state.

The remainder of this paper is organized as follows. In
Sec. II, I derive the hydrodynamic model for a fluid, polar flock,
correcting some mistakes in the analysis of [3–6]. Section III
treats the linearized version of the theory presented in Sec. II,
while Sec. IV addresses the nonlinear theory and scaling laws.

II. HYDRODYNAMIC MODEL IN THE FLUID,
ORIENTATIONALLY ORDERED PHASE

The hydrodynamic theory describes the flock by continu-
ous, coarse grained number density ρ(�r,t) and velocity �v(�r,t)
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fields. The hydrodynamic equations of motion governing these
fields can in the long-wavelength limit can be written down
purely on symmetry grounds [3–6], and are

∂t �v + λ1(�v · �∇)�v + λ2( �∇ · �v)�v + λ3 �∇(|�v|2)

= α�v − β|�v|2�v − �∇P1 − �v(�v · �∇P2) + D1 �∇( �∇ · �v)

+DT ∇2�v + D2(�v · �∇)2�v + �f , (2.1)

∂tρ + ∇ · (�vρ) = 0, (2.2)

where the parameters λi(i = 1 → 3), α, β, and the “isotropic
pressure” P (ρ,|�v|) and the “anisotropic pressure”P2(ρ,|�v|)
are, in general, functions of the density ρ and the magnitude
|�v| of the local velocity. It is useful to Taylor expand P1 and
P2 around the equilibrium density ρ0:

P1 =
∞∑

n=1

σn(|�v|)(ρ − ρ0)n, (2.3)

P2 = P2(ρ,|�v|) =
∞∑

n=1

μn(|�v|)(ρ − ρ0)n. (2.4)

Here β, D1, D2, and DT are all positive, and α < 0 in the
disordered phase and α > 0 in the ordered state (in mean field
theory).

The α and β terms simply make the local �v have a nonzero
magnitude v0 =

√
α
β

[19] in the ordered phase, where α > 0.

D1,T ,2 are the diffusion constants (or viscosities) reflecting the
tendency of a localized fluctuation in the velocities to spread
out because of the coupling between neighboring “birds.” The
�f term is a random driving force representing the noise. It is

assumed to be Gaussian with white noise correlations:

〈fi(�r,t)fj (�r ′,t ′)〉 = �δij δ
d (�r − �r ′)δ(t − t ′), (2.5)

where � is a constant, and i, j denote Cartesian components.
The pressure P tends, as in an equilibrium fluid, to maintain
the local number density ρ(�r) at its mean value ρ0, and δρ =
ρ − ρ0. The anisotropic pressure P2(ρ,|�v|) in Eq. (2.1) is only
allowed due to the nonequilibrium nature of the flock; in an
equilibrium fluid such a term is forbidden, since Pascal’s law
ensures that pressure is isotropic. In the nonequilibrium steady
state of a flock, no such constraint applies. In earlier work
[3–6], this term was ignored. Here I will show that this term
changes none of the predictions of the hydrodynamic theory.

The final equation (2.2) is just conservation of bird number:
the birds do not reproduce or die on the wing. The interesting
and novel results that arise when this constraint is relaxed by
allowing birth and death while the flock is moving have been
discussed elsewhere [13].

The hydrodynamic model embodied in Eqs. (2.1)–(2.3) and
(2.5) is equally valid in both the “disordered” (i.e., nonmoving)
(α < 0) and “ferromagnetically ordered” (i.e., moving) (α >

0) state. Here I am interested in the ferromagnetically ordered,
broken-symmetry phase which occurs for α > 0. In this state,
the velocity field can be written as

�v = v0x̂‖ + �δv = (v0 + δv‖)x̂‖ + �v⊥, (2.6)

where v0x̂‖ = 〈�v〉 is the spontaneous average value of �v in the
ordered phase, and the fluctuations δv‖ and �v⊥ of �v about this
mean velocity along and perpendicular to the direction of the

mean velocity are assumed to be small. Indeed, I will shortly
be expanding the equation of motion (2.1) in these quantities.
(I will also hereafter be using the subscripts ‖ and ⊥ to denote
components of any vector along and perpendicular to the mean
velocity 〈�v〉.) Taking v0 =

√
α
β

as discussed above [19], and

taking the dot product of both sides of Eq. (2.1) with �v itself,
I obtain
1
2 (∂t |�v|2 + (λ1 + 2λ3)(�v · �∇)|�v|2) + λ2( �∇ · �v)|�v|2

= (α − β|�v|2)|�v|2 − �v · �∇P − |�v|2�v · �∇P2 + D1�v · �∇( �∇ · �v)

+DT �v · ∇2�v + D2�v · ((�v · �∇)2�v) + �v · �f . (2.7)

In this hydrodynamic approach, we are interested only in
fluctuations �δv(�r,t) and δρ(�r,t) that vary slowly in space and
time. [Indeed, the hydrodynamic equations (2.1) and (2.2) are
only valid in this limit.] Hence, terms involving space and
time derivatives of �δv(�r,t) and δρ(�r,t) are always negligible,
in the hydrodynamic limit, compared to terms involving the
same number of powers of fields without any time or space
derivatives.

Furthermore, the fluctuations �δv(�r,t) and δρ(�r,t) can
themselves be shown to be small in the long-wavelength limit.
Hence, we need only keep terms in Eq. (2.7) up to linear order
in �δv(�r,t) and δρ(�r,t). The �v · �f term can likewise be dropped,
since it only leads to a term of order �v⊥f‖ in the �v⊥ equation of
motion, which is negligible (since �v⊥ is small) relative to the
�f⊥ term already there.

These observations can be used to eliminate many of the
terms in Eq. (2.7), and solve for the quantity

U ≡ α(ρ,|�v|) − β(ρ,|�v|)|�v|2; (2.8)

the solution is

U = λ2 �∇ · �v + �v · �∇P2 + σ1

v0
∂‖δρ + 1

2v0

(
∂t + γ2∂‖

)
δv‖ ,

(2.9)

where I have defined

γ2 ≡ (λ1 + 2λ3)v0. (2.10)

Inserting this expression (2.9) for U back into Eq. (2.1)
[where U appears by virtue of its definition (2.8)], I find that
P2 and λ2 cancel out of the �v equation of motion, leaving

∂t �v + λ1(�v · �∇)�v + λ3 �∇(|�v|2)

= σ1

v0
�v(∂‖δρ) − �∇P + D1 �∇( �∇ · �v) + DT ∇2�v

+D2(�v · �∇)2�v +
[

1

2v0
(∂t + γ2∂‖)δv‖

]
�v + �f . (2.11)

This can be made into an equation of motion for �v⊥ involving
only �v⊥(�r,t) and δρ(�r,t) by projecting perpendicular to the
direction of mean flock motion x̂‖ , and eliminating δv‖ using
Eq. (2.9) and the expansion

U ≈ −�1

(
δv‖ + |�v⊥|2

2v0

)
− �2δρ, (2.12)

where I have defined

�1 ≡ −
(

∂U

∂|�v|
)0

ρ

, �2 ≡ −
(

∂U

∂ρ

)0

|�v|
, (2.13)
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with, here and hereafter, super- or subscripts 0 denoting
functions of ρ and |�v| evaluated at ρ = ρ0 and |�v| = v0. I
have also used the expansion (2.6) for the velocity in terms of
the fluctuations δv‖ and �v⊥ to write

|�v| = v0 + δv‖ + |�v⊥|2
2v0

+ O(δv2
‖ ,|�v⊥|4), (2.14)

and kept only terms that an RG analysis shows to be relevant
in the long-wavelength limit. Inserting (2.12) into (2.9) gives

−�1

(
δv‖ + |�v⊥|2

2v0

)
− �2δρ

= λ2 �∇⊥ · �v⊥ + λ2∂‖δv‖ +
(
μ1v

2
0 + σ1

)
v0

∂‖δρ

+ 1

2v0
(∂t + γ2∂‖)δv‖ , (2.15)

where I have kept only linear terms on the right-hand side of
this equation, since the nonlinear terms are at least of order
derivatives of |�v⊥|2, and hence negligible, in the hydrodynamic
limit, relative to the |�v⊥|2 term explicitly displayed on the
left-hand side.

This equation can be solved iteratively for δv‖ in terms of �v⊥ ,
δρ, and its derivatives. To lowest (zeroth) order in derivatives,
δv‖ ≈ −�2

�1
δρ. Inserting this approximate expression for δv‖

into Eq. (2.15) everywhere δv‖ appears on the right-hand side
of that equation gives δv‖ to first order in derivatives:

δv‖ ≈ −�2

�1

(
δρ − 1

v0�1
∂tδρ + λ4∂‖δρ

�2

)

− λ2

�1

�∇⊥ · �v⊥ − |�v⊥|2
2v0

, (2.16)

where I have defined

λ4 ≡
(
μ1v

2
0 + σ1

)
v0

− �2

�1

(
λ2 + γ2

v0

)

=
(
μ1v

2
0 + σ1

)
v0

− �2

�1
(λ1 + λ2 + 2λ3). (2.17)

In deriving the second equality in (2.17), I’ve used the
definition (2.10) of γ2.

Inserting (2.6), (2.14), and (2.16) into the equation of
motion (2.11) for �v, and projecting that equation perpendicular
to the mean direction of flock motion x̂‖ gives, neglecting
“irrelevant” terms,

∂t �v⊥ + γ ∂‖ �v⊥ + λ0
1(�v⊥ · �∇⊥)�v⊥

= −g1δρ∂‖ �v⊥ − g2�v⊥∂‖δρ − c2
0

ρ0

�∇⊥δρ − g3 �∇⊥(δρ2)

+DB
�∇⊥( �∇⊥ · �v⊥ ) + DT ∇2

⊥ �v⊥ + D‖∂
2
‖ �v⊥

+ νt∂t
�∇⊥δρ + ν‖∂‖

�∇⊥δρ + �f⊥ (2.18)

where I have defined

DB ≡ D1 + 2v0λ
0
3λ

0
2

�1
, (2.19)

D‖ ≡ DT + D2v
2
0, (2.20)

γ ≡ λ0
1v0, (2.21)

g1 ≡ v0

(
∂λ1

∂ρ

)
0

− �2λ
0
1

�1
, (2.22)

g2 ≡ �2γ
0
2

�1v0
− σ1

v0
, (2.23)

g3 ≡ σ2 +
(

�2

�1

)2

λ0
3 −

(
∂λ3

∂ρ

)
0

�2v0

�1
, (2.24)

c2
0 ≡ ρ0σ1 − 2ρ0v0λ

0
3�2

�1
, (2.25)

νt ≡ −2�2λ
0
3

�2
1

, (2.26)

(2.26)

and

ν‖ ≡ 2v0λ
0
3λ

0
4

�1
+ �2D1

�1
. (2.27)

Using (2.6) and (2.14) in the equation of motion (2.2) for ρ

gives, again neglecting irrelevant terms,

∂tδρ + ρo
�∇⊥ · �v⊥ + w1 �∇⊥ · (�v⊥δρ) + v2∂‖δρ

= Dρ‖∂
2
‖ δρ + Dρ⊥∇2

⊥δρ + Dρv∂‖( �∇⊥ · �v⊥)

+ φ∂t∂‖δρ + w2∂‖ (δρ
2) + w3∂‖(|�v⊥|2), (2.28)

where I have defined

v2 ≡ v0 − ρ0�2

�1
, (2.29)

φ ≡ �2ρ0

v0�
2
1

, (2.30)

w2 ≡ �2

�1
, (2.31)

w3 ≡ ρ0

2v0
, (2.32)

Dρ‖ ≡ ρ0λ
0
4

�1
= ρ0

�1

((
μ1v

2
0 + σ1

)
v0

− �2

�1

(
λ0

1 + λ0
2 + 2λ0

3

))
,

(2.33)

and, last but by no means least,

Dρv ≡ λ0
2ρo

�1
. (2.34)

The parameter Dρ⊥ is actually zero at this point in the
calculation, but I have included it in Eq. (2.28) anyway, because
it is generated by the nonlinear terms under the renormalization
group, as I shall discuss in Sec. IV. Likewise, the parameter
w1 = 1, but I have also included it for convenience in dis-
cussing the renormalization group in Sec. IV. I will henceforth
focus my attention on the fluid, orientationally ordered state,
in which all of the diffusion constants Dρ‖ , Dρ⊥ , Dρv , DB , D‖ ,
and DT are positive.
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III. LINEARIZED THEORY OF THE FLUID,
ORIENTATIONALLY ORDERED PHASE

Expanding (2.18) and (2.28) to linear order in the small
fluctuations �v⊥ and δρ gives

∂t �v⊥ + γ ∂‖ �v⊥

= − c2
0

ρ0

�∇⊥δρ + DB
�∇⊥( �∇⊥ · �v⊥) + DT ∇2

⊥ �v⊥ + D‖∂
2
‖ �v⊥

+ νt∂t
�∇⊥δρ + ν‖∂‖

�∇⊥δρ + �f⊥ (3.1)

and

∂tδρ + ρo
�∇⊥ · �v⊥ + v2∂‖δρ

= Dρ‖∂
2
‖ δρ + Dρ⊥∇2

⊥δρ + Dρv∂‖( �∇⊥ · �v⊥) + φ∂t∂‖δρ.

(3.2)

These equations can now readily be solved for the mode
structure and correlations by Fourier transforming in space
and time; this gives

[−i(ω − γ q‖ ) + �L(�q)]vL

+
[
ic2

0

ρ0
q⊥ − νtq⊥ω − ν‖q⊥q‖

]
δρ = fL, (3.3)

[−i(ω − γ q‖ ) + �T (�q)]�vT = �fT , (3.4)

[iρ0q⊥ + Dρvq⊥q‖ ]vL

+ [−i(ω − v2q‖ ) + �ρ(�q) − φq‖ω]δρ = 0, (3.5)

where I’ve defined the wave-vector dependent longitudinal,
transverse, and ρ dampings �L,T ,ρ :

�L (�q) = DLq2
⊥ + D‖q

2
‖ , (3.6)

�T (�q) = DT q2
⊥ + D‖q

2
‖ , (3.7)

�ρ(�q) = Dρ‖q
2
‖ + Dρ⊥q2

⊥ , (3.8)

with DL ≡ DB + DT . I have also separated the velocity �v⊥
and the noise �f⊥ into components along and perpendicular to
the projection �q⊥ of �v perpendicular to 〈�v〉 via

vL ≡ �v⊥ · �q⊥/q⊥ , �vT ≡ �v⊥ − vL

�q⊥

q⊥
, (3.9)

with fL and �fT obtained from �f in the same way.
These equations differ from the corresponding equations

considered in [3–6] only in the νt,‖ terms in (3.3), and the Dρ‖
and Dρv terms in (3.5). These prove to lead only to minor
changes in the propagation direction dependence, but not the
scaling with wavelength, of the damping of the sound modes
found in [3–6], as I will now demonstrate.

I begin by determining the eigenfrequencies of the sys-
tem, defined in the usual way as the complex, wave-vector
dependent frequencies ω(�q) at which the Fourier transformed
hydrodynamic equations (3.3)–(3.5) admit nonzero solutions
for �vT , δρ, and vL when the noise �f is set to zero. Note
that �vT is decoupled from vL and ρ; this implies a pair
of “longitudinal” eigenmodes involving just the longitudinal
velocity vL and ρ, and an additional d − 2 “transverse”
mode associated with the transverse velocity �vT . The lon-
gitudinal modes are closely analogous to ordinary sound

waves in a simple fluid [20], while the transverse modes
are the analog of the diffusive shear modes in such a
fluid.

In the hydrodynamic limit (i.e., when wave number q → 0),
the longitudinal eigenfrequencies become a pair of under-
damped, propagating modes with complex eigenfrequencies

ω±(�q) = c±(θ�q)q − iε±(�q), (3.10)

where the direction-dependent sound speeds c±(θ�q) are
given by exactly the same expression as found in previous
work [3–6]:

c±(θ�q) =
(

γ + v2

2

)
cos(θ�q) ± c2(θ�q), (3.11)

where I have defined

c2(θ�q) ≡
√

(γ − v2)2 cos2(θ�q)

4
+ c2

0 sin2(θ�q), (3.12)

where θ�q is the angle between �q and the direction of flock
motion (i.e., the x‖ axis).

As mentioned earlier, the wave-vector dependent dampings
ε±(�q) of these propagating sound modes are altered slightly
from the form found in [3–6]. They remain of O(q2), as found
in previous work, but with a slightly modified dependence on
propagation direction q̂. More precisely, they are given by

ε± ≡ NUM

[2c±(θ�q) − (v2 + γ )cos(θ�q)]
(3.13)

with

NUM ≡ [�L(�q) + �ρ(�q) − φc±(θ�q) cos(θ�q)q2]c±(θ�q)

−v2�L(�q) cos(θ�q) − γ [�ρ(�q) − φc±(θ�q) cos(θ�q)q2]

× cos(θ�q) + c2
0

ρ0
Dρv

q‖q
2
⊥

q

− ρ0q
2
⊥ [νtc±(θ�q) + ν‖ cos(θ�q)], (3.14)

where I remind the reader that the wave-vector dependent
dampings �L,ρ are O(q2), and defined earlier in Eqs. (3.6)
and (3.8).

The transverse modes have the far simpler character of
anisotropic diffusion, with purely imaginary eigenfrequencies

ωT (�q) = −i�T (�q) (3.15)

with the wave-vector dependent damping �T also O(q2), and
defined earlier in Eq. (3.7).

I now turn to the correlation functions in this linearized
approximation. These are easily obtained by first solving the
linear algebraic equations (3.3)–(3.5) for the fields vL(�q,ω),
�vT (�q,ω), and ρ(�q,ω) in terms of the noises fL(�q,ω), and
�fT (�q,ω). These solutions are, of course, linear in those noises.

Hence, by correlating these solutions pairwise, one can obtain
any two field correlation function in terms of the correlations
(2.5) of �f . The resulting correlation function for the velocity
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is

Cij (�q,ω) ≡ 〈v⊥i(�q,ω)v⊥j (−�q, − ω)〉 = �(ω − v2q‖ )
2L⊥

ij

{[ω − c+(θ�q)q]2 + ε2+(�q)}{[ω − c−(θ�q)q]2 + ε2−(�q)} + �P ⊥
ij[

(ω − γ q‖)2 + �2
T (�q)

] ,

(3.16)

where I have defined the longitudinal (L) and transverse (T ) projection operators in the ⊥ plane,

L⊥
ij (q̂) ≡ q⊥iq⊥j

q2
⊥

, P ⊥
ij (q̂) ≡ δ⊥

ij − L⊥
ij (q̂), (3.17)

where δ⊥
ij is a Kronecker δ in the ⊥ plane (i.e., it is equal to the usual Kronecker δ if i �= ‖ �= j , and zero otherwise). These

operators project any vector first into the ⊥ plane, and then either along (L) or orthogonal to (P ) �q⊥ within the ⊥ plane.
The first term in Eq. (3.16) comes from the “longitudinal” component vL while the second comes from the d − 2 “transverse”

components of �v⊥ . Clearly, in d = 2, only the longitudinal component is present; the second (transverse) term in (3.16) vanishes
in d = 2.

The density autocorrelations obtained by the procedure described above are given, to leading order in wave vector and
frequency, by

Cρρ(�q,ω) ≡ 〈ρ(�q,ω)ρ(−�q, − ω)〉 = ρ0q
2
⊥�

{[ω − c+(θ�q)q]2 + ε2+(�q)}{[ω − c−(θ�q)q]2 + ε2−(�q)} . (3.18)

Both the velocity correlations (3.16) and the density correlations (3.18) have the same form, and the same scaling with frequency
and wave vector, as those reported in earlier work [3–6]. The only change from those earlier results is the slightly modified form
(3.13) and (3.14) of the sound dampings which appear in (3.16) and (3.18).

The same statement is true of the equal-time correlations of �v and ρ, which can be obtained in the usual way by integrating
the spatiotemporally Fourier transformed correlations (3.16) and (3.18) over all frequency ω. These equal time correlations
are important, because they determine the size of the velocity and density fluctuations. The size of the velocity fluctuations
determines whether or not long-ranged order can exist in these systems, while the size of the density fluctuations determines the
presence or absence of giant number fluctuations [6,21].

Integrating (3.16) over all ω and tracing over the Cartesian components i,j gives the equal-time correlation of �v:

〈|�v⊥ (�q,t)|2〉 = 1

2

(
�[c+(θ�q) − v2 cos(θ�q)]2

ε+(�q)[c+(θ�q) − c−(θ�q)]2
+ �[c−(θ�q) − v2 cos(θ�q)]2

ε−(�q)[c+(θ�q) − c−(θ�q)]2
+ (d − 2)�

�T (�q)

)
. (3.19)

Note that these scale like 1/q2 for all directions of wave
vector �q. This scaling is precisely the same as that found
in the linearized theory of [3–6]; only the precise form of the
dependence on the direction of �q is slightly changed by the
presence of the new linear terms νt , ν‖, and φ that I have found
here that were missed in the treatment of [3–6].

This 1/q2 scaling of �v⊥ fluctuations with q in Fourier space
implies that the real space fluctuations,

〈|�v⊥ (�r,t) |2〉 =
∫

ddq

(2π )d
〈|�v⊥ (�q,t)|2〉, (3.20)

diverge in the infrared (q → 0 or system size L → ∞) limit
in all spatial dimensions d � 2. This in turn implies that long-
ranged order [i.e., the existence of a nonzero 〈�v⊥ (�r,t)〉] is not
possible in d = 2, according to the linearized theory.

This result, which is simply the Mermin-Wagner [11]
theorem, is actually overturned by nonlinear effects, which
stabilize the long-ranged order in d = 2 [i.e., make the exis-
tence of a nonzero 〈�v(�r,t)〉 possible], as first noted by [3–6].
I shall show in Sec. IV that nonlinear effects still stabilize
long-ranged order in this way even when the additional non-
linearities I have found here, which were missed in [3–6], are
included.

The equal time density autocorrelations can likewise be
obtained by integrating Eq. (3.18) over frequency ω; this gives

〈|δρ(�q,t)|2〉 = 1

2

(
�ρ0q

2
⊥

[c+(θ�q) − c−(θ�q)]2q2

)

×
(

1

ε+(�q)
+ 1

ε−(�q)

)
. (3.21)

This also scales like 1/q2 for all directions of �q. This
divergence implies “giant number fluctuations” [22]: the RMS
fluctuations

√
〈δN2〉 of the number of particles within a large

region of the system scale like the mean number of particles
〈N〉 faster than

√〈N〉; specifically,
√

〈δN2〉 ∝ 〈N〉φ(d), with
φ(d) = 1/2 + 1/d in spatial dimension d. Note that this means
in particular that

√
〈δN2〉 ∝ 〈N〉 in d = 2.

Again, I emphasize that this is the prediction of the
linearized theory. It once again coincides with the results
of the linearized treatment of [3–6]. Both the prediction that
long-ranged orientational order is destroyed in d = 2, and the
value φ(d) = 1/2 + 1/d of the exponent φ(d) for d < 4 prove,
when nonlinear effects are taken into account, to be incorrect,
as first noted by [3]. I now turn to the treatment of those
nonlinear effects.
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IV. NONLINEAR EFFECTS AND THE ABSENCE
OF AN ARGUMENT FOR EXACT SCALING LAWS

One of the most interesting features of the hydrodynamic
theory of flocking is that nonlinearities and fluctuations
completely change their scaling behavior at long distances,
as first noted by [3–6]. In this section, I show that, while
this fundamental conclusion of [3–6] is correct, certain more
detailed predictions they make are invalidated by the additional
nonlinearities found here, which were missed by them.

Equally noteworthy are the nonlinear terms that are missing
from (2.18) and (2.28): all nonlinearities arising from the
anisotropic pressure P2 and the λ2 nonlinearity drop out of
(2.18) and (2.28). This in particular has the very important
consequence of saving the Mermin-Wagner theorem. This is
because the λ2 term is allowed even in equilibrium systems
[17]. The incorrect treatment in [3–6] suggested that this term
by itself could stabilize long-range order in d = 2. Given that
this term is allowed in equilibrium, this would imply that the
Mermin-Wagner theorem would fail for such an equilibrium
system. The correct treatment I have done here shows that
this is not the case: the λ2 term by itself cannot stabilize
long-ranged order in d = 2, since the nonlinearities associated
with it drop out of the long-wavelength description of the
ordered phase.

Returning now to the nonlinearities in (2.18) and (2.28)
that were missed by [3–6], I will now show that all of them
become relevant, in the renormalization group (RG) sense [23],
for spatial dimensions d � 4. To assess the effect of the new
nonlinear terms I have found here, I shall analyze Eqs. (2.18)
and (2.28) using the dynamical renormalization group [12].

The dynamical RG starts by averaging the equations of
motion over the short-wavelength fluctuations: i.e., those with
support in the “shell” of Fourier space b−1� � |�q| � �,
where � is an “ultraviolet cutoff,” and b is an arbitrary
rescaling factor. Then, one rescales lengths, time, δρ and �v⊥ in
Eqs. (2.18) and (2.28) according to �v⊥ = bχ �v ′

⊥ , δρ = bχδρ ′,
�r⊥ = b�r ′

⊥, r ′
‖ = bζ (r ′

‖)
′, and t = bzt ′ to restore the ultraviolet

cutoff to � [24]. This leads to a new pair of equations of motion
of the same form as (2.18) and (2.28), but with “renormalized”
values (denoted by primes below) of the parameters given by

D′
B,T = bz−2(DB,T + graphs), (4.1)

D′
‖,ρ‖ = bz−2ζ (D‖,ρ‖ + graphs), (4.2)

�′ = bz−ζ−2χ+1−d (� + graphs), (4.3)(
λ0

1

)′ = bz+χ−1
(
λ0

1 + graphs
)
, (4.4)

g′
1,2 = bz+χ−ζ (g1,2 + graphs), (4.5)

g′
3 = bz+χ−1(g3 + graphs), (4.6)

φ′ = bz+χ−1(φ + graphs), (4.7)

w′
1,2,3 = bz+χ−ζ (w1,2,3 + graphs), (4.8)

where “graphs” denotes contributions from integrating out the
short-wavelength degrees of freedom.

I have focused on the particular linear parameters DB,T,‖,ρ‖
and � since, as is clear from Eqs. (3.19) and (3.21), they

determine the size of the fluctuations [25] in the linearized
theory.

One proceeds by seeking fixed points of these recursion
relations. One simple fixed point is the linear fixed point, at
which all of the nonlinear coefficients λ0

1, g1,2,3, and w1,2,3

are zero. At such a fixed point, the graphical corrections
[denoted “graphs” in Eqs. (4.1)–(4.8)] vanish, since, without
nonlinearities, Fourier modes at different wave vectors and
frequencies do not interact. It is then straightforward to
determine from Eqs. (4.1)–(4.8) the values of the rescaling
exponents z, ζ , and χ that will keep DB,T,‖,ρ‖ and � [and,
hence, the size of the fluctuations) fixed: simply those that
make the exponents in (4.1)–(4.8)] vanish. That is, we must
choose [26]

z − 2 = 0 (linear fixed point) (4.9)

to keep DB and DT fixed,

z − 2ζ = 0 (linear fixed point), (4.10)

to keep D‖ and Dρ‖ fixed, and

z − ζ − 2χ + 1 − d = 0 (linear fixed point), (4.11)

to keep � fixed under the RG. The solutions to these three
conditions (4.9)–(4.11) are trivially found to be

z = 2 (linear fixed point), (4.12)

ζ = 1 (linear fixed point), (4.13)

and

χ = (2 − d)/2 (linear fixed point). (4.14)

Let us now consider the stability this linear fixed point
against the effect of the nonlinear terms λ0

1, g1,2,3, and w1,2,3.
Because, as mentioned earlier, I have chosen the rescaling
exponents so as to keep the magnitude of the fluctuations the
same on all length scales, a given nonlinearity has important
effects at long distances if it grows upon renormalization with
this choice (4.12)–(4.14) of the rescaling exponents z, ζ , and
χ provided that it grows upon renormalization; contrariwise,
if it gets smaller upon renormalization with this choice of the
rescaling exponents, it is unimportant at long distances [27].
Using the exponents (4.12)–(4.14) in the recursion relations
(4.15), (4.16), (4.6), (4.7), and (4.8), and ignoring the graphical
corrections, which are higher than linear order in λ0

1, g1,2,3,
and w1,2,3, I find that all seven of these nonlinearities have
identical renormalization group eigenvalues of (4 − d)/2 at
the linearized fixed point; that is,(

λ0
1

)′ = b(4−d)/2λ0
1, (4.15)

g′
1,2,3 = b(4−d)/2g1,2,3, (4.16)

w′
1,2,3 = b(4−d)/2w1,2,3. (4.17)

Thus, for d > 4, all of the nonlinearities flow to zero, and
so become unimportant, at long length and time scales. Hence,
the linearized theory is correct at long length and time scales,
for d > 4. For d < 4, however, all of these nonlinearities grow,
and the linear theory breaks down at sufficiently long length
and time scales.
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Both this analysis and its conclusion that nonlinear effects
invalidate the linear theory for d < 4 are almost identical
to those of [3–6]. However, whereas they found only four
nonlinearities (λ1,2, w1, and g3 in the notation I am using
here) that became relevant as d is decreased below d = 4, I
find seven such nonlinearities. More importantly, the vector
structure of some of the new nonlinearities differs from that of
those studied in [3–6] in crucial ways. In particular, all of the
nonlinearities considered in [3–6] could, in d = 2, be written
as total ⊥ derivatives. This implies that these nonlinearities
can only renormalize terms which themselves involved ⊥
derivatives (i.e., DB,T ); hence, all of the terms that did not
involve ⊥ derivatives (i.e., D‖,ρ‖,�) were incorrectly argued
in [3–6] to get no graphical corrections. This leads to the
incorrect conclusion that, in order to obtain a fixed point, one
had to choose the rescaling exponents z, ζ , and χ to make the
exponents in (4.2) and (4.3) vanish; i.e., that in d = 2,

z − 2ζ = 0, z − ζ − 2χ + 1 − d = z − ζ − 2χ − 1 = 0.

(4.18)

The earlier work of [3–6] went on to incorrectly argue
that there were no graphical corrections λ0

1 either, because
the equations of motion (2.18) and (2.28) have, in d = 2
and in the absence of the extra relevant nonlinearities g1,2

and w1,2,3 found here, an exact “pseudo-Galilean invariance”
symmetry [28]: they remain unchanged by a pseudo-Galilean
the transformation,

�r⊥ → �r⊥ − λ1�v1t, �v⊥ → �v⊥ + �v1, (4.19)

for arbitrary constant vector �v1 ⊥ x̂‖ . Note that if λ = 1,
this reduces to the familiar Galilean invariance in the x

direction. Since such an exact symmetry must continue to
hold upon renormalization, with the same value of λ1, λ1

cannot be graphically renormalized in the absence of the
extra relevant nonlinearities g1,2 and w1,2,3 found here. Re-
quiring that λ′

1 = λ1 in (4.15), and setting graphs = 0, implies
that

χ = 1 − z (4.20)

in d = 2. This and (4.18) form three independent equations
for the three unknown exponents χ , z, and ζ , whose solution
in d = 2 is

z = 6/5, (4.21)

ζ = 3/5, (4.22)

and

χ = −1/5, (4.23)

which are the exponents purported in [3–6] to be exact in
d = 2.

The presence of the extra nonlinearities g1,2,3 and w1,2,3

invalidates every essential ingredient of the above argument:
these nonlinearities are not total ⊥ derivatives, so one can
not argue that D‖,ρ‖ and � get no graphical corrections. This
invalidates the exact scaling relations (4.18), and makes it
impossible to obtain exact exponents in d = 2.

I have been unable to come up with alternative arguments
that give exact exponents in the presence of these additional

terms. Now, if these additional nonlinearities were irrelevant
in d = 2 under a full dynamical RG, then the exact exponents
of [3–6] would be correct in d = 2.

There is a precedent for this (that is, for terms that
appear relevant by simple power counting below some critical
dimension dc actually proving to be irrelevant once “graphical
corrections”—i.e., nonlinear fluctuation effects—are taken
into account). One example of this is the cubic symmetry
breaking interaction [29] in the O(n) model, which is relevant
by power counting at the Gaussian fixed point for d < 4,
but proves to be irrelevant, for sufficiently small n, at the
Wilson-Fisher fixed point that actually controls the transition
for d < 4, at least for ε ≡ 4 − d sufficiently small.

Unfortunately, doing a similar 4 − ε analysis of the rel-
evance of these new nonlinearities in the flocking problem
would tell us nothing about whether or not these terms are
relevant in d = 2, since 2 is far below the critical dimension
dc = 4 of the flocking problem. Hence, whether or not
the exact exponents predicted by [3–6] are correct remains
an open question. They could be; numerical experiments
[4–6,21,30,31] and some real experiments [32] suggest they
are, but we really do not know at this point.

Not all of the predictions of [3–6] become questionable in
the light of the existence of these new nonlinearities, however.
In particular, the claim that long-ranged orientational order
can exist even in d = 2 is unaffected. I know this because
the nonlinear terms clearly make positive contributions to
the damping coefficient corrections to the velocity diffusion
“constants” DB and DT are positive, and that they are
relevant in the RG sense, which means they must change
the scaling of the velocity fluctuations from that predicted
by the linearized theory. I know that they are relevant by
the following proof by contradiction: if all of the nonlinear
effects were irrelevant, then simple power counting would
suffice to determine their relevance. But simple power counting
says that all of the nonlinearities are relevant for d < dc = 4,
which contradicts the original assumption that they are all
irrelevant. Thus, the nonlinearites must change the scaling of
the velocity fluctuations. Since the effect of the nonlinearities
is to renormalize the velocity diffusion constants DB and DT

upwards, and since this tends to reduce velocity fluctuations,
the growth of velocity fluctuations with length scale must be
suppressed (more precisely, its scaling must be suppressed;
i.e., it must grow like a smaller power of length scale L) than
is predicted by the linearized version of the equations of motion
(2.18) and (2.28). But those linearized equations predict [3–6]
only logarithmic divergences of velocity fluctuations with
length scale. Hence, the real fluctuations, including nonlinear
effects, must be smaller than logarithmic by some power
of length scale [33], which means they must be finite as
L → ∞. This boundedness of velocity fluctuations means that
long-ranged order is possible in a two-dimensional flock, in
contrast to equilibrium systems with continuous symmetries.

Note that all of the troublesome nonlinearities that make it
impossible to determine exact exponents in d = 2 involve the
fluctuation δρ of the density ρ. Therefore, if these fluctuations
could somehow be “frozen out,” it would be possible to
determine exact exponents in d = 2.

There are a number of types of flocks in which precisely
such a freezing out of density fluctuations occurs. One class
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of such systems—flocks with birth and death—has been
treated elsewhere [13]; others, such as incompressible systems
[14] and systems with long-ranged interactions [15], will be
addressed in future work [16]. In all of these systems, exact
scaling exponents can be found in d = 2.

V. CONCLUSION

In conclusion, I have reanalyzed the hydrodynamic theory
of fluid, polar-ordered flocks. In addition to identifying certain
previously missed linear terms in the hydrodynamic equations
for such systems, which slightly modify the anisotropy, but
not the scaling, of the damping of sound modes in flocks, I
have also found that certain nonlinearities that are allowed

in equilibrium, and that were predicted by earlier work [3–6]
to stabilize long-ranged order in d = 2, in fact do not. Other
nonlinearities missed by earlier work could potentially change
the scaling exponents from those predicted earlier [3–6], but
it is also possible that they do not.
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finite. This leads unavoidably to the conclusion that long-ranged
order must be stable in d = 2.
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