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As a model for cell-to-cell communication in biological tissues, we construct repressor lattices by repeating a
regulatory three-node motif on a hexagonal structure. Local interactions can be unidirectional, where a node either
represses or activates a neighbor that does not communicate backwards. Alternatively, they can be bidirectional
where two neighboring nodes communicate with each other. In the unidirectional case, we perform stability
analyses for the transitions from stationary to oscillating states in lattices with different regulatory units. In the
bidirectional case, we investigate transitions from oscillating states to ordered patterns generated by local switches.
Finally, we show how such stable patterns in two-dimensional lattices can be generalized to three-dimensional

systems.
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I. INTRODUCTION

Biological systems are in general composed of many
interacting units. On the cellular level, proteins, ribonucleic
acid (RNA), small molecules, and genes interact through a
complex regulatory system. On the level of tissues, cells
interact with each other through gap junctions or through
diffusible or cell-surface bound signaling molecules. On the
organism level, even more complex interactions take place. It
is thus of fundamental importance to investigate how smaller
units of regulatory systems interact with each other [1].
Recently a way to couple regulatory units each consisting of
three nodes on a hexagonal lattice have been introduced [2],
as a generalization in space of the repressilator [3]. In the
latter model, three proteins repress each other by blocking
the associated genes. Depending on the parameters, such a
circuit can generate either a stationary state, where the protein
concentrations remain constant, or a dynamically varying
state where the concentrations oscillate as time progresses.
By introducing a constructed plasmid into E. coli, such
oscillations were also observed in a genetically manipulated
system [3]. Previously other papers have studied coupled
repressilators to investigate quorum sensing [4] and to describe
cell-to-cell communication [5]. Repressilator motifs placed on
a hexagonal lattice, where nodes now can be viewed as cells
in an interacting tissue, constitute an intriguing system where
the activity of each cell can oscillate out of phase with its
neighbors in a completely regular fashion [2]. Surprisingly,
such oscillating states can evolve dynamically unfrustrated
(in the sense explained in the next section) even in a tissue
of infinite size. This is particularly interesting in view of the
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fact that hexagonal ordering is often found in cells composing
tissues such as hepatic or retinal [6-8]. This happens especially
in planar tissues because of close packing of cells.

In many tissues, neighboring cells interact directly (jux-
tacrine signaling) through bidirected interactions (e.g., using
gap junctions or membrane-bound signaling molecules). In
these systems each cell can regulate its neighbors laterally.
The best studied model system of juxtacrine signaling is the
Delta-Notch system, which is present in many multicellular
organisms [9-12]. Using Delta-Notch signaling, cells express
a signal that can influence the gene expression pattern of
neighboring cells. This mechanism results in two distinct
differentiation pathways in the initially equivalent cells,
allowing formation of fine-grained patterns in large structures.

The example of Delta-Notch signaling inspired the study
of patterns in lateral inhibition models [13—17]. These models
can be viewed as simplified versions of the juxtacrine signaling
systems, in which the circuit inside each cell is reduced to
a single protein concentration, whose effect is to inhibit the
production of the same protein in neighboring cells. It has
been shown [15] that these models generically lead to regular
patterns where the expression activity in each cell can be up
or down, and on each row a repeated up-down-down pattern is
found, so that each cell with a high activity is surrounded by
silenced cells.

When the lateral inhibition is symmetric, oscillating states
are ruled out. Instead, the system effectively consists of
local switches where each cell will be either in an active
(high) or a silenced (low) state. Reference [18] studied how
such a tissue grows during cell divisions and migrations. In
general the tissue settles into ordered states where the silenced
and the active cells are arranged in regular patterns. Under
certain growth conditions, however, it was found that areas of
disordered patterns might appear [18].

In this paper, following the results of Refs. [2,18], we
perform a theoretical analysis of the repressor lattice. Fur-
thermore, we introduce regulating lattices where activators
and repressors alternate in an orderly fashion. Of course,
the claim of unidirectional feedback between similar cells in
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FIG. 1. (Color online) Unidirectional interaction: Scheme of the
directed interaction in a repressor lattice.

a tissue is rather unrealistic, and hence, we also take into
account bidirectional feedback in this paper. To this end,
we study a bidirectional repressor lattice with asymmetric
coupling between the cells, which leads to a transition between
oscillating and stationary states. Furthermore, since most of
the tissues naturally occur with a three-dimensional (3D)
arrangement of the constituent cells, we generalize the two-
dimensional (2D) repressor lattice in three dimensions and
discuss the possible patterns in the higher dimensions.

II. THE REPRESSOR LATTICE

In this section we briefly study the periodic repressor lattice
along the lines of the results obtained in Ref. [2]. We consider
a triangular lattice with directed interaction as in Fig. 1.
The variables x,, , represent concentrations or activities of
the regulatory proteins at coordinate (m,n) in the lattice. We
assume that the neighboring cells interact with each other in
accordance with the following set of dynamical equations:

d m,n
);t, =c—Yxpp+aFn; mmne{l2,....L}, (1)
where the interaction term Fj, is of the form
1 1 1 @
int —
1+ (xm+1n)h 1+ (xmn 1)" 1+ (xm 1n+1)h

and L is the periodicity of the lattice. Expression (2) assumes
that the effects of different inhibition of each cell are additive.
However, it is worth to remark that one can find similar
dynamics in the case of multiplicative interactions such as

1 1 1
() () ()

In both cases (2) and (3), the repression is modeled via
standard Michaelis-Menten terms. The parameters c, y, and
o, respectively, measure the constitutive production of the
proteins, the degradation rate, and the strength of the repression
by another protein. Further, K is the dissociation constant of
the binding complex whose cooperativity is measured by the

Fint = -3
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parameter &, the Hill coefficient. For the sake of simplicity,
we have assigned the same parameter values to all the nodes
in the lattice.

To investigate the dynamics of the system (1), we first search
for an homogeneous solution:

(yx* — )K" +x"). (@)

It is straightforward to show (e.g., by graphical methods)
that this solution exists and is unique. We then consider a
perturbation of this solution in form of a plane wave, x,, ,(t) =
x* + e exp[rt 4+ 2mi(k,,m + k,n)/L]. Plugging this solution
into (1) and neglecting terms of order higher than € yields the
following dispersion relation:

A= _df(kmvkn) -V (5)
with @ = ah K" x*"=D /(K" 4 x*")* and

X =X*Vm,n — 3aK" =

2rikm 2mikn 2mi(kn—km)
flhkn,ky)=e L 4+e L +e L (6)
It is convenient to rescale the wave numbers by defining km =
k,/L and k, = k,/L and by studying the function gk ky) =

ik 4 o= 2miky 4 p2miki—kn) - Since wave functions should
have the same periodicity of the lattice, the entries of the
vectors k,, and k, are integer numbers between 1 and L (both
numbers inclusive). This means that &, k, € (0,1] and &,,, k,,
should be of the form j/L with j being an integer.

We now look for the global minimum of the real part of
g. From Eq. (5), one can conclude that if such a minimum is
larger than —y /d, the homogeneous state is unstable, and the
eigenfunctions corresponding to the minimum eigenvalue are
the most unstable modes. The function g achieves its global
minima at g(1/3,2/3) = g(2/3,1/3) = —=3/2. It is easy to
show that these two eigenfunctions correspond to a complex
conjugate pair of eigenvalues, implying that the destabilization
of the homogeneous solution occurs via a Hopf bifurcation.
Moreover, both eigenfunction are invariant for rotations of
27 /3 and 47 /3; i.e., they preserve all the symmetries of the
lattice. The corresponding oscillations may be considered as
an extension to the whole lattice of the basic solution of the
repressilator circuit [3], with three different phases. Numerical
investigation (see Ref. [2]) shows that this solution remains
stable even far from the Hopf bifurcation; i.e., no further
symmetries are broken when « is increased.

The wave functions corresponding to the minimum of g,
however, cannot be obtained when L is not a multiple of
three because of the boundary conditions. In these cases we
have to search for global minima of the real part of g among
the allowed wave functions. In general, these functions are
not invariant under rotations of 27 /3 and 47/3, so that we
expect three different complex conjugate pairs of eigenvalues
to cause the Hopf bifurcation. Since there is a limited number
L x L of eigenfunctions, the minimum solutions for each
L may be found by exhaustive search. For L = 4, we have
six degenerate minima: (1/4, 2/4), (2/4, 1/4), (1/4, 3/4),
(3/4,1/4),(2/4,3/4),and (3/4,2/4). For L = 5, the solutions
are six: viz., (1/5, 3/5), (3/5, 1/5), (2/5, 3/5), (3/5, 2/5),
(2/5,4/5), and (4/5, 2/5).

The broken rotational symmetry for L, not a multiple of
three, influences the behavior of the system also far from the
Hopf bifurcation. Depending on L, increasing « farther may
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FIG. 2. (Color online) Dynamics of the system for L = 31. While
y =44,K =1,c=0.1, and h =4 are same for both the figures
above, @ = 3 and 15, respectively, for the upper and the lower panels.

result in the solutions breaking also the translational symmetry
of the lattice. For L =5, we also observed a transition to
chaos [2]. When L becomes larger and larger (without being a
multiple of three) the number of eigenfunctions increases, so
that it becomes easier to obtain a minimum of the real part of
g being very close to the absolute minimum.

However, the possibility of breaking other symmetries
persists, suggesting that it is not a peculiarity of small circuits.
We interpret this result as a frustration effect: Even if the
minimum is well approximated, the eigenfunction cannot be a
periodic repetition of the basic repressilator motif because
of the mismatch imposed by the boundary conditions [2].
Figure 2 shows an example with L = 31. The upper panel is
just past the Hopf bifurcation, where 31 distinct and equispaced
phases are observed through the lattice. The lower panel shows
the dynamics when « is increased well beyond the threshold
value at the Hopf bifurcation, so that translational symmetry is
broken and the phases become irregular. For higher values of
o, the lattice starts showing chaotic behavior which becomes
more and more prominent as « is raised further. That the lattice
exhibit chaos can be validated by the fact that the maximum
Lyapunov exponent is positive; e.g., for the case o = 20, it is
6.7 x 1074,

III. ACTIVATOR-ACTIVATOR-REPRESSOR LATTICES

Most biological oscillations are caused by a negative
feedback loop composed by both activators and repressors,
the simplest being a loop of two proteins A and B, such that
A activates B and B represses A. We explore in this section
the result of generalizing such a circuit to a lattice. We shall
find that the heterogeneity of the interactions leads to more
complex oscillations than in the case discussed in the previous
section, where all interactions are repressions.

We focus on the triangular lattice as shown in Fig. 3. This
lattice has directed interactions; however, this time not all the
interactions are repressing: Some are activating. We model
the concentration x,, , of, say, a protein at a (m,n) cell by the
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FIG. 3. (Color online) Scheme of the directed unidirectional
mixed type interaction in an activator-activator-repressor lattice.
Lines with arrowheads indicate activation.

following ordinary differential equation:
dxm,n
dt

where the interaction terms due to the activators and the
repressors are, respectively, of the form

X1\ Xmon—1 \ 1
(), ()
Xmtin \ 1 X1\’
L+ (22)" 1+ (%)
1
Fyl=———. 9
Xm—1,n+1 h
I+ ()
For simplicity, we fix 8 = «. Of course, « in this section should
not be confused with the « defined in earlier sections. As usual,
we search for an homogeneous solution: x,, , = x* Vm,n, that
satisfy

yx D — (e 4+ 200x*" + yK"x* — (c+ )K" =0.  (10)

=c—YXpn+aFY + BFY, (7)

®)

We consider perturbations of this solution of the form
Xmn(t) = x* 4+ e exp[At + 2mwi(k,,m + k,n)/L]. Substituting
into Eq. (7) yields the following dispersion relation:

h=afknmkn) =y + O(€), (11)
with a = Ol/’lKhx*(hfl)/(Kh + x*h)Z and

ik _ 2niky

f(km,kn)Ee L 4+e L —e

2ni(k,;‘—km) (12)
Note while there is a negative sign associated with the first
term in the right-hand side of Eq. (5), we have a positive sign
in the similar place in Eq. (11). This is also the reason why we
shall consider global maxima in what follows rather than the
global minima as has been done in the earlier section. For the
sake of convenience, we define

g(lgm’];n) = e27‘[i1€m +€72nii€" _ 627'[!'(/;”712,”)’ (13)

where k,,, and k,, are the components of the discrete wave vector
divided by L. It may be noted that, as shown in Fig. 4, the global
maxima of real part of g correspond to the points (1/6, 5/6) and
(5/6, 1/6). g(k,n,k,) = 3/2 at global maxima. These maxima
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FIG. 4. (Color online) Dispersion relation of the activator-
activator-repressor model.

are realized for L = 6 and its multiples. Depending on the
values of @ and y, the corresponding complex eigenvalues
can have positive real part resulting in destabilization of
the homogenous solution via Hopf bifurcation. One can
numerically solve the dynamical equation (7) for the parameter
values « =3.0,y =4.7,K = 1,c=0.1, and h =4 to find
oscillations just past the Hopf bifurcation. The resulting
oscillations have six distinct equispaced phases. One also
encounters Hopf bifurcation for L # 6 for carefully chosen
parameters. It is, however, worth emphasizing that for lattices
of size L x L, with L # 6 (or its multiples), there exists no
maxima of the kind mentioned above for L = 6. This is
simply because (k,,, k,) = (kn/L, k,/L), in definition (13),
can be only (1/6,5/6) or (5/6, 1/6) for the global maxima
in question; and so if L # 6N (N being a natural number),
one cannot find natural numbers k,, and k, which will satisfy
the required condition. Recall that k,, and k,, must be natural
numbers between 1 and L (both numbers inclusive) as x,, ,(¢)
must have the periodicity of the lattice.

With a view to comparing how heterogeneity of interaction
causes the system to behave differently than a pure repressor
lattice, in Fig. 5, we have plotted the total number of
distinct phases that an L x L activator-activator-repressor
lattice yields just past the Hopf bifurcation and compared
it with the total number of distinct phases that an L x L
repressor lattice yields just past the Hopf bifurcation. While
we have discussed the phases of oscillations in repressor lattice
in the preceding section, let us discuss briefly the number of
phases of oscillations vis-a-vis lattice size in the activator-
activator-repressor lattice. For L = 6N, number of distinct
phases is always six. Recall that the part of the argument
of cosine that is responsible for the different phases in
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FIG. 5. (Color online) Numerically validated number of different
phases as a function of L for the repressor-lattice (circles) and
the activator-activator-repressor lattice (stars). We were unable to
numerically find any limiting oscillatory state for the activator-
activator-repressor lattice when L = 3 and 4.
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the solutions x,, ,(t) = x* + € exp[At 4 2mi(k,,m + k,n)/L]
is ¢ = 2w (k,,m + k,n)/L. For all possible nodes (m,n), it is
easily seen that, within a factor of an integral multiple of 277, ¢
can have only six distinct values when L = 6N, which requires
(km/L, k,/L) to be equal to (1/6,5/6) or (5/6, 1/6) for the
most unstable mode.

When L # 6N, we know that there can be no maxima
for f(ky, k,) in Eq. (12). However, one can still find k,,, k,
such that A in Eq. (11) becomes positive; e.g., for L = 8, the
maximum value of f(k,, k,) = 1.4142 occurs degenerately
for (iéma ién) = (km/L, kn/L) = (1/8,7/8) [or (7/8,1/8)] and
also for (1/8, 6/8) [or (6/8, 1/8)]. One can readily see that ¢
(modulo 27) in this case will have eight distinct values. This
argument runs through for all other L, and one thus expects
that number of distinct phases to be equal to the lattice size L
except when L = 6N (N > 2) in which case the number of
distinct phases is always six owing to the existence of global
maxima for f(k,, k,). This is exactly what has been validated
in Fig. 5 generated from simulations.

However, one may note the absence of data points for L =
3,4 in Fig. 5. It is because we were unable to find the right set
of parameters. What we mean is the following: When one tries
to find a “right set of parameters” which will make A in Eq. (11)
positive, leading to oscillatory solutions via Hopf bifurcation,
one has to keep it in mind that this equation is coupled to
Eq. (10) (through &), which is not easy to solve analytically
for arbitrary values of the parameters. Probably the best one
can do is to try and scan the parameter space numerically in
search of parameters that make A positive. Unfortunately, even
after an extensive search, we could not find the right set of
parameters; moreover, we were unable to argue either absence
or presence of such a set of parameters analytically. Hence the
last word on whether the activator-activator-repressor lattice
has oscillatory solutions for L = 3, 4 is still to come.

IV. BIDIRECTIONAL INTERACTIONS

The repressor lattice of Ref. [2] would require a planar
array of cells in which each unit represses three other cells
and is repressed by other three. While directional cell-to-cell
communication has been observed, the assumption of the
perfect directional communication is quite strong and unlikely
to be the case in a real biological system. On the other hand, a
completely symmetric communication system would not show
any oscillatory dynamic behavior because the characteristic
matrix, found upon linearization, is real symmetric, allowing
only real eigenvalues.

A. Oscillations for asymmetrical interactions

In this subsection we examine intermediate situations of
nonperfect directed interactions. In particular, for each directed
interaction of the original model, having an intensity o, we
assume the opposite interaction also to occur, with an intensity
o, such that ap < «y, as represented in Fig. 6.

The equation describing the model is

dxm,n

ar =C— VX + o1 Fip + a2Fi,nt (14)
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FIG. 6. (Color online) Bidirectional interaction: Scheme of the
nonperfect or asymmetrical directed interaction. The thinner repress-
ing arrows represent the backward interactions.

with ] | 1
Fint = PR + Xmn—1 \ 1 + Xt \1
L+ (25)" T+ (3) 1+ (%)
(15)
/ 1 1 1
Fint = ot \ 1 + X1\ + Xyt \1°
L+ (22) 1+ ()" 1+ (2%=)
(16)

We would like to understand if the oscillations observed in
the unidirectional lattice are robust to the introduction of the
backward interaction.

It is easy to seek a homogeneous solution. In fact, the fixed
point condition turns out to be exactly the same as Eq. (4),
with o replaced by (ot + ). Performing a stability analysis
about this constant solution leads us to

A= _dlf(kmvkn) - de(kmvkn) -V (17)

when the bar denotes complex conjugation and the definition
of a@,, a, are parallel with those of the previous section. For
convenience, we separate the real and imaginary part of the
dispersion relation

A ={=y — (@ + a)Rel f (kn,kn)]}
+ i{(az — apIm[ f (k. kn)1}- (18)

Consider a directed system of the form (1) and a bidi-
rectional of the form (14), chosen such that o = (o) + o).
According to the analysis above, they will have the same
homogeneous solution. Moreover, the real part of their
eigenvalues will be the same, meaning that their homogenous
solutions will be either both stable or both unstable. Also in
the bidirectional case, the transition will occur via a Hopf
bifurcation. The only exception is the special case in which
one has perfect bidirectionality, o = o, where the stability
matrix is symmetric; and thus, all the eigenvalues are real, and
any oscillation is ruled out.

To check the dependence on the degree of asymmetry of
the interactions, we fix «; and «; in such a way that the
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FIG. 7. (Color online) Inverse of the period as a function of
the asymmetry |o; — ap|. The theoretical solid straight line is in
excellent agreement with the simulation’s results (blue circles).
Two time series are shown as examples. o) + ap = 2.99,y = 4.43,
K=1,c=0.1h=4.

system is just past the Hopf bifurcation and start varying their
difference oy — p. According to Hopf theorem, the period of
the oscillations at the transition point is 27 /|d; — d»|. This
means that the only effect of increasing the symmetry of the
interaction, with o} + «, fixed, is to increase the period of the
oscillations. In particular, the period diverges as the system
becomes more and more symmetric. In Fig. 7 we investigate
the system and find the aforementioned expected behavior.

B. Ordered patterns for symmetrical interactions

In this subsection we shall restrict ourselves to the case
of the symmetrical interactions meaning o = o, = o, not
to be confused with « introduced in earlier sections. It has
been shown in a very recent work [18], based on governing
equations involving multiplicative bidirectional repression
of Michaelis-Menten type, that very robust (immune to
mutations) ordered patterns are produced during tissue growth
via cell division or migration. Their work has been done for a
finite extent of tissue with “open” boundaries. Here we want

FIG. 8. The black cells have higher concentration than the white
cells in the high-low-low (HLL) pattern, while just the opposite
happens in the low-high-high (LHH) pattern. In the homogeneous (H)
pattern, the black and the white cells have the same concentrations.
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FIG. 9. (Color online) Plots with tags (a), (b), and (c) are for additive bidirectional interactions while plots (d), (e), and (f) are for
multiplicative bidirectional repressions. Plots (a), (b), and (c), respectively, show the maxima of the real parts of the eigenvalues (max[Re(})])
determining stability of the fixed points (x*, y*) corresponding to the LHH, the HLL, and the H patterns. The dashed green line in plot (b) is the
boundary between the HLL and the LHH patterns in the parameter space of ¢ and «. The HLL appearing adjacent to the green dashed line in
plot (b) should not be confused with the HLL patterns appearing in plot (a) for the same ¢ and « values. Appearance of the two different HLL
patterns for the same parameter values, as can be seen by comparing plots (a) and (b), indicates that while for some parameter values there
are three positive solutions (x* > 0,y* > 0) to Eq. (19), none of them corresponds to the LHH pattern. The cyan-white cross-striped regions
depict the ranges of parameter space where the corresponding fixed point solutions (and hence the related pattern whether stable or unstable)
are nonexistent. Plots (d), (e), and (f) should be understood along the line discussed above. For all plots, y =1, K = 1,and h = 3.

to focus on a 3 x 3 periodic bidirectionally interacting cells’
lattice, wherein oscillations are not possible owing to assumed
symmetry of interactions, and we want to study simple ordered
patterns that are possible for both the additive as well as the
multiplicative interactions.

One can easily figure out, by looking at the inherent
symmetry of the lattice shown in Fig. 6, that the simplest

possible pattern is the case when all the cells have the
same value for x,, ,. We shall call this pattern homogeneous
(H) for obvious reasons. The next stage in the hierarchy of
possible ordered patterns are the patterns wherein any cell can
have one of two different values for x,, ,. Assuming that there
are two such values for x,, ,, one being higher than the other,
the two possible patterns would be (1) the central cell in Fig. 6
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has the high value and is surrounded by six other cells having
the low values and (2) the central cell has the low value and is
surrounded by six other cells having the high values. We shall
call these two patterns high-low-low (HLL) and low-high-high
(LHH), respectively (see Fig. 8).

In order to mathematically study the HLL and the LHH
patterns, we let x* denote either one of the high value or
the low value after equilibrium is reached and y* denote
the other value. x* and y* will obey the following set
of equations for additive and multiplicative interactions,
respectively:

N 6o
cC—YyXx + N =0, (193)
1+ (%)
3a 3
c—yy + — + — =0,  (I19b)
I+(%)" 1+(%)

and

6
1
Cc — yx* + o [m} = 0, (203)
K

3 3
1 1
c—yy'+a - - =0. (20b)
[H(%)h] [H(%)h}

To render the above mathematical picture more clear, we may
remark that x* used above is a fixed point value of x,, , for the
central cell in Fig. 6. It is not easy to obtain closed analytical
form of solutions for x* and y* from Egs. (19) and (20), so
we proceed to study them numerically. We can always rescale
time ¢ and x,, , such that two parameters, y and K (say), are
unity, and we can redefine remaining parameters. Under the
constraint that x*,y* > 0, we find that in the most general
case, both sets of Egs. (19) and (20) have three simultaneous
solutions representing the H, the HLL, and the LHH patterns.
In order to determine which of these patterns are (linearly)
stable, we perform linear stability analysis on the governing
set of nine equations for nine variables for nine cells present
in a 3 x 3 periodic lattice. This procedure, as is well known,
yields nine eigenvalues (A) from the characteristic equation
obtained from the set of equations linearized about each of
the fixed points (x*,y*). A pattern is stable if the maximum
of the real parts of the eigenvalues (max[Re(})]) is less than
zero. In Fig. 9 we see that for additive interaction there is no
range of parameters, at least within the values experimented
with herein, for which the HLL pattern could be stable. On
the contrary, for the multiplicative bidirectional symmetrical
repression, only the H and the HLL patterns can be stable,
though not simultaneously. This is in agreement with what has
been reported in Ref. [18].

V. THREE-DIMENSIONAL LATTICES

An L x L bidirectional 2D lattice could be generalized to
L x L x L 3D lattice without much ado. However, consis-
tent generalization of the unidirectional repressor lattice (or
activator-activator-repressor lattice, for that matter) to three
dimensions is not possible, as has been explained in Fig. 10.
The easiest way to view the 3D bidirectional lattice is to think
of layers of cells stacked upon one another forming a close
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FIG. 10. A typical tetrahedron in the 3D lattice formed by three
cells in a particular layer and a fourth cell in the adjacent parallel
layer above. One can notice, as highlighted by the dashed lines, all the
triplets of adjacent cells in the tetrahedron cannot form repressilators
simultaneously. Thus, consistent generalization of the unidirectional
repressor lattice to three dimensions is not possible.

packing structure (tissue): either face-centered cubic structure
or hexagonal close-packed structure. Just as in the case of
the 2D lattices studied herein, one can find oscillations for
the case of the 3D (additive or multiplicative) bidirectional
lattice when the mutual repression between two adjacent
cells is asymmetrical. When the bidirectional repression is
symmetrical, one can find ordered patterns. However, while a
homogeneous solution akin to a 2D case is possible, the HLL
or the LHH patterns cannot be seen in a 3D lattice just because
their constructions are not geometrically possible. Instead, one
finds more involved nonhomogeneous stable ordered patterns
emerging, as shown in Fig. 11, wherein in the specific case of a
3 x 3 x 3 periodic lattice, seven different equilibrium concen-
trations are distributed among the cells in an ordered fashion.
For completeness, we write below the equation describing the
3D symmetrical bidirectional repressor lattice model:

dx;% =C—YXmnp+aFu; mn,pell2... L],
(21)
with
F 1 1 1
int = o - o
t 1+ (xm—lk/erl.p)h 1+ (Am;w)h 1+ (xm;%p)h
1 1 1
[e) [e) ]
1+ (xm}é.n,p)h 1+ (Xm.;»l.p)h 1+ (me.anl,p)h
1 1 1
(@) (@) (e)
1 _|_ (Xm.n.pfl )h 1 + (Xmﬂ;.pq )h 1 + (XnLnJ;(l,]Ifl )h
1 1 1
o (@)

O o
L ()

(22)

L () (e

Here x,,, stands for the concentration/activity of a
regulatory protein in cell at coordinate (m,n, p) in the lattice,
and the binary operation o is 4+ and X, respectively, for the
additively and the multiplicatively interacting models. Other
symbols are in their usual meanings.
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FIG. 11. (Color online) One can see the seven-state patterns in 3 x 3 x 3 periodic symmetrically bidirectional 3D repressor lattice with
(a) additive interactions and (b) multiplicative interactions. Seven colors have been used to mark seven different equilibrium concentrations
which the different cells settle for. To assist reading in black and white mode, numbers 1 to 7 have been used to tag the equilibrium concentrations.
Insets have been provided to zoom into seemingly indistinguishable curves. The schematic patterns, drawn on the top of each of panels (a) and
(b), have consistently numbered cells, and they show the seven-state pattern explicitly. Here we haveusedc = 0.1,y = l,a =2, K =1,h =3

[cf. Eq. 21)].

VI. CONCLUSIONS

We have comprehensively extended the study started in
Ref. [2] on repressor lattices. Such a lattice presents a simple
starting point to study regulation in the spatially extended
biological systems. We have primarily investigated (1) a
simple case where activators replace systematically some
of the repressors in the lattice, (2) cases when feedbacks
in repressor lattice are no longer unidirectional but instead
bidirectional, and (3) situations when such lattices are 3D.
We have presented analytical results, validated numerically,
showing how biological oscillations and ordered patterns
appear in such systems, and how they may depend on the type
of interaction between the cells. All our studies reported herein
have been done with periodic boundary conditions. For an
extended system with a finite boundary, we expect qualitatively
similar behavior in the bulk away from the boundaries.

The limit cycle oscillations of the concentration of the
regulatory protein in the cells of the lattice can be seen when
only unidirectional or asymmetrically bidirectional repressing
feedbacks are present between the neighboring cells, and
also when the lattice is the generalization of simple circuit
of a negative feedback loop composed by both activators
and repressors. As the strength of the nonlinear interaction
terms increase, the stable oscillations can in principle be-
come chaotic. When the bidirectional repressing feedbacks
in the corresponding lattice are symmetrical, stable patterns
emerge: In two-dimensional lattice with symmetric additive

bidirectional interaction between cell, a periodic low-high-
high pattern is favored, while multiplicative interactions favor
a periodic high-low-low pattern. In both the cases, a stable
homogeneous state, where all the cells in lattice have the same
concentration of the regulatory protein, is also a possibility
depending on the relative strength of the nonlinear interaction
terms. The 3D generalizations of such lattices give rise to
more complex stable patterns where the cells in the lattice
take one of the seven different equilibrium concentrations.
Extensive investigation on how mutations affect such patterns
and how ordered patterns appear during tissue growth, due
to the similar cell-to-cell interactions studied in this paper, is
reported elsewhere [18].

The results of this paper could provide the starting point
for a deeper understanding of the cell-to-cell interactions in
ordered tissues. In particular, an investigation of the stability
of the ordered patterns could give insights into how possible
defects and disorder in the patterns might lead to unhealthy
tissues. With our model it is possible to study such effects under
a large variation of the different parameters for the cell-to-cell
interactions.
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