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Effect of hydrogen bond interaction on protein phase transition
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We derive the grand partition function of protein chain by restricting dihedral angles to exist only in five distinct
states and assume that the dominant noncovalent potential is the hydrogen bond interaction. We investigate the
phase transition of protein secondary structures and the order of the transition through analyzing its heat capacity.
Our theory demonstrates the presence of α-β-coil structural phase transition in the protein polyalanine.
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I. INTRODUCTION

Various aspects of protein have been studied since many
decades ago. This includes analysis of biological functions,
computation of normal modes, study of protein-protein inter-
action, and most importantly the folding mechanism of protein
from a given sequence of amino acid residues. Protein is known
to consist of a chain of amino acid residues. Given a sequence
of amino acids, which is known as the primary structure, the
chain typically folds into one unique structure [1]. However,
protein misfolding has been observed in some cases which
causes diseases such as the prion disease (also known as
the mad cow disease) [2]. Protein misfolding has also been
observed in the β amyloid whose aggregation into neurotoxic
oligomers is believed to be the source of Alzheimer’s disease.
A detailed study of protein misfolding in terms of all atomic
models is currently limited by the available computational
resources. At the same time, models such as the Zimm-Bragg
[3] and Lifson-Roig [4] may be too simplistic to capture
certain details of the protein phase transition that arises during
protein misfolding. Recently, more advanced models, such as
Yakubovich et al. [5–7], Ding et al. [8], Hong-Lei et al. [9],
Yasar-Demir [10], Gibbs-DiMarzio [11], Leong et al. [12],
etc., have been developed that are able to predict additional
features of protein phase transition. In this paper, we shall
further develop our model in Ref. [12], which is based on
the Hamiltonian formulation. Our aim is to include additional
structural and configurational details into the model and see
how it will affect protein secondary structure phase transition
as a function of temperature.

The organization of our paper is as follows. We first
introduce our model and derive the canonical formalism of
the protein chain in Sec. II, where we describe the use of
the dihedral angles (φ and ψ) as generalized coordinates
instead of the Cartesian coordinates of the protein molecules.
Based on the Ramachandran plot [13], we consider dihedral
angles that correspond to five distinct protein states. A
combination of these sets of angles can lead to the following
protein structures: α helix, β sheet, β turns, and coil. In our
model, we assume that the hydrogen bond is the dominant
noncovalent interactive potential that stabilizes the formation
of these protein structures. This is a simplifying assumption
as we ignore many energy terms such as the stretching,
bending, torsion, as well as the van der Waals and electrostatic
interactions which are employed in more sophisticated models.

The advantage of this simplification is that it allows us to derive
the grand partition function of a protein chain in an analytical
way, which is shown in Sec. III of this paper. Although our
model is crude, it has allowed us to gain insights into the
statistical physics of protein phase transition, which will be
covered in Secs. IV and V. Finally, Sec. VI concludes our
paper.

II. CANONICAL FORMALISM OF PROTEIN CHAIN

In our mathematical model, we define the independent unit
of a protein chain as “crank,’ which connects the center of one
residue to the next. Each of these cranks consists of Cα , C, N,
O, H, and S (hard-sphere side chain) molecules (Fig. 1). We
assume the crank to be perfectly rigid, and the only degrees of
freedom among the cranks are given by pairs of dihedral angles
(φ and ψ). Such a description has been used in the CSAW
(conditioned self-avolding walk) model of protein folding
[14,15]. For a given n number of cranks, we denote the
position vector of each atom by Rj , with j = 1, . . . ,6n.
Furthermore, we let the dihedral angles φi = qi1 and ψi = qi2.
This allows us to define the notation qα , where α = {i,k}, with
i = 1, . . . ,n − 1 and k = 1,2. We are to treat Rj as a function
of qα .

Let p and q be the canonical position and momentum. The
Hamiltonian of our protein chain can be written as

H (p,q) = K(p,q) + U (q) + Ue, (1)

where K(p,q) is the kinetic energy of the molecules, U (q) is
the effective potential of the hydrogen bonds, and Ue is the
chemical potential of the hydrogen bonds in the protein chain.

According to Ref. [12], the total kinetic energy is given as
follows:

K (q,q̇) = 1

2

6n∑
j=1

mj Ṙ2
j = 1

2

∑
α,β

q̇α

⎛
⎝ 6n∑

j=1

mj

∂Rj

∂qα

· ∂Rj

∂qβ

⎞
⎠ q̇β

= 1

2
q̇T Mq̇, (2)

where the mass matrix is given by

Mαβ =
6n∑

j=1

mj

∂Rj

∂qα

· ∂Rj

∂qβ

. (3)

Note that M is a symmetric matrix, i.e., MT = M .
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FIG. 1. Upper panel illustrates one crank unit. Lower panel shows
the manner in which the cranks are connected to form the backbone of
the protein. “S” denotes the side chain molecule. It attaches to the Cα

atom which serves as the point of connection between the two cranks.

In our model, we assume that the hydrogen bond is the
dominant effective potential that stabilizes the secondary
structure within a protein chain. In the protein chain, hydrogen
bonds are formed between the N-H and C=O groups of
different residues [16,17]. We assume that a hydrogen bond
is formed when the distance between the H and O atoms is
2.0 ± 1.0 Å, and the bond angle between the N-H and C=O
is 180 ± 45◦ [16].

FIG. 2. (Color online) A seven crank polyalanine in α helix
conformation.

FIG. 3. (Color online) A seven crank polyalanine in β sheet
conformation.

Let bk be the kth hydrogen bond vector between the O atom
and the H atom in the equilibrium situation. On the other hand,
b′

k is the same vector when the configuration is displaced from
equilibrium. The effective potential of the hydrogen bonds can
be modeled as follows:

U = 1

2
qT (κ1D + κ2C)q, (4)

Dαβ =
∑

k

∣∣∣∣ b̂k · ∂b′
k

∂qα

∣∣∣∣
0

·
∣∣∣∣ b̂k · ∂b′

k

∂qβ

∣∣∣∣
0

, (5)

Cαβ =
∑

k

∣∣∣∣ b̂k × ∂b′
k

∂qα

∣∣∣∣
0

·
∣∣∣∣ b̂k × ∂b′

k

∂qβ

∣∣∣∣
0

, (6)

where b̂k = bk/|bk| is the unit vector of hydrogen bond at
equilibrium. The subscript 0 indicates that the evaluation is to
be performed at the equilibrium configuration. κ1 and κ2 are
the force constants associated with the stretching and bending
of the hydrogen bonds. We have let κ1 = 13 N/m and κ2 = 3
N/m [12].

The formation of a hydrogen bond carries a “chemical” po-
tential. Furthermore, the stability of each secondary structure is
determined by its configuration of hydrogen bonds. We assume
that the chemical potential of hydrogen bond associated with
the α helix and β sheet has different statistical weight. We

FIG. 4. The configuration of hydrogen bonds in the α helix.
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FIG. 5. The configuration of hydrogen bonds in the β sheet.

write the equation of chemical potential as follows:

Ue = NUe
h + NaU

e
a + NbU

e
b , (7)

where N gives the total number of hydrogen bonds, while
Na and Nb give the number of hydrogen bonds associated
with the α helix and β sheet, respectively. Note that Ue

h is
the chemical potential of one hydrogen bond. Ue

a and Ue
b

denotes the statistical weights of the chemical potential of
the hydrogen bond associated with the α helix and β sheet
structures, respectively.

In our coarse-grained model, we shall restrict the dihe-
dral angles to five distinct sets of angles. The selection is
made according to the Ramachandran plot, which indicates
regions in terms of dihedral angles where stable secondary
structures can form Ref. [13]. The selected angles or states are
{−57.4◦, −47.5◦}, {−139◦,135◦}, {315◦,110◦}, {105◦,330◦},
and {180◦,180◦}. Note that the last set of angles form the coil
structure. A combination of these angles leads to the formation
of α helix (Fig. 2), β sheet (Fig. 3), and β turn. A schematic
on the configuration of hydrogen bonds that give rise to the α

helix and β sheet is shown in Figs. 4 and 5, respectively.
The random coil does not have any hydrogen bond in its
structure.

III. PARTITION FUNCTION OF PROTEIN CHAIN

If a protein has n cranks, the restriction of the sets of
dihedral angles for each crank to five distinct states implies
that the chain can form into a total of 5n possible structures.
Let each structure be i, then the partition function of the ith
structure is given as follows:

Zi =
∫

exp
{−β · [

Ki(p) + Ui(q) + Ue
i

]}
d �p d �q, (8)

where β = 1/kBT , with kB the Boltzmann constant and T the
temperature. Note that from now on the subscript i means that
the value of the quantity it attaches to is to be determined via the
set of n dihedral angles or states which corresponds to the ith
structure. In Eq. (8), Ki is written to depend only on p because
the effective potential is found to be essentially independent
of the chain conformations [12]. Since q̇ = M−1p, Eq. (2) can
also take the following form:

Ki(p) = 1
2pT M−1

i p, (9)

with the mass matrix Mi independent of q.
Substituting Eqs. (4), (7), and (9) into Eq. (8), we obtain

Zi =
∫

exp

{
−β ·

[
1

2
pT M−1

i p + 1

2
qT (κ1Di + κ2Ci) q

+ (
NiU

e
h + NaiU

e
a + NbiU

e
b

) ]}
d �p d �q. (10)

After evaluating the integral in Eq. (10), we arrive at the
following expression for the partition function:

Zi = (2πkBT )n−1√
detM−1

i

(2πkBT )Ni√
detp (κ1Di + κ2Ci)

(2π )2(n−1)−2Ni e−βUe
i

= (2πkBT )n−1(
λ̄M

i

)2(n−1)

(2πkBT )Ni(
λ̄K

i

)2Ni
(2π )2(n−1)−2Ni

× e−(1/kBT )(NiU
e
h+NaiU

e
a +NbiU

e
b ), (11)

where (
λ̄M

i

)2(n−1) = (
ωM1

i ωM2
i ωM3

i . . . ω
M2(n−1)
i

)1/2
,

(12)(
λ̄K

i

)2Ni = (
ωK1

i ωK2
i ωK3

i . . . ω
K2Ni

i

)1/2
.

Note that ω
Mj

i and ω
kj

i are the j th eigenvalues of the matrices
M−1

i and (κ1Di + κ2Ci), respectively. Since Ni is always less
than n, zero eigenvalues are to be expected in the potential
matrix (κ1Di + κ2Ci). Thus, we have a “pseudodeterminant”
term detp( ) in Eq. (11) which takes in only the nonzero
eigenvalues.

By summing over the partition function Zi of each structure
i, we form the grand partition function of a protein chain as

FIG. 6. The average number of hydrogen
bonds in a seven crank polyalanine versus
temperature obtained from an ensemble of
57 configurations. The three lines are the
total number of hydrogen bonds (solid line),
number of hydrogen bonds associated with α

helix (dashed line), and number of hydrogen
bonds associated with β sheet (dotted line).
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follows:

Z =
5n∑

i=1

Zi

=
5n∑

i=1

{
(2πkBT )n−1(

λ̄M
i

)2(n−1)

(2πkBT )Ni(
λ̄K

i

)2Ni
(2π )2(n−1)−2Ni

× e−(1/kBT )(NiU
e
h+NaiU

e
a +NbiU

e
b )

}
. (13)

In lieu of the fact that the term (λ̄M
i )2(n−1) is large during

computation, each Zi is very small. It turns out that the value
of the grand partition function is approximately zero even after
performing the 5n summation. In order to avoid numerical
inaccuracies, we have rescaled Eq. (13) by λ̄

2(n−1)
M , with λ̄M =∑

i λ̄
M
i /2n, as follows:

Z = (2πkBT )n−1

λ̄
2(n−1)
M

5n∑
i=1

{
λ̄

2(n−1)
M(

λ̄M
i

)2(n−1)

(2πkBT )Ni(
λ̄K

i

)2Ni
(2π )2(n−1)−2Ni

× e−(1/kBT )(NiU
e
h+NaiU

e
a +NbiU

e
b )

}
. (14)

Note that the rescaling has no consequence on our investigation
of the statistical properties of the phase transition in the next
section since the term λ̄

2(n−1)
M will be canceled out during the

ensemble averaging operation.

IV. STATISTICAL PHYSICS OF PROTEIN
PHASE TRANSITION

We shall employ the grand partition function to calculate
the ensemble average of different statistical properties of a
protein chain. The first property that we investigate is the
average number of hydrogen bonds in the protein as a function
of temperature. This average number 〈N〉 is obtained from the

partition function in the following manner:

〈N〉 =
∑5n

i=1(NiZi)∑5n

i=1 Zi

. (15)

Note that Zi is given by Eq. (11). In the case of a small
protein, 〈N〉 gives a good estimate on the type of its secondary
structure.

In order to proceed, we require the relative weight of Ue
a

and Ue
b . Let us assume that Ue

a = Ue
h and Ue

b = 2Ue
h , which is

reasonable according to Refs. [18,19]. With this assumption,
we have computed the number of hydrogen bonds against
temperature for a seven crank polyalanine, which is plotted in
Fig. 6. From Fig. 6, we observe that the number of hydrogen
bonds decreases as temperature increases. On further analysis,
we found that 〈N〉 in Fig. 6 is the sum of the hydrogen bonds
of the α helical and β sheet structures. At low temperature,
we observe four hydrogen bonds and the protein is an α

helix. When the temperature is increased to a critical value,
a transition occurs with the protein containing a mixture of
α helical and β sheet structures, before turning into a full β

sheet. As this happens, the number of hydrogen bonds reduces.
A further increase in temperature eventually leads to the next
critical value at which the β sheet denatures into a random coil.

The secondary structure transition that we have described
possesses the characteristic of a first-order phase transition. In
first-order phase transition, a sharp peak in the heat capacity
is to be expected against a change in temperature. This results
from a sudden change in the internal energy of the system [17].
Thus, in order to establish the nature of the transitions observed
in Fig. 6, we compute the ensemble average of our second
property of interest: the heat capacity of the protein polyalanine
as a function of temperature and we then observe the possible
presence of sharp peaks.

The definition of the heat capacity is given as follows:

C(T ) = kBT
∂2T lnZ

∂T 2
. (16)

By using Eq. (14), the heat capacity of our model can be
expressed in the following manner:

C(T ) = kBT

[
2

Z

∂Z

∂T
− T

Z2

(
∂Z

∂T

)2

+ T

Z

∂2Z

∂T 2

]
= kBT

{
2

(2πkT )n−1A
[(n − 1)(2πkBT )n−2(2πkB)A + (2πkBT )n−1B]

− T

(2πkBT )2(n−1)A2
[(n − 1)(2πkBT )n−2(2πkB)A + (2πkBT )n−1B]2

+ T

(2πkBT )n−1A
[(n − 1)(n − 2)(2πkBT )n−3(2πkB)2A + 2(n − 1)(2πkBT )n−2(2πkB)B + (2πkBT )n−1C]

}
, (17)

where

A =
5n∑

i=1

{
λ̄

2(n−1)
M(

λ̄M
i

)2(n−1)

(2πkBT )Ni(
λ̄K

i

)2Ni
(2π )2(n−1)−2Ni e−Ue

i /kBT

}
, (18)

B =
5n∑

i=1

{
λ̄

2(n−1)
M (2π )2(n−1)−2Ni(
λ̄M

i

)2(n−1)(
λ̄K

i

)2Ni

[
Ni(2πkBT )Ni−1(2πkB)e−Ue

i /kBT + (2πkBT )Ni e−Ue
i kBT

(
− Ue

i

kBT 2

)] }
, (19)
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C =
5n∑

i=1

{
λ̄

2(n−1)
M (2π )2(n−1)−2Ni(
λ̄M

i

)2(n−1)(
λ̄K

i

)2Ni
e−Ue

i kBT

[
Ni(Ni − 1)(2πkBT )Ni−2(2πkB)2 + 2Ni(2πkBT )Ni−1(2πkB)

(
− Ue

i

kBT 2

)

+ (2πkBT )Ni

( [
− Ue

i

kBT 2

]2

+ 2Ue
i

kBT 3

)]}
. (20)

We plot heat capacity against temperature in Fig. 7, where
we observe the occurrence of two peaks which confirm
the presence of two first-order phase transitions. The first
peak represents the transition from α helix to β sheet at a
temperature of around 300 K. The second peak arises from
the transition from β sheet to random coil at a temperature of
around 950 K.

In summary, our results as displayed in Figs. 6 and 7
illustrate that the physics of protein phase transitions is
captured by the grand partition function Z. The results in
these figures imply two important facts: (1) the network of
hydrogen bonds stabilizes the protein secondary structure, and
(2) the hydrogen bond loses its hold on the structure when the
temperature reaches a critical value, and as this happens a new
secondary structure appears.

With Z, we can explore various aspects of the protein
dynamics through its statistical physics, and this makes our
theory more comprehensive than the classical two-state models
[3,4]. Our theory differs from others that also take a partition
function approach, such as theories due to Zimm-Bragg,
Lifson-Roig, and Lei et al. In these theories, the residue of
a protein is assigned a state from a discrete set, and each state
is given a statistical weight. In our model, we assign five states
to each crank unit, but in the form of five distinct sets of
dihedral angles. Furthermore, instead of assigning a different
statistical weight to each state, we assign the statistical weight
based on the type of the hydrogen bond, i.e., depending on
whether the hydrogen bond is associated with the α helix or
the β sheet. Our approach has the advantage of being less
restrictive because a residue can adopt more than just the pairs
of dihedral angles that form a helix, sheet, or coil. However, it
requires greater computational power and memory due to the
need to sum through a larger number of configurations during
the calculation of the grand partition function of the protein
chain. This limitation has essentially restricted our study to at

most seven cranks with a maximum of five distinct states for
each crank.

Comparing against our earlier results in Ref. [12] where the
α-β and the β-coil transition temperatures are 475 and 600 K,
respectively, we observe that the α-β transition temperature
has lowered to 300 K while the β-coil transition temperature
has increased to 950 K. This results from our assumption in
this paper that the statistical weighting of the hydrogen bonds
in the β sheet is greater than that in the α helix. With the
hydrogen bonds being relatively more stable in the β sheet
than in the α helix, we anticipate the β sheet to form at a
lower temperature than before. Furthermore, the increased
stability of the hydrogen bonds in the β sheet implies that
a higher temperature is needed to break all its hydrogen
bonds and converts it into a random coil. In fact, the α-β
transition temperature of 300 K that we have obtained is
rather close to the 315 K predicted by Ding et al. [8] through
discrete molecular dynamics simulation, although our β-coil
transition temperature of 950 K is vastly different from the
327 K obtained by them. Figure 6 also indicates that the
helix-coil transition temperature occurs at about 300 K when
the number of hydrogen bonds from the α helix drops to zero.
A comparison of this temperature against the predictions made
by the models of Yasar and Demir [10] and Lee et al. [20] has
further validated our approach to be a reliable concept.

We have plotted in Fig. 8 the Helmholtz free energy of the
seven crank polyalanine in the α helix, the β sheet, and the
random coil configuration as a function of temperature (see
also Fig. 8 of Ref. [12]). In the calculation of the Helmholtz
free energy (which is based on the approach in Ref. [12]),
we have considered the different statistical weights for the
hydrogen bonds in the α helix and in the β sheet structure as
introduced in this section. From Fig. 8, we observe an α-β
transition temperature of about 400 K and a β-coil transition
temperature of 1900 K. This is to be expected based on the

FIG. 7. The heat capacity of a seven crank
polyalanine versus temperature obtained from an
ensemble of 57 configurations. The first phase
transition occurs at a temperature around 300 K
with the α helix transforming into a β sheet. The
second phase transition occurs at around 950 K
with the β sheet turning into a random coil.
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FIG. 8. Free energy curves of α helix, β

sheet, and random coil for a seven crank polyala-
nine. Note that the intersection of the curves
indicate phase transition. The transition tem-
peratures are Tα-β = 400 K, Tα-coil = 1100 K,
and Tβ-coil = 1900 K.

argument above with the β sheet being relatively more stable
than the α helix.

V. FURTHER ANALYSIS AND DISCUSSION
ON PROTEIN PHASE TRANSITION

By assigning five states to each crank such that each of
the 5n configurations is associated to the partition function
Zi as given by Eq. (8), the grand partition function Z
describes a free energy landscape consisting of each of these
5n configurations as local minimum. In other words, we have
assumed that the 5n structures are relatively more stable
compared to their neighboring structures in the free energy
space in lieu of our approach in evaluating the Gaussian
integral given by Eq. (10) based on the stationary phase
approximation. While we expect our assumption to remain true
as n increases under the above scenario (which is validated
for a two-state polypeptide below), the situation would be
different if we were to increase the number of states per crank
or to consider a sequence dependent protein structure, since a
configuration under these circumstances may not constitute a
local minimum. Nonetheless, the inclusion of additional states
or information per crank may lead to new stable structural
phases that emerge out of the extra statistical information
hidden in the grand partition function.

Let us now employ the above argument to explain the results
obtained in Fig. 8, where we have come to understand that a
single state of either α helix, β sheet, or random coil has
been allocated to each crank. This implies the presence of a
single minimum for the free energy landscape, and the curves
in Fig. 8 plot the Helmholtz free energy of the minimum
for the corresponding conformation. In order to determine
the stable configuration at a particular temperature, the three

separate minimum free energies are then compared at the
given temperature with the configuration having the lowest
free energy being chosen as the stable conformation. This
approach differs from that of the grand partition function where
the statistical information of all the possible configurations
is contained within the function itself. The presence of
more information in the grand partition function approach
leads to a more comprehensive treatment of phase transition.
Nevertheless, both approaches reach the same conclusion of
α helix being formed at low temperature, followed by β sheet
being the stable structure as temperature increases, and the
polypeptide becomes denatured at high temperature.

At the moment, our ability to develop further analysis on our
theory using a longer polypeptide with more than five states per
crank is severely limited by the available memory resources,
even though our computation is performed on two compute
nodes with 8 core and 16 GB RAM per node. As a result, in
order to investigate the impact of a larger number of cranks, we
have to reduce the number of states per crank. In this respect,
we have considered a two-state polypeptide, i.e., a crank with
dihedral angles {−57.4◦, −47.5◦} and {180◦,180◦}, which
correspond to the α helical and the random coil configurations,
respectively. For n cranks, we thus anticipate a free energy
landscape with 2n local minima. Our results show a persistent
α helix to random coil phase transition at the same critical
temperature for different n. This confirms our expectation that
the phase transition in a polypeptide is independent of its size.
We observe that the energies of the local minimum of the stable
phases remain significant as n increases. Figure 9 illustrates the
α-coil transition of the two-state polypeptide when the length
ranges from n = 7 to n = 15. The figure clearly shows that
the first order phase transition becomes more prominent as n

becomes larger. To summarize, we observe that the reduction

FIG. 9. The average number of hydrogen
bonds versus temperature for different lengths
of a two-state polypeptide.
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FIG. 10. Results for the three-state polypeptide obtained from an ensemble of 37 configurations: (a) and (b) show the plots of average
number of hydrogen bonds versus temperature; (c) and (d) show the corresponding plots of heat capacity versus temperature. In (b), we observe
the presence of an additional hydrogen bond at lower temperature, which is associated with neither the α helical nor β sheet structures. It
corresponds to the first peak in the heat capacity plot, while the second peak represents the β-coil phase transition.

FIG. 11. Results for the four-state polypeptide obtained from an ensemble of 47 configurations: (a) and (b) show the plots of average number
of hydrogen bonds versus temperature; (c) and (d) show the corresponding plots of heat capacity versus temperature. While (a) is analogous to
Fig. 10(b) depicting a β-coil phase transition, (b) illustrates the occurrence of the α-β-coil phase transition similar to Fig. 6.
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FIG. 12. (a)–(e) Phase transition of a seven-crank polyalanine at different Ue
b to Ue

a ratios, from γ = 1.0 to γ = 1.8; their corresponding
plots of heat capacity are displayed in (f)–(j).
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FIG. 13. (a)–(c) Phase transition of a seven-crank polyalanine at different Ue
b to Ue

a ratios, from γ = 2.2 to γ = 2.6; their corresponding
plots of heat capacity are displayed in (d)–(f).

of the number of states per crank from five to two has led to the
disappearance of the phase of stable β sheet. In other words,
the phase transition from α helix to β sheet, and from β sheet
to random coil becomes untenable.

We can continue to investigate the role of the total number
of distinct states on protein phase transition by considering
the case with three and four states per crank. By adding the
dihedral angle {315◦,110◦} to the set {−57.4◦, −47.5◦} and
{180◦,180◦} to form a three-state seven-crank polypeptide,
we notice the occurrence of an α-coil phase transition as the
two-state polypeptide that we have discussed above, albeit with
a reduced critical temperature of about 687 K [see Figs. 10(a)
and 10(c)]. However, if we were to use the set {−139◦,135◦},
{315◦,110◦}, and {105◦,330◦} instead, we observe two transi-
tions. The first transition at 282 K is not a secondary structure
phase transition since it involves the denaturing of a single
hydrogen bond not associated with any secondary structure.
On the other hand, the second transition at 1100 K is a β-coil
phase transition. The results are shown in Figs. 10(b) and 10(d).
Similar transition scenarios occur when we add the dihedral

angle {180◦,180◦} to the latter set of angles to form a four-state
polypeptide. We again detect a first-order phase transition
from the β sheet to the random coil, although it now arises
at a lower critical temperature of 1002 K [see Figs. 11(a) and
11(c)]. If we were to use the set of angles {−57.4◦, −47.5◦},
{−139◦,135◦}, {315◦,110◦}, and {105◦,330◦} instead to form
a four-state polypeptide, we observe both the α-β and β-coil
phase transition as our original five-state polypeptide, with
the transition temperatures now happening at 283 and 990 K,
respectively [see Figs. 11(b) and 11(d)]. These results illustrate
that while the number of states per crank is small, the selection
of dihedral angles can have important consequences on the
emergence of the type of stable secondary structures, which
is being revealed as the temperature changes. Conversely,
we believe that new stable structural phases and new phase
transition scenarios should arise if we were to increase the
number of states per crank beyond 5.

While we have let Ue
b = γUe

a with γ = 2.0 in the evaluation
of our results in Figs. 6 and 7 it is interesting to explore the
effect of varying the relative statistical weight between Ue

b
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and Ue
a as represented by γ on the structural phase transition

(see Figs. 12 and 13). When γ = 1.0 and 1.2, we observe a
transition from α helix to random coil as temperature increases.
A stable phase of β sheet starts to appear only at γ = 1.4,
and becomes apparent after γ = 1.6. More specifically, we
observe two phase transitions from α helix to β sheet, and
then from β sheet to random coil, at γ = 1.6, 1.8, 2.0, and 2.2.
Subsequently, at γ = 2.4, we observe the unexpected presence
of three stable phases: a phase with four hydrogen bonds
(α helix); a phase with three hydrogen bonds (a mixture
of α helix and β sheet); a phase with two hydrogen bonds
(β sheet); and a phase with no hydrogen bond (coil). In fact, the
new phase of a mixture of α helix and β sheet begins to emerge
at γ = 2.2 according to our heat capacity calculation. When γ

is further increased to 2.6, the phase of α helix disappears, and
phase transition now occurs between the three phases of the
mixture of α helix and β sheet, the β sheet, and the random
coil. These outcomes can be understood to result from the
progressive enhancement in stability of the β sheet structure
as the weight of hydrogen bond energy associated to the β

sheet becomes relatively larger than that associated to the α

helix. Finally, it is important to note that all the transitions
observed are first-order phase transitions based on the results
of heat capacity (see Figs. 12 and 13).

VI. CONCLUSION

In this paper, we have investigated into the mechanism
of protein phase transition by means of the Hamiltonian
formalism, which allows us to construct the grand partition
function of the protein chain. In our model, we have assumed
that the dominant noncovalent potential is due to the hydrogen
bond interaction. In addition, we have set different statistical
weights for the strength of the hydrogen bonds within the α

helix and the β sheet structure. By considering five distinct
states for the dihedral angles, we have computed the average
number of hydrogen bonds and the heat capacity of the protein
polyalanine using the grand partition function at different
temperatures. We observe a sudden change in the average
number of hydrogen bonds at two critical temperatures, 300
and 950 K, signifying an α-β and a β-coil phase transition.
Our results based on the heat capacity confirm that these two
transitions are first-order phase transitions.

ACKNOWLEDGMENTS

We would like to thank NTU High Performance Computing
Centre for providing the computational resources. This work
was partially supported by MOE AcRF Tier 1 Grant No.
RG52/08.

[1] S. B. Prusiner, Proc. Natl. Acad. Sci. USA 95, 13363
(1998).

[2] T. E. Creighton, Protein Folding (W. H. Freeman & Co.,
New York, 1992).

[3] B. H. Zimm and J. K. Bragg, J. Chem. Phys. 31, 526 (1959).
[4] S. Lifson and A. Roig, J. Chem. Phys. 34, 1963 (1961).
[5] A. V. Yakubovich, I. A. Solov’yov, A. V. Solov’yov, and

W. Greiner, Eur. Phys. J. D 40, 363 (2006).
[6] A. V. Yakubovich, I. A. Solov’yov, A. V. Solov’yov, and

W. Greiner, Eur. Phys. J. D 46, 215 (2008).
[7] I. A. Solov’yov, A. V. Yakubovich, A. V. Solov’yov, and

W. Greiner, Eur. Phys. J. D 46, 227 (2008).
[8] F. Ding, J. M. Borreguero, S. V. Buldyrey, H. E. Stanley, and

N. V. Dokholyan, Proteins 53, 220 (2003).
[9] L. Hong and J. Lei, Phys. Rev. E 78, 051904 (2008).

[10] F. Yasar and K. Demir, Comput. Phys. Commun. 175, 604
(2006).

[11] J. H. Gibbs and E. A. DiMarzio, J. Chem. Phys. 30, 271 (1959).
[12] H. W. Leong, L. Y. Chew, and K. Huang, Phys. Rev. E 82,

011915 (2010).
[13] G. N. Ramachandran, C. Ramakrishnan, and V. Sasisekharan,

J. Mol. Biol. 7, 95 (1963).
[14] K. Huang, Biophys. Rev. Lett. 3, 1 (2008).
[15] K. Huang, Biophys. Rev. Lett. 2, 139 (2007).
[16] A. Karshiko, Non-Covalent Interactions in Proteins (Imperial

College Press, London, 2006).
[17] A. V. Finkelstein and O. B. Ptitsyn, Protein Physics: A Course

of Lectures (Academic, London, 2002).
[18] N. Y. Chen, C. Y. Mou, and Z. Y. Su, Phys. Rev. Lett. 96, 078103

(2006).
[19] B. C. Goh, H. W. Leong, X. Qu, and L. Y. Chew, Eur. Phys. J. E

35, 27 (2012).
[20] M. S. Lee, G. G. Wood, and D. J. Jacobs, J. Phys.: Condens.

Matter 16, S5035 (2004).

031902-10

http://dx.doi.org/10.1073/pnas.95.23.13363
http://dx.doi.org/10.1073/pnas.95.23.13363
http://dx.doi.org/10.1063/1.1730390
http://dx.doi.org/10.1063/1.1731802
http://dx.doi.org/10.1140/epjd/e2006-00241-9
http://dx.doi.org/10.1140/epjd/e2007-00328-9
http://dx.doi.org/10.1140/epjd/e2007-00327-x
http://dx.doi.org/10.1002/prot.10468
http://dx.doi.org/10.1103/PhysRevE.78.051904
http://dx.doi.org/10.1016/j.cpc.2006.07.008
http://dx.doi.org/10.1016/j.cpc.2006.07.008
http://dx.doi.org/10.1063/1.1729886
http://dx.doi.org/10.1103/PhysRevE.82.011915
http://dx.doi.org/10.1103/PhysRevE.82.011915
http://dx.doi.org/10.1016/S0022-2836(63)80023-6
http://dx.doi.org/10.1142/S1793048008000599
http://dx.doi.org/10.1142/S1793048007000386
http://dx.doi.org/10.1103/PhysRevLett.96.078103
http://dx.doi.org/10.1103/PhysRevLett.96.078103
http://dx.doi.org/10.1140/epje/i2012-12027-8
http://dx.doi.org/10.1140/epje/i2012-12027-8
http://dx.doi.org/10.1088/0953-8984/16/44/001
http://dx.doi.org/10.1088/0953-8984/16/44/001



