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Free-energy calculations along a high-dimensional fragmented path with constrained dynamics
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Free-energy calculations for high-dimensional systems, such as peptides or proteins, always suffer from a
serious sampling problem in a huge conformational space. For such systems, path-based free-energy methods,
such as thermodynamic integration or free-energy perturbation, are good choices. However, both of them need
sufficient sampling along a predefined transition path, which can only be controlled using restrained or constrained
dynamics. Constrained simulations produce more reasonable free-energy profiles than restrained simulations.
But calculations of standard constrained dynamics require an explicit expression of reaction coordinates as a
function of Cartesian coordinates of all related atoms, which may be difficult to find for the complex transition
of biomolecules. In this paper, we propose a practical solution: (1) We use restrained dynamics to define an
optimized transition path, divide it into small fragments, and define a virtual reaction coordinate to denote
a position along the path. (2) We use constrained dynamics to perform a formal free-energy calculation for
each fragment and collect the values together to provide the entire free-energy profile. This method avoids the
requirement to explicitly define reaction coordinates in Cartesian coordinates and provides a novel strategy to
perform free-energy calculations for biomolecules along any complex transition path.
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I. INTRODUCTION

Free-energy calculations are one of the most important as-
pects in computational chemistry and serve as a critical bridge
between theory and experiment [1–6]. To get full free-energy
information, efficient sampling methods in conformational
space or along some reaction path are needed [7–9]. On the
whole, all the methods developed in the past could be divided
into two categories: free sampling or restricted sampling. The
free sampling methods use effective strategies (bias potentials)
to flatten barriers or basins on the free-energy landscape,
making the molecule sample freely over the total range of
reaction coordinates or transition paths. The bias potentials
include attractive potentials in umbrella sampling [10–12],
repulsive potentials in metadynamics [13], and average force
in adaptive biasing force (ABF) [14] schemes. ABF has been
developed over 10 years [15–18]. It computes the average
thermodynamic force or gradient of free energy over selected
reaction coordinates using unconstrained dynamics, ensuring
that the complemented free energy along the predefined
reaction coordinate is as even as possible. Recently, successful
applications of ABF on both model peptides and ions have
proven its practicability [18].

The second category includes methods based on restricted
sampling. These methods build a transition path between initial
and final states and use some restraint or constraint force
to restrict the molecule to follow a transition path, which
may intersect barriers or basins. Restricted sampling methods
compute local free-energy differences and then, accumulate
these differences along the transition path piece by piece [19].
When the molecule completes the transition process, the total
free-energy profile can be obtained. This method avoids the
sampling problem in the whole configuration space, focusing
on rare but critical events on the path. Furthermore, since free
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energy is a state function, the calculation of the free-energy
difference is path independent, and so, we can choose a
nonphysical but short transition path to save computation time.

There are two typical path-based free-energy meth-
ods: free-energy perturbation (FEP) [20–22] and thermody-
namic integration (TI) [23–27]. TI integrates the path with∑

(dF/dξ )�ξ (here, ξ denotes a reaction coordinate or order
parameter along the path), and FEP integrates it with

∑
(�F ).

Obviously, TI is more complicated than FEP. It contains
the derivative of the Hamiltonian function of the system
with respect to the reaction coordinate [14,16,27], which is
complex because ξ may depend on many atomic coordinates.
To complicate systems, this relation often does not have an
explicit form, e.g., the number of hydrogen bonds during
protein folding.

Now, in practice, to compute the free-energy differences
between functionally related states of any molecule, two
critical problems must be solved. One is how to build a
transition path, and the other is how to fix the molecule on
the path.

For the first problem, the transition path should lie in a
space spanned by many degrees of freedom. To avoid multiple
minima in the path, which may lead to quasinonergodic effects
(discussed in Ref. [16]), the transition path should be as smooth
as possible. It seems that the simplest way to construct the path
is along the straight line connecting the degrees of freedoms
between the initial and the final states. But generally, this would
lead to severe steric clash and cause the calculation to fail. For
example, Tyka et al. [28] calculated the free-energy differences
between different stable states of a small pentapeptide:
met-enkephalin (NH3-Tyr-Gly-Gly-Phe-Met-COO). After a
preliminary conformational space annealing [29] simulation,
they obtained seven low-energy states. So, there should be
7 × 6/2 = 21 different state-to-state pairs in the free-energy
difference calculation. But due to severe steric clashes, not
all of these states were successfully perturbed from one to
another. In fact, only six state-to-state free-energy differences
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were obtained in the simulation. Therefore, most free-energy
differences for this small peptide could not be calculated.
To overcome this problem, some more physical path-building
methods were proposed, such as steepest descent path (SDP)
[30] and action-derived molecule dynamics (ADMD) [31,32].
SDP is the path obtained by minimizing the derivatives of
the molecule’s potential in all directions except the one
along the reaction path. And ADMD obtains the path by
optimizing the action integral along the path according to
the principle of least action. However, both methods are
very time-consuming, making them difficult to use for larger
molecules. Recently, we proposed an alternative method to
build the integration path. We added a restraint potential on
the dihedrals of a peptide in its initial state. The equilibrium
angles of the restraint potential were those in the final state.
Under certain proper optimization methods, the peptide could
transform smoothly from the initial state to the final state
and could produce a continuous path without any steric
clashes [33].

For the second problem, i.e., fixing the molecule on the path,
the usual strategy also uses a restraint potential. High restraint
forces can guide a molecule into any desired conformation. But
it must be noted that the modified Hamiltonian will improperly
bias the free-energy surface, especially the barriers. So, in
this paper, constrained dynamics [14,34–36] is applied to
the calculation of free energy. Because constrained dynamics
can more precisely fix the target molecule to the transition
path, it can be used to compute a more accurate ensemble
average and to produce a more natural free-energy surface
(discussed in the next section). But normal constrained
simulation methods need an analytical reaction coordinate to
define the transition path, which explicitly depends on the
Cartesian coordinates of all related atoms, e.g., the distance
between the centers of mass of two groups [37]. For large
conformational changes in molecules, finding such a reaction
coordinate may be nearly impossible. We circumvent this issue
by using the optimized path proposed by us before [33] to set
up a “virtual” reaction coordinate along the path. Then, we
apply the constraint force to perform a standard free-energy
calculation for each fragment in the path and sum them
together to produce a complete free-energy profile. This kind
of constrained simulation along a path composed of fragments
does not need an explicit expression of reaction coordinates
over Cartesian coordinates of atoms and can be used to study
free-energy differences for any complex transition process of
biomolecules.

II. MATERIALS AND METHODS

A. Constrained simulation along a path composed of fragments

The original work on constrained simulations is constrained
reaction coordinate dynamics, first proposed in 1989 [38] and
developed later [26,27,34,36,39] (see the review in Ref. [40]).
In 2003, Schlitter and Klahn gave the concise expression [35],
which is very straightforward to implement. This strategy
is important in the field of free-energy calculations as it
substantially overcomes the sampling problem of rare events.
In simulation, the molecule is first fixed along a predefined
reaction coordinate ξ by a constraint force, and then, a

state-to-state free energy is obtained as follows [35]:

F0→1 =
∫ 1

0

〈
∂Hc

∂ξ

〉
ξ

dξ − kBT ln〈|Z|−1/2〉|10

=
∫ 1

0
〈λ〉ξ dξ − kBT ln〈|Z|−1/2〉|10. (1)

Here, 0 and 1 indicate the initial and final states, respec-
tively. Hc is the partition function of the constrained system,
〈〉ξ is the ensemble average for any reaction coordinate ξ

of the constraint force, λ is the Lagrangian multiplier due
to the constraint force, kB is the Boltzmann factor, and T

is the temperature. The quantity Z is an L-dimensional matrix
(L is the number of constraints in the simulation). Each
element in the matrix is expressed by

Zαβ =
∑

i

1

mi

∂σα

∂xi

∂σβ

∂xi

. (2)

In the equation, mi is the mass of associated atom i. Each
constraint equation σα or σβ (here, α and β are the indices of
constraint) is defined as

σ = ξ (r) − ξ0 = 0. (3)

Here, ξ is the reaction coordinate in Eq. (1). It could be
distance, angle, or any generalized coordinate that depends
on the Cartesian coordinates of related atoms. ξ0 is the value
to which the coordinate is constrained.

Equation (1) and its equivalent expression [14,41] in
constrained dynamics have been proven successful in free-
energy calculations, such as determining the potential of
mean force over three-atom bending angles and four-atom
torsion angles [41]. But sometimes, the necessary condition
that ξ must be unique and differentiable with respect to the
Cartesian coordinates of atoms is not satisfied. For example,
consider one system composed of 2 degrees of freedom χ1

and χ2. The transition on the free-energy surface between
its two isolated states A and B follows a complex path as
marked in Fig. 1. Then, if we try to compute the free-energy
difference between states A and B by constrained dynamics,
we would find that no analytical reaction coordinate ξ could
be used for this simulation. This problem also exists for the
study of the state-to-state transition process of biomolecules.
Representation of the cooperative variance in large degrees of
freedom by a single analytical reaction coordinate is always
very difficult.

To overcome this problem, we propose a free-energy
calculation method based on a path composed of fragments.

FIG. 1. (Color online) Illustration of a complex transition path
from state A to state B for a system composed of 2 degrees of
freedom χ1 and χ2. No analytic reaction coordinate exists for this
case.
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One virtual reaction coordinate ξ is used to describe the
transition process, such as the complex path in Fig. 1. The
initial state on the path has ξ = 0, and the final state has
ξ = 1. Here, ξ increases monotonically and corresponds to
the transition processes of L internal degrees of freedom, but
for any 1 degree of freedom, it does not vary monotonically.
Then, the total transition path is divided into many fragments
with small lengths, with each intermediate state (or snapshot)
k having the reaction coordinate ξk = (k − 1)�ξ (ξk ∈ [0,1]).
Thus, this reaction coordinate also indicates the fraction of
snapshots encompassed by the transition path.

For each fragment of the path (between successive snap-
shots), the changes in all dihedrals are single valued. So, in any
fragment, each dihedral (χ1 to χL) can be written as a function
of the virtual reaction coordinate ξ ,

χi = χi(ξ ), i = 1 to L. (4)

From the view of the geometry, each dihedral angle χ is
defined by the Cartesian coordinates of four atoms,

χ = cos−1

(
(r12 × r23) · (r23 × r34)

|r12 × r23| |r23 × r34|
)

, (5)

where the subscripts 1, 2, 3, and 4 in the equation represent
the related four atoms in the dihedral and rij indicates the
displacement vector (in Cartesian coordinates) between atoms
i and j . Then, the global constraint equation is

σ = ξ (χ1,χ2, . . . ,χL) − ξ0 = 0. (6)

In the formal simulation, it is necessary to obtain the
derivative of the reaction coordinate ξ (and χ ) with respect
to individual Cartesian coordinates [needed by the constrained
dynamics and the second term in Eq. (1)]. This derivative can
be derived from Eq. (5) (see Ref. [42]). Because this deriva-
tive is a standard module in common molecular simulation
packages (such as TINKER), we just reuse the module in the
constrained dynamics implementation.

With this constraint (ξ = ξ0), the Hamiltonian is modified
to

Hc(χ1, . . . ,χL,qL+1, . . . ,pL+1, . . . ,)

= H0 + λ(ξ (χ1,χ2, . . . ,χL) − ξ0). (7)

H0 is the original Hamiltonian without constraint, and λ

is the virtual Lagrange’s multiplier to constrain the virtual
reaction coordinate (ξ = ξ0). The variables qL+1 to q3N , pL+1

to p3N represent unconstrained degrees of freedom and their
conjugate momenta. Considering that each ξ corresponds to
a snapshot or intermediate state, constraining ξ also means
constraining a couple of dihedrals, so the Hamiltonian is
equivalent to

Hc(χ1, . . . ,χL,qL+1, . . . ,pL+1, . . . ,)

= H0 +
L∑

i=1

λχi
(χi(ξ ) − χi0(ξ0)). (8)

λχi
is the Lagrange multiplier corresponding to the ith dihedral,

χi is the dihedral, and χi0 is the value of the dihedral in the
intermediate state with ξ = ξ0. In this constrained Hamiltonian,
there is no momentum for constrained degrees of freedom (χ1

to χL).

Then, the derivative of the Hamiltonian with respect to the
reaction coordinate ξ [needed by the first term of Eq. (1)] can
be expressed as

∂Hc

∂ξ
=

L∑
i=1

∂Hc

∂χi

∂χi

∂ξ
=

L∑
i=1

λχi

∂χi

∂ξ
. (9)

Because we use virtual and fragmented reaction coordinates
here, the total free-energy difference in Eq. (1) can be
divided into many fragments. For the kth fragment with ξk =
(k − 1)�ξ , the free-energy difference can be expressed in finite
difference form

�F (ξk) =
〈
∂Hc

∂ξ

〉
ξk

�ξ − kBT ln〈|Z|−1/2〉|ξk+1
ξk

=
〈

L∑
i=1

λχi

∂χi

∂ξ

〉
ξk

�ξ−kBT ln〈|Z|−1/2〉|ξk+1
ξk

=
〈

L∑
i=1

λχi

�χi

�ξ

〉
ξk

�ξ − kBT ln〈|Z|−1/2〉|ξk+1
ξk

=
L∑

i=1

〈λχi
〉ξk

�χi − kBT ln〈|Z|−1/2〉|ξk+1
ξk

. (10)

Here, 〈〉ξk
indicates that the system is constrained at ξ = ξk

in the simulation (corresponding to intermediate state k).λχi

is the Lagrange multiplier for the ith constraint, and it could
be computed by an iterative method in the standard SHAKE

algorithm [43]. Finally, all the free-energy differences in the
fragments in the path are summed together to provide the
complete free-energy profile for the transition.

B. Restrained simulation with free-energy perturbation

To compare the results from constrained dynamics, we also
carried out the simulation with a FEP method. The typical FEP,
accompanied by a restraint potential, has been applied widely
as early as 1985 [21],

�F12 = F2 − F1 = −kBT ln

〈
exp

(
−�H12

kBT

)〉
1

. (11)

Here, kB is the Boltzmann factor, T is the temperature,
�H12 = H2 − H1 denotes the Hamiltonian difference, and 〈〉1
indicates that the exponential is averaged over the ensembles
at state 1. It is simple to implement. With any restraint
potential, the free-energy difference can be derived. The
choice of restraint potential does not depend on the type of
reaction coordinate—any Cartesian coordinate (such as the
position of the center of mass of a group of atoms) or internal
coordinate (such as internal distances, angles, or dihedrals) can
be restrained. But for formal computation, the bias created by
the restraint potential must be removed. Ultimately, the free-
energy difference �Ftot in the FEP calculation is composed of
three terms, �Ftot = �Ffep,1−2 + �F1 − �F2.

Here, the first term, �Ffep,1−2 [equal to Eq. (11)], is
the normal free-energy difference derived from the restraint
potential between different states 1 and 2. Standard FEP
simulation requires that states 1 and 2 have substantial overlap
in conformational space. For any two distinct states that are far
away from each other, this requirement is not satisfied. Thus,
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many intermediate states must be inserted between the start
and the end states to ensure high overlap. These intermediate
states can be connected to each other and can constitute a
high-dimensional transition path. In practice, FEP simulation
is just like constrained dynamics. The molecule is first fixed
on the starting point (state 1) of the path by a restraint potential;
then, it moves along the path to the end point (state 2). In the
process, the free energies for all the fragments of the path
are summed together to give the final free-energy difference
between states 1 and 2 (�Ffep,1−2).

Moreover, �F1 and �F2 are additional free-energy dif-
ferences corresponding to the bias of restraint potentials at
independent states 1 and 2, respectively. So, if we want to
remove the bias of the restraint potential, �F1 and �F2 must
be added into the final result. To handle the bias, we use the
method introduced in Ref. [25]. This paper mainly discusses
the thermodynamic integration method, different from FEP.
But both of the two methods apply a restraining potential and
face a similar problem to remove the bias at the end points.
In their paper, Straatsma and McCammon [25] considered
�F1 and �F2 as two additional FEP computations from the
free state without a restraint potential to the state with a
restraint potential. Using a first-order approximation, they set
�F1 = 〈U1〉 and �F2 = 〈U2〉; here, 〈U1〉 and 〈U2〉 correspond
to ensemble averages of restrained potentials at states 1 and
2. Because both �F1 and �F2 are computed by only one
simulation (no intermediates), this requires that the restrained
and unrestrained cases must be close to each other when the
molecule stays at these two end states. In other words, end
states 1 and 2 should be metastable states.

C. Optimized path in transition

To study the free-energy difference between any two states
of interest in a biomolecule, a smoothed transition path
between these states must first be constructed. Recently, we
used a restraint potential to do this work [33]. The restraint
potential V is of the form V (θ ) = k(θ − θ0)2. Here, k is the
force constant, θ is some important dihedral in the molecule,
and θ0 is the balanced angle. At the beginning of the simulation,
the molecule stays in the initial state, and the balanced dihedral
θ0 is set as in the final state. During the simulation, the force
(or gradient) corresponding to this restraint potential is exerted
on the related atoms and slowly moves the molecule from the
initial state to the final state. Of course, such a path may not be
the optimal path. But the procedure is simple and fast, practical
for systems with many degrees of freedom. Furthermore, we
are only interested in the free-energy difference between initial
and final states, so free-energy calculation along any path
connecting them would give the same result.

In fact, at the beginning of the path-building process,
the molecule has very large gradients or forces. These large
forces drag the molecule to the final state in a direct way,
which may force the path through many high-energy regions.
Such high-energy regions impart large errors to the formal
free-energy calculation. So, in this paper, the force constraint k
is adjusted dynamically in the minimization. At the beginning,
k is initially set as a small value (such as 5 kcal/mol),
then it is increased gradually in the minimization process.
After about 1000 steps, it is fixed at a constant value (such

as 30 kcal/mol). This effectively makes the molecule avoid
the high-energy regions. And moreover, changing the force
constant k in a different way gives us a different transition
path.

In practice, only the key dihedrals are constrained, which
are composed of two parts: One includes φ and ψ angles
in the backbone, and the other includes non-hydrogen-atom
dihedral angles in the side chain. Meanwhile, if some dihedral
angles have three common atoms, then only one of them
is selected. For example, asparagine has four key dihedrals,
two in the backbone: C-N-CA-C and N-CA-C-N and two
in the side chain: N-CA-CB-CG and CA-CB-CG-OD1. We
use geometry optimization to construct the path between
any two metastable states. The practical algorithm that we
use is the BROYDEN-FLETCHER-GOLDFARB-SHANNO (BFGS)
[44]. It is a highly efficient quasi-Newton method for energy
minimization. During the optimization, all the intermediate
structures are recorded and are connected successively to
form a transition path. The reaction coordinate ξ of each
intermediate in this transition process simply corresponds to
its position among all the recorded structures. For example,
in a path with 100 recorded intermediate structures, the 30th
structure has ξ = 0.3, and the 90th structure has ξ = 0.9.
The details of our methods can be found in our previous
paper [33].

D. Models

To test the practicality of our free-energy calculation
method, we use three model peptides. The first is an ALA
dipeptide [Fig. 2(a)]. Its sequence is ACE-ALA-NME with
only 22 atoms. This allows its conformational space to be
sampled sufficiently within a limited computation time. Many
important papers introducing free-energy techniques have
chosen the ALA dipeptide as a reference model, including
umbrella sampling [45], adiabatic free-energy dynamics [46],
and metadynamics [47]. Their results can also be compared
with our method.

The second model is a 10-ALA peptide [Fig. 2(b)]. We
compute the free-energy difference for its helix-helix transition
[48]. Alanine is a famous stabilizing residue for helical
structures. Many experiments and simulations have shown
that alanine-rich peptides fold into predominantly helical

FIG. 2. (Color online) Three model peptides in our paper. (a) The
ALA dipeptide. (b) The 10-ALA peptide. (c) The β-hairpin Trpzip2.
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conformations in an aqueous environment [49–53]. It is well
known that there are three typical helices in native proteins:
π helix, α helix, and 310 helix, but only α helices are dominant.
To test our method, we simulate the 10-ALA peptide transition
from the α helix to the π helix by constrained dynamics and
study its free-energy changes in the transition process.

The third model peptide in our paper is Trpzip2
[54] [Fig. 2(c)]. The sequence of this peptide is
SWTWENGKWTWK. It has two special aromatic stacking
pairs, Trp2-Trp11 and Trp4-Trp9. These strong hydrophobic
interactions make it favor the hairpin conformation and
stabilize the three-dimensional (3D) tertiary structure. Due
to its small size and intuitive 3D interaction network, Trpzip2
is a good model for hairpin folding studies [55–60]. In this
paper, we calculate the free-energy differences between native
and metastable states and compare them with results from our
previous molecular dynamics (MD) simulation [57].

E. Simulation details

In our calculation, constrained simulations are carried out
using the RATTLE algorithm [61]. To simulate the aqueous en-
vironment, we use the generalized Born/surface area (GB/SA)
model [62,63] as an implicit solvent model. It is a highly
efficient solvation model, which treats water as a continuous
medium. The optimization and MD software we use is TINKER

(see Ref. [64]) with the AMBER PARM96 force field [65].
Additional algorithms related to free-energy calculations are
implemented by our own subroutines. The simulations are
carried out at a normal temperature of 298 K, which is
controlled using the Berendsen method [66]. The integration
time step is 1.0 fs. To ensure the flexibility and mobility of the
peptide, no bond lengths or angles are constrained.

The total simulation time depends on the number of
intermediate structures in the path. Here, the number of
structures is usually very large, generally over 100, even
for short peptides. To increase efficiency, we perform a
parallel calculation, implemented with the software MPICH2

(see Ref. [67]). In the simulation, according to the processor
number, the total path is evenly divided into N parts (N is
the number of processors), and each processor handles its own
part. Finally, all the data from different processors are collected
together to form the complete free-energy profile.

III. RESULTS AND DISCUSSIONS

For our first model, the ALA dipeptide, we use the
� and � angles of the backbone as order parameters. In
the absence of configurational entropy contributions from
side-chain rotamers, it is known that enthalpy dominates the
free-energy surfaces for small peptides. In Fig. 3, we give
the averaged potential energy in (a) vacuum and (b) a solvent
obtained using conventional molecular dynamics. The data are
sampled at an interval of 5◦ in the � and � angles. At each
data point, the structure is fixed at the corresponding angle
by the RATTLE algorithm [61], and the potential energies are
averaged over 30 ps. In vacuum, the ALA dipeptide has two
potential minima, named C7eq and C7ax. The former is lower in
energy than the latter by more than 5 kcal/mol. In the solvent,
the global minimum C7eq moves to αR, and the corresponding
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FIG. 3. (Color online) Averaged potential-energy surface for the
ALA dipeptide (a) in vacuum and (b) in the solvent. The data are
collected in intervals of 5◦ in backbone angles � and �. The minima
on the surface are marked by labels. The solid yellow line on the
surface represents the optimized path from state C7eq to C7ax in
vacuum and αR to C7ax in the solvent, respectively.

potential-energy difference increases to 7 kcal/mol. This large
enthalpy difference is difficult to counteract by entropy. So,
state C7eq in vacuum and αR in the solvent could be considered
as the free-energy global minima.

Now, we are interested in the free-energy difference
between the minima on the free-energy surface. But, in fact,
no analytical reaction coordinate could describe the transition.
The transition path can be built by iterative methods, such as
ADMD [31,32] and SDP [30]. There are also other methods to
handle the free-energy calculation along the path, such as free-
energy perturbation [21,22], umbrella sampling [68], targeted
molecular dynamics [69,70], and the minimum free-energy
path [71,72].

In this paper, we will compute the free-energy differences
using constrained dynamics on the fragmented path (described
in the Materials and Methods section). The fragmented path
is shown in Fig. 3 and is marked as a solid yellow line. For
the transition process from state C7eq to C7ax in vacuum, the
free-energy profiles are shown in Fig. 4(a). The solid line
indicates the results from eight independent simulations with
constrained dynamics, and as a comparison, the dashed line is
the result from eight restrained simulations with a conventional
free-energy perturbation method [21,22]. The force constant
is set at 50.0 kcal mol−1 Å−2.

The figure shows that the two methods give almost the
same free-energy differences between state C7eq and C7ax,
2.24 kcal/mol from the former and 2.33 kcal/mol from
the latter. This is a little different from 1.15 kcal/mol
obtained in the metadynamics simulation [47] but is similar
to the results from other methods, e.g., 2.0 kcal/mol with a
free-energy perturbation method [73], 2.6 and 2.7 kcal/mol
with an umbrella sampling method [74,75], 2.3 kcal/mol
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FIG. 4. (Color online) (a) Free-energy profiles for the ALA
dipeptide in vacuum from state C7eq to state C7ax obtained by eight
independent solid curve: constrained simulations and dashed curve:
restrained simulations, respectively. (b) Root-mean-square error of
free energies for eight restrained simulations. (c) Root-mean-square
error of free energies for eight constrained simulations. All units are
in kcal/mol.

with an adiabatic free-energy dynamics method [76], and
2.06 kcal/mol with a quantum chemistry method [77]. And
interestingly, the averaged value, 2.135 kcal/mol, derived
from independent simulations by other groups with different
methods, is close to our result. To some extent, it validates our
paper.

For constrained dynamics and restrained dynamics, not only
the end-to-end free-energy differences, but also the shapes of
the free-energy curves in the transition process are rather close
to each other. We also analyze the root-mean-square error from
eight independent simulations with restrained and constrained
dynamics [Figs. 4(b) and 4(c)]. The error is obtained by the
following formula:

E =
√

〈S2〉 − 〈S〉2. (12)

Here, 〈S〉 and 〈S2〉 are the averages of the free energies
and the square of the free energies at each ξ for eight
independent simulations. It is found that the error of the
constrained simulation is 1 order lower than that of the
restrained simulation. This indicates the stability of our
constrained simulation based on the fragmented path.

Similarly, the free-energy profile for the transition from
state αR to C7ax in the solvent along the optimized path
is shown in Fig. 5(a). Just as above, here, the dashed
curve is the result from eight independent simulations with
restrained dynamics, and the solid curve is the result from
constrained dynamics. Root-mean-square errors are shown
in Figs. 5(b) and 5(c), respectively. Again, the error in the
constrained simulation is 1 order lower than that of the
restrained simulation. But on the whole, the free-energy
difference between the two minima is also very close in the
two simulations: 3.941 kcal/mol in the constrained simulation
and 4.199 kcal/mol in the restrained simulation. These
values are much different from previous papers, for example,
4.8 kcal/mol in a metadynamics simulation [47], 3.4 kcal/mol
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FIG. 5. (Color online) (a) Free-energy profiles for the ALA
dipeptide in the solvent from state αR to C7ax obtained by eight
independent solid curve: constrained simulations and dashed curve:
restrained simulations, respectively. (b) Root-mean-square error of
free energies for eight restrained simulations. (c) Root-mean-square
error of free energies for eight constrained simulations. All units are
in kcal/mol.

in a free-energy perturbation simulation [73], 5.0 and
2.44 kcal/mol in an umbrella sampling simulation [74,75], and
4.5 kcal/mol in an adiabatic free-energy dynamics simulation
[76]. This difference may be caused by different definitions
of the solvent models. And, just as in the case for vacuum, it
shows again that our result in the solvent is close to the average
of all those values from the other groups (4.03 kcal/mol).

To study the constrained dynamics method in more detail,
we also give the free-energy difference between successive
snapshots at each point in the transition path for the ALA
dipeptide from state C7eq to C7ax in vacuum [Fig. 6(a)]
and from state αR to C7ax in the solvent [Fig. 6(b)]. The
free-energy differences for each snapshot are obtained by
Eq. (10). The units in the figure are in kcal/mol. The data
for both paths have the same features: positive in the first half
and negative in the second half. This is in agreement with the
fact that the molecule climbs up free-energy barriers from the
reactant at the beginning of the transition and goes down to
the product at the end. Moreover, according to Eq. (10), the
total free-energy differences are composed of two parts: The
first term is the normal free energy due to different constraints
between successful intermediates, and the second term comes
from the entropy difference between the constrained and the
unconstrained systems [26]. The difference in the first term
is plotted in Figs. 6(c) and 6(d) for transition in vacuum and
the solvent, respectively. The difference in the second term is
shown in Figs. 6(e) and 6(f). Figure 6 shows that, whether in the
solvent or not, both terms in Eq. (10) give a two-stage process,
i.e., first-half positive and second-half negative processes, just
like the total difference. But obviously, the difference in the
first term is much larger than that of the second term. It
dominates the variance in the total free energies.

In the following, we focus on the 10-ALA peptide. It is well
known that alanine-rich sequences have a strong tendency to
form helices [49–53]: α helix, 310 helix, or π helix. Among
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FIG. 6. Free-energy differences for the ALA dipeptide obtained
by Eq. (10) and subtracted between successful intermediates.
(a) Total free-energy difference in transition from state C7eq to C7ax

in vacuum. (b) Total free-energy difference in transition from state
αR to C7ax in the solvent. The differences in the first term in Eq. (10)
are shown in (c) and (d), respectively. The differences in the second
term in Eq. (10) are shown in (e) and (f), respectively. All units are
in kcal/mol.

them, α helices are distributed much more widely in natural
protein structures than the other two, which indicates its high
stability. In this paper, we calculate the free-energy difference
between the α helix and the π helix. To do this, we need
to construct the transition path, but due to steric clashes,
conventional strategy that directly drags all the dihedral angles
or Cartesian coordinates from one state to another is not
feasible.

Here, the transition path is built by our optimizing strategy,
based on 16 dihedral angles. After optimizing, the total path
constitutes 451 intermediate snapshots. The averaged potential
energy (over five successive snapshots) of the path is shown in
[Fig. 7(b)]. It indicates that the transition path goes through a
flattened energy barrier.

Then, we carry out eight independent free-energy calcu-
lations along the optimized path by constrained dynamics,
accompanied by eight restrained simulations, with a force
constant of 50.0 kcal mol−1 Å−2. The averaged free-energy
profiles are plotted in Fig. 7(a) with root-mean-square errors
in Figs. 7(c) and 7(d). The solid curve corresponds to a
constrained simulation, and the dashed curve corresponds to
a restrained simulation. Similar to the results before, the root-
mean-square errors in Figs. 7(c) and 7(d) also indicate that the
error of a constrained simulation is 1 order lower than that of a
restrained simulation. Furthermore, the free-energy profiles are
quite different in the two simulations for both the end-to-end
difference and the global shape of the curve. In the constrained
simulation, there is a free-energy barrier about 8.54 kcal/mol
higher than the initial α-helix state, whereas, in the restrained
simulation, it vanishes. This indicates that the peptide goes
though a little different transition path for restrained and
constrained simulations. Although the predefined transition
path is the same for these two kinds of simulations, due to
the flexible restraint potential, the peptide in the restrained
simulation would deviate from the established path slightly.
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FIG. 7. (Color online) (a) Free-energy profiles for the 10-ALA
peptide in the solvent from the α helix to the π helix; results are
averaged over eight independent solid curve: constrained simulations
and dashed curve: restrained simulations, respectively. (b) Averaged
potential energy along the optimized path. (c) Root-mean-square error
of free energies for eight restrained simulations. (d) Root-mean-
square error of free energies for eight constrained simulations. All
units are in kcal/mol.

This could be shown by the root-mean-square difference
(RMSD) of the peptide in the two simulations [Fig. 8(a)].
In the figure, the solid line corresponds to the simulation
with constrained dynamics, and the dashed line corresponds
to restrained dynamics. Both of the results are averaged over
eight independent trajectories. From the figure, we can see that
the RMSD in the restrained simulation is always higher than in
the constrained simulation. Compared to the static RMSD of
all the snapshots in the path [Fig. 8(b)], it could be confirmed
that the peptide in a restrained simulation really deviates a
little from the transition path.
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FIG. 8. (Color online) (a) RMSD variance of the 10-ALA
peptide in the solvent from the α helix to the π helix with solid
curve: constrained dynamics and dashed curve: restrained dynamics.
(b) RMSD for intermediates in the optimized path. (c) Fluctuations
of the RMSD in the solid curve: constrained simulation and dashed
curve: restrained simulation.
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FIG. 9. (Color online) Free-energy profiles for the 10-ALA
peptide from the α helix to the β hairpin along two different paths with
1418 intermediate states and 1454 intermediate states, respectively.
(a) The data from the constrained simulation. (b) The data from the
restrained simulation.

To check the reason for the relatively high error in the
restrained simulation, the RMSD fluctuations for the two
simulations are also shown in Fig. 8(c). Clearly, the structure
is very stable in the constrained simulation. But it is more
flexible in the restrained simulation, which would certainly
increase the error.

From the results of the free-energy calculation by con-
strained dynamics, we find that the lower free energy deter-
mines the high stability of the α helix. And the similarity
of shapes between the free-energy and the potential-energy
surfaces confirms the finding by Jas and Kuczera that helix
formation is a potential-energy decreasing and entropy de-
creasing process [48].

The helix-helix transition for the 10-ALA peptide is
straightforward but a little simple. So, we also calculate the
free-energy change for the 10-ALA peptide from the α helix to
the β hairpin (Fig. 9). This process is much more complicated
than the helix-helix transition and could be viewed as a
rigorous evaluation model. To check the convergence, we
prepare two different pathways by BFGS optimization [44].
One contains 1454 intermediate structures, and the other
contains 1418 structures. The 10-ALA peptide goes through
a similar expanding and collapsing process in both of these
two transition paths. If the α helix is viewed as the native state
and the β hairpin is viewed as the unfolded state, these two
transition paths indicate that, during folding, the protein must
first break most of its internal interactions, such as hydrophobic
interactions and hydrogen bonds, and then proceed to form a
highly solvated structure. This observation confirms our MD
simulations in previous papers [57,78,79].

Figure 9(a) gives the free-energy profiles for this helix-
hairpin transition with constrained dynamics, and Fig. 9(b)
gives the results with restrained dynamics. There is only one
simulation for each of these two cases. In the figures, some
information can be observed. First, both simulations show
that the free energy of the β-hairpin state is much higher
than that of the α-helix state. It is in agreement with the

fact that poly-ALA strongly prefers the helix conformation
[49–53]. Second, both simulations are convergent. They show
the same free-energy difference for the two different paths,
named “traj 1418” and “traj 1454” respectively. It confirms
the textbook definition that free energy is a state function,
independent of the transition path. Third, the curves for
the restrained simulation show much more fluctuation than
the curves for the constrained simulation. This phenomenon
has also been shown in Figs. 4, 5, and 7 before. It again
proves the reliability of constrained dynamics in calculating
free energy. Furthermore, comparing the two panels in the
above figure reveals disagreement between restrained and
constrained simulations. The most important reason for this
disagreement is, of course, the statistical uncertainties. The
large fluctuation (over 1 kcal/mol) in the restrained simulation
greatly affects its final free-energy difference. Another reason
comes from the correction term in the restrained simulation
(to remove the bias of potential energy): Ensemble averages
of potential energy 〈U 〉 can only approximate the free-energy
difference between the free state and the restrained state. The
final reason is the different restraining techniques in the two
simulations; restrained dynamics uses the restrained potential,
whereas, constrained dynamics uses Lagrangian multipliers.

Above, we show the free-energy profile along the optimized
and fragmented path for the ALA dipeptide and the 10-ALA
peptide in a constrained simulation. Both cases give low errors
from independent trajectories and provide reasonable results.
Now, we extend the paper to include a more complex peptide,
Trpzip2. In our previous papers [33,57], we performed 38
MD independent simulations for this peptide with the GB/SA
implicit solvent [62,63] and the AMBER PARM96 force field
[65] at 298 K. In total, the simulation time accumulates to
3.8 μs. Such a long trajectory constitutes a large dataset for
free-energy analysis.

For better illustration, we select two order parameters: the
RMSD and the radius of gyration of aromatic pairs (Rg).
The RMSD indicates the similarity of any structure to the
native state. It only involves the backbone atoms. The radius
of gyration of aromatic pairs (Rg) is the value corresponding
to the size of the hydrophobic core,

Rg = Rg(2,11) + Rg(4,9), (13)

where Rg(2,11) is the radius of gyration for the aromatic
pair Trp2-Trp11, and Rg(4,9) is the radius of gyration for the
aromatic pair Trp4-Trp9. Moreover, we define the free-energy
difference between the two states as the following:

F1(x) − F2(x) = −RT ln[P1(x)/P2(x)] , (14)

where P (x) is the corresponding probability distribution
function and x is any set of order parameters [80].

In Fig. 10, we show the free-energy surface versus the
backbone RMSD and the radius of gyration of aromatic pairs
(Rg). We find that the free-energy landscape is very rough. It
is not easy for the peptide to fold into the native state. In total,
there are seven minima in the landscape. They are named N,
M1, M2, M3, M4, M5, and M6, respectively.

After studying the detailed structures of these states, we find
that some of them have been observed in other groups, such as
in the paper of Zhang et al. [81]. They carried out a 16 ns MD
simulation on Trpzip2 by replica exchange MD in an explicit
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FIG. 10. (Color online) Free-energy landscape for the peptide
Trpzip2. The two order parameters are selected as the backbone
RMSD and the radius of gyration of aromatic pairs (defined in
the main text). It is obtained from the total thirty-eight 100 ns
MD trajectories. Seven minima are marked in the figure. Point N
corresponds to the native state. Points M1–M6 indicate the local
minima.

solvent [82], which contained 62 replicas from 250 to 640 K.
Finally, some stable conformations are similar to our results.
For example, state M1 in our paper is a nativelike structure
with all the native interstrand hydrogen bonds and similar
native gyrations. The main difference from the native structure
is its aromatic residue packing ways. The native structure has
two aromatic pairs (Trp4-Trp9 and Trp2-Trp11), but state M1
only has one (Trp2-Trp9). Here, state M1 is in agreement with
partially folded state P in Ref. [81]. Furthermore, state M5
in our paper is a compact structure with a loose turn and a
tightly packed hydrophobic core (formed by three aromatic
residues). It corresponds to states H1 and H2 proposed by
Zhang et al. [81].

To analyze the data, we collect seven conformational clus-
ters for seven stable states. The structure numbers belonging
to each cluster are 166 778, 176 687, 28 772, 30 451, 11 423,
22 299, and 7480. The relative stabilities for these states are
in the order M1 > N > M3 > M2 > M5 > M4 > M6. Based
on these data, free-energy differences are obtained. But, as
discussed in our previous paper [33], the free-energy values
have large errors, especially for the non-native metastable
states. This may be due to the time limit in our MD
simulation. We carry out 38 MD simulations with different
initial velocities. Although the accumulated simulation time
increases up to 3.8 μs, each trajectory only lasts 100 ns,
which is much shorter than its real folding time (about 1.8 μs)
[83]. Such a short trajectory leads to limited sampling. Thirty-
eight 100 ns trajectories are good for studying the folding
mechanism [57] but are still not enough for equilibrium sam-
pling. With conventional molecular dynamics, it is still hard to
sufficiently sample the whole conformational space of peptides
or proteins. The free-energy surface from conventional MD
simulations is only an approximation.

We attempt to use constrained dynamics based on the
fragmented path to compute free-energy differences and then
the relative stabilities of the metastable states of Trpzip2. In
a manner similar to the helix-helix transition of the 10-ALA
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FIG. 11. Free-energy profiles in the constrained simulation along
the optimized path for Trpzip2. All the paths are combined by two
parts. The first half is from native state N to the fully extended β-strand
structure (ξ = 0 to ξ = 0.5), and the second half is from the full
β-strand structure to metastable states M1–M6 (ξ = 0.5 to ξ = 1), see
Fig. 8 for structure information. The short horizontal lines at the end
are plotted for a better representation of the free-energy differences.

peptide, we build seven transition paths for all seven metastable
states of Trpzip2 with the BFGS optimization method [44].
All the paths end at the fully extended β-strand structure.
This could reduce the path complexity and the number of
intermediate structures. The final free-energy profiles in the
constrained simulations are shown in Fig. 11. For better
representation of free-energy profiles in the folding process, we
connect the paths from M1 to M6, respectively, with the path of
native state N. As shown in the figure, all the combined paths
consist of two parts. The first half corresponds to the transition
from native state N to the full β-strand conformation (ξ = 0
to ξ = 0.5). The second half corresponds to the transition
from the extended β strand to the stable states M1–M6,
respectively (ξ = 0.5 to ξ = 1). From the figure, we find
that native state N is the most stable state of all. This agrees
with the experiment [54] and demonstrates the practicality
of free-energy calculations with constrained dynamics along
the fragmented path. Not surprisingly, nativelike state M1
has the second lowest free energy, 5.993 kcal/mol. In MD
simulations, it is hard to find the most unstable state because
of large errors in calculating free energy. But our constrained
simulations show that state M3 is the most unstable state. Such
a path-based free-energy calculation method is very suitable
for high-dimensional systems. In our calculation, the relative
stabilities for all the seven states are placed in the following
order: N > M1 > M4 > M6 > M5 > M2 > M3. The order
of M5, M2, and M3 is different than the order obtained by the
restraint method.

IV. CONCLUSIONS

Free-energy calculation is always a critical problem in
computational chemistry and biophysics. In the conventional
free-energy perturbation method, a restraint potential is used
to restrict a molecule on a transition path with a small
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fluctuation along the direction of the reaction coordinate.
It is effective but does not really decrease the number of
degrees of freedom in the system. Thus, the final sampling
gives a rather large root-mean-square error. In comparison,
free-energy calculation using constrained dynamics is a good
choice. Due to a better constraining effect on the reaction
coordinate, the results from constrained simulations show very
small errors for independent trajectories.

But the original formulation of constrained dynamics needs
an analytical expression for the reaction coordinate in terms
of the Cartesian coordinates of related atoms, e.g., a distance,
an angle or a dihedral. For a large molecule that transitions
between different functional states, finding such an analytical
reaction coordinate is very difficult. For example, if we want
to study the free-energy difference for the 10-ALA peptide
between the unfolded hairpin state and the folded helical
state. These two states are too close to each other when
projected onto traditional reaction coordinates, such as radius
of gyration (helix 4.82 Å, hairpin 5.07 Å). In addition, using
RMSD still cannot solve the multistate overlapping problem
in the unfolded state with large RMSD values. So, in such
a complicated case, how to define a proper, unique, and
differentiable reaction coordinate that could distinguish target
states in the free-energy calculation will be a difficult mission.

Here, we proposed a free-energy calculation method based
on constrained dynamics along a fragmented path. First,
a transition path (defined as a virtual reaction coordinate)
was obtained by an optimization algorithm. Then, the path
was divided into many fragments. For each fragment, all

the constrained degrees of freedom varied monotonically.
Based on the total differential of the constrained Hamiltonian
with respect to the virtual reaction coordinate, free-energy
calculations along the virtual and high-dimensional path with
constrained dynamics became practical. As a test, we applied
this method to the ALA dipeptide and the 10-ALA peptide to
study their transitions between different minima. The results
showed that the simulations with constrained dynamics were
more converged than restrained dynamics. Furthermore, we
calculated the free-energy differences between the seven stable
states of β-hairpin Trpzip2 and compared the results with
those from the conventional MD simulation. We found that
our calculation correctly determined the native state, whereas,
the conventional MD simulations may fail to do this due to
the sampling problem and large errors. These applications
established the practicality of our method, and we hope it can
become a good tool to evaluate structure stabilities, binding
affinities of biomolecules in a more accurate way. But it must
be noted that the optimized path in our paper is not rigorously
the minimum energy path, so, at present, our method is not
suitable for the study of reaction rates.
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