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Universal properties of knotted polymer rings
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By performing Monte Carlo sampling of N -steps self-avoiding polygons embedded on different Bravais lattices
we explore the robustness of universality in the entropic, metric, and geometrical properties of knotted polymer
rings. In particular, by simulating polygons with N up to 105 we furnish a sharp estimate of the asymptotic
values of the knot probability ratios and show their independence on the lattice type. This universal feature was
previously suggested, although with different estimates of the asymptotic values. In addition, we show that the
scaling behavior of the mean-squared radius of gyration of polygons depends on their knot type only through its
correction to scaling. Finally, as a measure of the geometrical self-entanglement of the self-avoiding polygons
we consider the standard deviation of the writhe distribution and estimate its power-law behavior in the large
N limit. The estimates of the power exponent do depend neither on the lattice nor on the knot type, strongly
supporting an extension of the universality property to some features of the geometrical entanglement.

DOI: 10.1103/PhysRevE.86.031805 PACS number(s): 36.20.Ey, 02.10.Kn

I. INTRODUCTION

Scaling hypothesis and the renormalization group theory
led to the understanding of universality in critical phenomena,
i.e., the fact that systems that look different at small scales
may share, in proximity of critical points, common statistical
properties. This concept greatly reduces the variety of possible
critical behavior by grouping all systems into a small number
of universality classes characterized by the same critical expo-
nents and critical amplitude ratios. In this respect, universality
justifies the study of systems in a given universality class
that are simple enough to be treated either numerically or
analytically.

In statistics of polymer conformations, this approach has
been often followed by modeling polymers as self-avoiding
walks (SAWs) on discrete lattices such as the simple cubic
(SC), the face-centered-cubic (FCC), and the body-centered
cubic lattice (BCC). For these models, combinatorial argu-
ments and Monte Carlo simulations can be efficiently applied
to obtain rigorous and numerical results on the large scale
(asymptotic) behavior of polymers in good solution [1]. More-
over, SAWs can be mapped to a magnetic system at its critical
point and studied by renormalization group techniques [2,3].
This approach has led, for example, to the well established
results that the number Z(N ) and the mean-squared radius of
gyration 〈R2

g(N )〉p of N -steps self-avoiding polygons (SAPs),
i.e., (N − 1)-steps SAWs having the two extremities one lattice
distance apart, behave for large N , respectively, as

Z(N ) � AμNNα−2

(
1 + a

N�
+ · · ·

)
(1)

and

〈
R2

g(N )
〉
p

� BN2ν

(
1 + b

N�
+ · · ·

)
, (2)

where the amplitudes A,a, B,b, and the connective constant
μ are nonuniversal quantities that depend on the underlying
lattice [1], while α and ν are universal exponents related by the
hyperscaling equation α = 2 − νd with d the dimensionality
of the space and ν the metric exponent. In d = 3, advanced

numerical simulations give ν � 0.587597(7) [4], and hence
α � 0.237209(21), in good agreement with field theoretical re-
sults [5]. Also, the correction to scaling exponent � is believed
to be universal and its best estimate is � = 0.528(12) [4].

Notice that SAPs on regular lattices model polymer rings in
good solution with any possible topology, i.e., with an arbitrary
number of knots tied in. However, in most experiments
and physical situations such as in melts and concentrated
solutions, the overall topology of a system of ring polymers
cannot be changed unless the excluded volume interaction is
violated. This, for example, has relevant consequences on the
temperature of the collapse transition of ring polymers, which
is found experimentally to be different from that of their linear
counterparts [6].

Because of the topological constraint for looped polymers,
the above-mentioned mapping to a magnetic system is not
valid anymore and, consequently, no field theory argument can
establish the validity of scaling laws similar to Eqs. (1) and
(2). On the basis of previous numerical investigations [7–10]
it is, however, reasonable to assume

Zk(N ) � Akμ
N
k Nαk−2

(
1 + ak

N�k
+ · · ·

)
(3)

and
〈
R2

g(N )
〉
k

� BkN
2νk

(
1 + bk

N�k
+ · · ·

)
, (4)

where μk and αk are, respectively, the connective constant and
the entropic exponent of the subset of SAPs with a given knot
type k. With this notation, k refers either to prime knots or
to composite knots given by the connect sum of prime knots
(roughly speaking, a knot is composite if it can be split in
two knots located in different portions of the chain, which
are separated by a plane) [11,12]. The case k = ∅ denotes the
special case of unknotted SAPs (SAPs with trivial topology).

The scaling relation Eqs. (3) and (4) have been conjectured
in analogy with Eqs. (1) and (2) and their validity has been
confirmed so far only by numerical simulations [7,11] with the
findings μk = μ∅ < μ, αk = α∅ + mk , νk = ν and Bk = B∅,
where mk denote the number of prime components in the knot
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decomposition [11,12]. The probability of occurrence of a
given knot k,

Pk(N ) = Zk(N )

Z(N )
, (5)

is thus dominated by the exponential decay (μ∅/μ)N at large
Ns. In the following, we will not deal with this aspect but
we will focus instead on the scaling behavior of the ratios
Pk(N )/P∅(N ) = Zk(N )/Z∅(N ).

It is important to stress that the exponent αk = α∅ + mk is
consistent with the recent finding that prime knots in SAPs
are weakly localized, i.e., they occupy on average a portion
of the ring that scales as Nt , with t � 0.7 [13]. Indeed, given
that each prime knot is weakly localized, SAPs with knot
type k should, in the large N limit, look like unknotted rings
with mk decorated vertices. These decorations can sit in ∼N

positions along the N -step SAP. The partition function of such
a decorated chain thus includes a scaling law Nmk multiplying
the partition function of unknotted chains, whose power-law
part scales ∼Nα . Similarly, the average extension of each
prime component should not contribute, in the large N limit, to
the overall extension of the knotted SAP and one would expect
that SAPs with a fixed knot type k would share, to leading
order, the same metric properties of unknotted SAPs [7].

A more recent numerical calculation of SAPs on the cubic
lattice has confirmed and improved the above conjectures by
suggesting the validity of the following scaling laws [14]

Zk(N ) � Z∅(N )
Nmk

Ck

, (6)

where Ck is a coefficient growing with the knot complexity and
factorizable into the elementary contributions of each prime
component. Roughly speaking Ck can be interpreted as the
elementary entropic cost to tie a given knot k in a SAP and its
dependence on k can be related to the minimal number of steps
necessary to build a knot type k on the underlying lattice [14].
Note that, for any two prime knots k1 and k2, the inverse
proportionality relation Ak1/Ak2 = Ck2/Ck1 is satisfied.

One of the aims of this work is to explore more deeply
the scaling relation Eq. (6) by extending the numerical
investigations in Ref. [14] to SAPs embedded both on BCC
and FCC lattices and to look at the dependence of Ck on
these lattices. While the value of Ck should depend on the
three-dimensional lattice considered, we expect the ratios
Zk1 (N )/Zk2 (N ) to be independent on lattice details. This
feature has been already suggested in Ref. [15] on the basis of
a stochastic enumeration of N -steps SAPs performed with the
GAS algorithm [16], an extremely efficient method to sample
SAPs of moderate lengths and with fixed knot type. Note that
the conclusions given in Ref. [15] rely on an extrapolation
to infinity of the data obtained for SAPs within the range
N � 500, i.e., in a region of Ns where, especially for knotted
configurations, strong corrections to scaling are expected [17].

In this work we extend the range of sampled N up to 100 000
by means of efficient Monte Carlo samplings. We have been
able to compute the amplitudes Ck for different knot types and
to confirm, for a wide range of N , the universal character of
the ratios Zk1 (N ) / Zk2 (N ) found in Ref. [15], although with
different asymptotic values.

In addition, by computing the mean-squared radius of
gyration of each SAP, we confirm, within a wide range of
N , the validity of the scaling law Eq. (4). Finally, as a
measure of the geometrical entanglement of knotted SAPs
we have considered their writhe. Rigorous arguments have
shown that, for SAPs on the cubic lattice, the mean absolute
writhe 〈|Wr|〉 increases at least as rapidly as

√
N [18] and

numerical estimates on the same system gives 〈|Wr|〉 ∼Nη

with η = 0.5035 ± 0.0006 [19]. It is then natural to check
whether, for SAPs with fixed knot type k, the scaling law for
the spread of the writhe and the exponent η are independent
either on the knot type k or on the underlying lattice.

II. MODELS AND METHODS

We perform Monte Carlo sampling of SAPs on the SC,
BCC, and FCC lattices by using the two-point pivot moves,
a fixed-N algorithm that has been proven to be ergodic in
the class of all SAPs and shown to be efficient in sampling
uncorrelated configurations [1,20,21]. This algorithm allows
us to reach values of N up to 105 for the BCC and FCC lattice.
For the SC lattice instead we use previous data [14], including
N = 1.5 × 105 and N = 2 × 105. For the longest chains, the
samples include ≈2 × 104 independent configurations. For
N = 104 this number raises to 106. Typically at least 105 data
are present for each N .

Since the pivot algorithm samples SAPs with any topology,
it requires a post-processing procedure to characterize the
knot type of each configuration. This can be determined,
for example, by computing a topological invariant such as
the Jones or the HOMFLY polynomials [22]. In general,
the computational complexity of these invariants increases
exponentially with the geometrical entanglement of the curve
and, for very large N , this could be the most problematic
part of the whole investigation. To overcome this problem,
we first smooth each configuration by reducing its length
while keeping the knot type fixed. This is achieved by using
a nonequilibrium stochastic scheme, based on local moves (a
nonequilibrium variant of the BFACF method [23–25]), that
trims recursively all kinks in the SAP. In addition, the algorithm
performs some random local rearrangements to reduce the
chance that a fast drop in chain length results in configurations
that it is then very unlikely to escape from. This occurs, for
example, when multiple prime components are present in the
SAP and the resulting frozen configurations are characterized
by having these components separated by stretched portions
of the SAP that become difficult to shrink. We find that in most
situations the algorithm is able to reach a configuration close
to the minimal N allowed by its knot type on that specific
lattice. This configuration is then projected along a given
(approximately) irrational direction and the resulting knot
diagram is mapped into the corresponding Dowker code [22]
that is eventually further simplified and factorized into the
Dowker codes of the prime knots. Finally, we compare each
component of the original Dowker code against a look-up table
of Dowker codes of prime knots of up to 11 crossings. In this
way we have been able to distinguish composite knots with
up to 5 prime components and with each prime component
having a minimal crossing number up to 11.
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FIG. 1. (Color online) Examples of configurations obtained by
the BFACF procedure that reduced their length from N = 100 000
to a few steps, with the hue that follows the monomer sequence:
(a) 31#51 knot on the BCC lattice, (b) 31#51 knot on the FCC lattice,
and (c) a very tight configuration with knot type (31)4#41 on the BCC
lattice.

As an example of the efficiency of the simplification
algorithm, we show in Fig. 1 the result of the step reduction
applied to configurations with N = 100 000. The first two
configurations display a 31#51 knot (i.e., a composite knot
formed by a prime knot 31 and a prime knot 52), (a) on the
BCC and (b) on the FCC lattice. One can readily see the 31#51

knot at these reduced lengths: the 31 part is on the lower-right
side and the 51 part on the upper-left one. The configuration
in Fig. 1(c) shows instead a (31)4#41 knot (this a shorthand
notation for 31#31#31#31#41). All these examples confirm
the efficiency of the BFACF method in shrinking the chain
from a very long length to a very short one, even for complex
composite knots.

III. RESULTS

A. Frequencies of prime knots

The BCC and the FCC lattices have coordination numbers 8
and 12, respectively. It could be expected that more neighbors
implies more flexibility and thus a more pronounced tendency
to form knots. A manifestation of this effect would be that
the knot costs Ck were somewhat inversely proportional to
the coordination number. It turns out that indeed knots are
less frequent in SAPs embedded on the SC lattice and hence
CSC

k is larger than its counterparts for FCC and BCC lattices.
However, for the simplest knots we observe surprisingly that
CBCC

k < CFCC
k . According to Eq. (6), this is readily seen by

determining Ck from NZ∅/Zk for a simple prime knot. For
instance, by focusing on C31 in [Fig. 2(a)] and C41 in [Fig. 2(b)]
it is easy to see that these quantities are smaller for SAPs on the
BCC lattice than on the FCC. If we consider instead the ratio
Z31/Z41 [Fig. 2(c)] we note that, as N increases, it approaches
an asymptotic value that is independent on the lattice. This
is true also for frequency ratios between other prime knots,
as shown in Fig. 3 and in Table II. These results support the
previously conjectured hypothesis that the frequency ratios
between prime knots do not depend on the lattice in which
they are embedded [15]. Our estimates in Tables I and II
differ, however, from the ones reported in Ref. [15]. A possible
explanation is that the estimates in Ref. [15] are affected by sys-
tematic errors due to the small values of N considered whose
ranges fall in a region where the corrections to scaling are too
strong [see the data for N = 400 in Fig. 2(c)] to be neglected.
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FIG. 2. (Color online) (a) Ratio of the probability of unknot
configurations and of 31 knots, times N × 10−5. They converge to
a lattice-dependent constant (C31 × 10−5) for large N . Bands of
different colors represent the estimated asymptotic values with ±
error; see Table I. (b) The same for knot 41. (c) Ratio of probability of
31 knot and of 41 knot, converging to a constant for large N (C41/C31 )
that does not depend on the lattice kind. The horizontal lines mark the
interval of the estimated asymptotic value; see Table II. This panel
includes also data at N = 400. Note that while the small N deviations
from the asymptotic values are due to corrections to scaling, the
fluctuations at larger N ’s are originated by limited statistics.

Another way of presenting these results is by noticing that
the frequencies of prime knots, whose inverse is proportional
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FIG. 3. (Color online) Ratio of probability of 31 knot and of
(a) 51 knot, (b) 52 knot. The horizontal lines represent the estimated
asymptotic ratio (Table II, last column) ± error.
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TABLE I. Knot costs Ck for the SC, BCC, and FCC lattices,
determined from averages of the data NZ∅/Zk in the range 5000 �
N < 100 000 (specific points clearly nonasymptotic for the knots
with six crossings have also been excluded from the averages). Errors
refer to one standard deviation. The ratios ZBCC

k /ZSC
k and ZFCC

k /ZSC
k

in the last two columns seem to be independent on the knot k.

Ck/105 CSC
k /CL

k

Knot SC BCC FCC L = BCC L = FCC

31 2.28(2) 1.57(1) 1.64(2) 1.45(2) 1.39(3)
41 50(1) 35.5(5) 37.5(5) 1.41(5) 1.33(5)
51 510(30) 378(18) 380(10) 1.35(14) 1.34(12)
52 334(15) 233(7) 257(10) 1.43(11) 1.30(11)
61 5700(1200) 3000(500) 3100(400) 1.9(7) 1.84(63)
62 6800(1900) 3450(600) 3500(400) 2.0(9) 1.94(77)
63 6900(1300) 5900(700) 6000(950) 1.17(36) 1.15(41)

to the costs Ck , have fairly fixed ratios for different lattices:
according to columns 5 and 6 of Table I, we see indeed that
for each knot on the SC there are 1.44(3) knots on the BCC
and 1.37(3) knots on the FCC (these values correspond to
weighted averages of the columns, assuming a constant knot-
independent ratio for the two lattices).

B. Frequencies of composite knots

The case of composite knots formed by mk = m topo-
logically equivalent prime knots k [denoted (k)m hereafter]
was recently discussed in Ref. [14], where the entropic cost
C(k)m was determined in a rather simple way in terms of the
corresponding costs necessary to tie its prime components.
Since each component is (weakly) localized, in the large N

limit we can think of the chain with knot (k)m as an unknotted
ring decorated by topologically identical objects (prime knots),
each placed in one of ∼N available locations. The entropic
cost of each decoration is Ck , and being all independent one
would expect that the full cost C(k)m is simply given by the
product of the m elementary costs Ck . However, in this picture,
being that the prime knots are topologically identical, they
can be interchanged along the chain keeping the configuration
undistinguishable. This property gives rise to a combinatorial
factor m! that needs to be removed from the counting in order to
define the relative entropy of the decorated chain with respect

TABLE II. Ratios of partition function of 31 and of other
simple prime knots k2 (i.e., Ck2/C31 ), for the three lattices, showing
independence on the lattice type.

Zk1/Zk2 = Ck2/Ck1

k1 k2 SC BCC FCC Mean

31 41 21.9(7) 22.6(5) 22.9(6) 22.5(4)
31 51 224(15) 241(13) 231(9) 232(9)
31 52 146(8) 149(6) 157(8) 150(5)
31 61 2500(550) 1900(350) 1900(300) 2000(300)
31 62 3000(900) 2200(400) 2100(300) 2200(400)
31 63 3000(600) 3750(500) 3650(650) 3500(400)
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FIG. 4. (Color online) Log-log plot of ratios of partition functions
Z(31)m/Z∅ vs. N , for multiple trefoil knots, in (a) the BCC lattice and
(b) the FCC lattice. The straight lines are fits compatible with power
laws Nm (exponents are in the legend). For each lattice, the crossing
of these power-laws is at a single point of coordinates (C31 ,1).

to the unknotted one. This gives

C(k)m = m! (Ck)m. (7)

For more general composite knots that include groups of
different prime knots, the total cost is the product of the cost
of each group given by Eq. (7).

For trefoil knots on the SC lattice, it was shown that Eq. (7)
was fulfilled by an excellent degree of precision [14]. In Fig. 4
we can see that also on FCC and BCC lattices the data follow
the relation Z(31)m/Z∅ = NmC(k)m with C(k)m given by Eq. (7).

The importance of the factorial term m! can be understood
as follows: Since the trefoil is the prime knot with the lower
cost Ck , one would first guess that SAPs with the composite
knot (31)m are the most abundant ones for N > C31 . However,
when the cost ratio C31/C41 becomes smaller than m, because
of the factorial factor m!, configurations with knot (31)m−1#41

are more frequent than those hosting the knot (31)m. Since
C31/C41 ≈ 22, this means that the combinatorial entropy
loss should start to become relevant for a number of prime
components m � 22, which corresponds to N ≈ (C31 )22, i.e.,
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FIG. 5. (Color online) Mean radius of gyration 〈R2
g〉 divided by

N 2ν , with ν = 0.587597, i.e., corrections to scaling of 〈R2
g〉 as a

function of N−1/2: (a) BCC lattice and (b) FCC lattice. Note that
error bars and fluctuations for knots 51 and 52 at N = 1000 are larger
than other ones because of worse statistics.

chain lengths (for example, N ≈ 10114 on the BCC lattice) that
are impossible to test numerically. Hence, we can safely expect
trefoils to dominate the knot statistics for realistic polymer
rings in good solvent regime.

C. Metric properties

By collecting sampled configurations with the same knot
type we can compute, for example, the mean-squared radius of
gyration 〈R2

g(N )〉
k

of SAPs with fixed topology and see if its
scaling behavior depends either on k or on the lattice in which
the SAPs are embedded. According to Eq. (4) we consider the
ratio 〈R2

g(N )〉
k
/N2ν ∼Bk(1 + bk/N

�) and assume � = 1/2
that is close to all present estimates [4]. In Fig. 5 we report
these ratios as a function of N−1/2 for ν = 0.587597 [4] and
for different knot types: one can readily see that these ratios
converge (as N → ∞) to a common value, independent on the
knot type. This supports the expectation that Bk is the same
for all knots [7] and confirms indirectly the weak localization
property of the knotted portion of the chain [13]. The value of

Bk does, however, depend on the chosen lattice and is larger on
the BCC [≈0.28, see Fig. 5(a)] than on the FCC [≈0.18, see
Fig. 5(b)]. This is somehow expected, since Bk is an amplitude.
Note that, while Bk does not depend on topology, this is not
true for the amplitude of the correction to scaling bk whose
value increases with knot complexity.

D. Writhe

The writhe of a curve is a quantity that describes its
geometrical self-entanglement. A commonly used algorithm
to compute the writhe of a curve goes as follows: First, one
projects the curve onto an arbitrary plane. In general, the
projection will have crossings that most of the time will be
transverse, so that, after having established an orientation
of the curve, a sign +1 or −1 (determined by a right-hand
rule) can be assigned to each crossing. The sum of these
signs gives the signed crossing number in this projection. The
writhe of the curve is obtained by averaging these signed
crossing numbers over all possible projections. From this
definition it is clear that the main difficulty in computing
the writhe of a configuration would be the averaging pro-
cedure over all projections. Fortunately, for polygons on SC,
FCC, and BCC this procedure is enormously simplified by
theorems [26–28] that reduce the computation of writhe to
the average of linking numbers of the given curve with a
finite set of selected push-offs of the curve itself. In our
calculation of the writhe we made extensive use of these
results.

Clearly, the writhe of SAPs is, on average, zero and,
provided we do not distinguish mirror images in chiral knots,
this is still true for SAPs with fixed knot type. The simplest
nontrivial observable for the writhe distribution of SAPs with
knot type k is then its standard deviation σk . In Fig. 6 we report
the log-log plot of several σk as a function of N . Different
symbols refer to different knot types and it is readily seen that,
for sufficiently long N , all data converge to a common curve
that is essentially the one for unknotted SAPs. We can then
argue that, similar to SAPs in the SC lattice [19], and for all
the knots considered here, σk ∼σ∅ = D∅ Nη∅ , both for FCC
and BCC lattices.

A simple linear fit of the log-log data gives estimates η∅ =
0.503(3), D∅ = 0.155(5) for BCC and η∅ = 0.508(2), D∅ =
0.1495(14) for the FCC. These estimates are quite consistent
with the estimate η∅ = 0.506(1) found for the SC lattice [19].
This is not true, however, for the amplitude D∅, whose estimate
in the SC [D∅ = 0.1369(7)] differs from the ones shown above
for the other two lattices.

Similar results are found for the absolute value of the writhe
[exponent η∅ = 0.504(4) on the BCC and η∅ = 0.508(2) on the
FCC], which is expected, given the regular shape of the writhe
distribution [19].

Two features are worth noticing: first, the estimate of η∅ is
very close to the lower bound 1/2 proved rigorously for SAPs
with free topology in the SC lattice [18]. Second, the deviation
from the scaling law experienced by SAPs with fixed knot type
is less pronounced for the figure-eight and the unknot (achiral)
then for all the others knots that are chiral. This is related to
the nonzero mean writhe of each of the two images of a chiral
knot; see Ref. [19].
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FIG. 6. (Color online) Log-log plot of the standard deviation of
the writhe distribution as a function of N : (a) BCC lattice and (b)
FCC lattice.

IV. DISCUSSION

Since renormalization group arguments are not applicable
to the statistical ensembles of rings with fixed knot type,
we have resorted to simulations to investigate the universal
features of the scaling laws for the entropic, metric, and
geometrical properties of knotted SAPs. We have confirmed
that frequencies of knots in SAPs depend on the lattice in which
the configurations are embedded. On the other hand, the ratios
between knot frequencies are lattice-independent numbers and

depend only on the knot types involved. Surprisingly, knotted
configurations are more frequent on the BCC than on the FCC
lattice. This finding is unexpected because the FCC lattice has
a higher coordination number than the BCC one and because
the knots with the shortest number of steps are found in the
FCC lattice [15].

We have also supported the conjecture that composite knots
in SAPs appear with frequencies that, in the large N limit,
can be inferred from those of the prime knots in the knot
decomposition. This property was conjectured for polygons on
the cubic lattice [14] and here is confirmed also for SAPS on
the BCC and FCC lattices. The composite knot cost includes
a factorial m! for every group of m identical prime knots,
which multiplies the mth power of their cost. The factorial
term is suitable to properly take into account the combinatorial
entropic loss for identical prime components in the picture
where, in the large N limit, each prime component behaves as
a decorating point along the unknotted ring. As a byproduct,
one can predict that, for chain lengths N > 10114, knots with
the highest frequency include not only trefoil knots but also
other prime knots.

Concerning the metric properties of SAPs with fixed
topology, our results for all the three lattices considered
confirm that not only does the mean-squared radius of gyration
share the usual power law N2ν known for the set of all SAPs
but also the amplitude Bk does not depend on the knot type
k [7]; see Eq. (4). The dependence on the knot type is,
however, present at the level of the corrections to scaling,
which become more pronounced as the knot complexity of the
SAPs increases.

Finally, we have shown that the large N scaling behavior of
the variance of the writhe (or equivalently its absolute value)
for SAPs with knot type k is independent both on k and lattice
type and is very close to

√
N , which is the lower bound proved

by rigorous arguments for the class of all SAPs on the SC
lattice [18].

By universality, it is reasonable to expect that most of the
features shown here for SAPs on lattices can be valid also
for other models of polymer rings in which the excluded
volume interaction is taken into account. On the other hand,
preliminary studies on the knot probability for off-lattice
rings have either neglected completely the excluded volume
interaction [29] or looked at the knot probability amplitudes
for few and rather small values of N [30]. In the near future it
would be then interesting to extend the analysis reported here
to a larger set of polymer models.
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