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Analytic theory of the interactions between nanocolloids mediated by reversibly adsorbed polymers
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We develop an analytic theory of the polymer mediated interactions between nanocolloids reversibly adsorbing
the excluded volume polymers. This theory describes the limit of the weak adsorption where the correlation length
ξ of the polymer system is much smaller than the characteristic adsorption length (colloid absorbance) α. By
making use of the developed theory, we calculate the colloid immersion energy and the potential of the polymer
mediated interactions as functions of the colloid radius R, the absorbance α, and the polymer volume fraction
φP .
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Polymer mediated (PM) forces acting between colloids are
known [1,2] to arise from the unbalanced osmotic pressure
caused by the polymer density perturbations that stem from
the interactions between the polymers and the colloid surfaces.
These polymer-colloid interactions, therefore, play a decisive
role in determining the magnitude and even the sign of
the PM forces. The microscopic interactions between the
polymers and the colloid surfaces can be subdivided into two
main categories: repulsive entropic depletion interactions and
attractive adsorption interactions. In addition, depending on
the magnitude of the adsorption barrier, the polymer adsorption
can be distinguished between reversible and irreversible cases,
thus imposing different conditions of thermodynamic equilib-
rium on the colloid-polymer system. In the case of so-called
reversible adsorption, the chemical potential of polymers in
the depletion (enhancement) layers surrounding the colloids
is equal to that of the polymers in the bulk, thus allowing
a free exchange of polymers between these space domains.
In the case of irreversible adsorption, polymers are kept near
the adsorbing colloids by strong adsorption forces, so that the
above thermodynamic equilibrium is broken. The complicated
balance between the above depletion entropic and adsorption
forces, as determined by the thermodynamical conditions
corresponding to the adsorption case, totally determines
the structure of the polymer density near colloids and the
associated polymer mediated force.

In this paper, we concentrate on the study of PM interactions
for the specific case of nanoscopic colloidal particles mediated
by reversibly adsorbed polymers. Here we refer to the so-called
protein limit [3], where the size of the particles is much
less than the polymer gyration radius, so that the polymers
cannot be modeled as individual soft particles interacting
with colloids. The described limit of PM interactions is
immediately relevant to many biologically and technologically
important phenomena such as red blood cell adhesion [4],
DNA mediated depletion interactions [5], and size-exclusion
polymer chromatography [6]. In the diverse variety of different
polymer-colloid systems exemplified by the above cases,
PM interactions play the role of the driving force that
causes phase separations, colloid flocculation, association,
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and clustering that can be effectively used in tailoring the
properties of these systems in a desirable way. Understanding
the underlying microscopic mechanisms of the PM forces
depending on the type of adsorption interactions between the
polymers and colloid surfaces thus presents a key element
in predicting the macroscopic behavior of these systems in
different experimental settings.

We start our analysis of the PM interaction between two
colloids mediated by reversibly adsorbing polymers by giving
a mathematical formulation of the self-consistent mean field
theory (SCMFT) used in our study. We consider two colloids
of the radius R immersed in a bath of the reversibly adsorbing
polymers of the polymerization degree N . The geometry of
the problem is sketched in Fig. 1. Recall that in the considered
regime of the reversible adsorption, no permanent links
between the polymers and the colloid surfaces are formed, so
the polymers are assumed to be in thermodynamic equilibrium
with the bulk polymer system far away from the colloid
surfaces. SCMFT is used for determining the nonuniform
density structure in the described polymer system by using
the mean field potential V describing the excluded-volume
interactions among polymers, of the form

V = β−1vNρP η,
(1)

η = N−1
∫ N

0
Q(−→r ,n)Q(−→r ,N − n)dn − 1,

with η obtainable from the end density Q that obeys the
Edwards equation [7] of the form

∂nQ(−→r ,n) = ∇2−→r Q(−→r ,n) − βV (ρ)Q(−→r ,n). (2)

Here, Q(−→r ,n) is the coordinate −→r -dependent end density that
describes the probability to find one end of the polymer of the
polymerization degree n in the point −→r provided that its other
end is placed elsewhere in the free space 	 not occupied
by hard bodies. ρP is the bulk polymer number density
defined as a density of the polymer system far away from
any hard bodies immersed in this system, and ρb ≡ NρP is the
corresponding bulk monomer number density; β = (kT )−1 is
the reciprocal temperature, with k and T being the Boltzmann
constant and the absolute temperature, respectively; v is the
excluded volume parameter [8] that quantifies the polymer
excluded volume interactions. Note that the excluded volume
parameter v that enters the right-hand side (r.h.s.) of Eq. (2) is
defined by v = b3(1 − 2χ ) for the incompressible semidilute
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FIG. 1. Sketch of the geometry of the considered problem.

[8] polymer solution considered in the present work, with
the interaction between polymers and solvent described by
the Flory parameter χ . The case of purely steric interactions
between polymers v = b3 comes as the “athermal” limit
χ → 0 of the excluded volume parameter of the semidilute
polymer solution, while χ = 1/2 describes the case of a θ

solvent [8]. Hereafter, all lengths are measured in the polymer
segment Kuhn length b divided by

√
6, so that, for instance, the

radius of gyration of the polymer reads RG = √
N , N being

the polymerization degree.
Note that the Edwards equation given by Eq. (2) is

the second-order partial differential equation that must be
supplemented by appropriate boundary conditions (BCs) that
describe the adsorption interactions between the polymers and
colloid surfaces. In the presence of these attractive interactions,
one can no longer use the standard Dirichlet BC Q(−→r ,0) = 0
that describes only purely entropic repulsion between the
colloid surfaces and the polymers. Instead, we impose a BC of
the form

∂−→m [|−→r + x−→m |Q(−→r + x−→m,n)] + α−1|−→r + x−→m |
×Q(−→r + x−→m,n)|x=L = 0 (3)

on each colloid surface, where −→m is the positive unit normal to
the colloid surface, ∂−→m ≡ −→m∇ is the directional derivative,
−→r is the position vector of the colloid center, and x is the
distance to the colloid surface. The coefficient α that has
the dimension of length quantifies [9] the strength of the
adsorption interactions between the polymers and the colloid
surfaces. L is the range of the adsorption potential that is
assumed to be of the order of the monomer unit length, which
justifies including L in the effective particle radius R + L in
the considered diffusion limit L ∼ b � R.

Following the pioneering work of de Gennes in Ref. [10],
BCs similar to that expressed by Eq. (3) are often used
to describe the infinitesimally narrow adsorption potential
that can be represented by a δ function in the simplest
case of the planar adsorbing surface [8]. For the case of
curved adsorbing surfaces, the corresponding BC turns out
[11] to be dependent on the curvature radii of this surface,
rendering the choice of BC appropriate to the specific geometry
highly nontrivial. The BC given by Eq. (3) specific to the
considered spherical geometry has been derived in Ref. [12]
upon analyzing the solution of the Edwards equation given
by Eq. (2) in the presence of an infinitesimally narrow finite
range potential. Note that the use of the actual short-range
adsorption potential in the above derivation of the BC is
unavoidable since this potential proves to be nonrepresentable
by a δ function, in contrast to its planar counterpart. According

to the implicit equation for α derived in Ref. [12], near
the adsorption threshold u ≡ L

√
βA ∼ π/2 describing the

case of weak adsorption, the expression for α simplifies to
α = 4L/[π (2u − π )], A being the strength of the adsorption
potential. Alternatively, the characteristic length α can be
related [12] to the absorbance defined as the characteristic
width of the density enhancement layer formed around the
adsorbing colloid.

Note that the use of the boundary condition given by Eq. (3)
implies that the adsorption ability of the colloid surface is
sufficient to overcome the entropic barrier imposed by entropic
repulsion of polymers, as indicated by the appearance of the
surface bound states [12].

Solving the Edwards equation given by Eq. (2) supple-
mented by the boundary conditions, Eq. (3), for Q and
substituting the result into the second equality in Eq. (1), one
finds the excess polymer number density η. η in turn is to be
related to the immersion energy W of a single colloid and the
potential U of PM forces acting between two colloids. W and
U can be identified [12,13] with the excess grand potential,

�� = −ρb(βN )−1
∫

	

[(1 + vNρb)η(−→r )

+ vNρbη(−→r )2/2]d3r, (4)

caused by the presence of, respectively, one and two colloids
in the polymer system. Note that the above identification,
W = �� (U = ��), relies on the fact that �� describes the
minimal work needed to reversibly bring one (two) colloids
from infinity to its actual position in the polymer system
while maintaining thermodynamic equilibrium with the bulk
polymers as described by uniform density ρP .

To avoid essential mathematical difficulties associated
with solving the nonlinear differential equation (2), different
approximation schemes are often used, which rely on the
nature of the considered limiting cases. For the sake of
simplicity, in the present work we consider the asymptotic limit
N � 1 only, which describes the most practically important
case in which the gyration radius of polymers RG is larger than
all the relevant length scales. Mathematically, taking this limit
can be formalized by replacing the n-dependent end density
Q(−→r ,n) by its n-independent asymptotic form q(−→r ). The
resulting equation reads

∇2q = 2ξ−2q(q2 − 1), (5)

where ξ ≡ (vρb/2)−1/2 is the correlation length [7]. Note that
the asymptotic end density q satisfies the same boundary con-
dition, Eq. (3), which has been initially derived for the true end
density Q. Despite the above simplification, the complicated
geometry associated with the boundary conditions specified
on the surfaces of two spherical colloids makes the analytic
solution of Eq. (5) prohibitively complicated. However, in
some limiting cases, this equation can be reduced to the linear
differential equation that can be solved analytically even in the
described complicated geometry. In this paper, we concentrate
on one such limiting case, known as the “weak adsorption”
limit [8], where the colloidal particles are assumed to cause
only slight density perturbations in the polymer system. In
terms of the used notations, this limit can be formulated as
α−1ξ � 1, which simply states that the adsorption strength
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quantified through the inverse adsorption length α−1 is much
smaller than the screening effect of the excluded volume
quantified through the Edwards length ξ . Taking this limit
is equivalent to assuming [8] that q deviates only slightly from
its bulk value 1, which immediately reduces Eq. (5) to its
linearized form,

∇2q = 4ξ−2(q − 1), (6)

which represents the spatial behavior of the above deviation
correction q − 1 up to the leading order in α−1ξ . In contrast to
the nonlinear equation given by Eq. (5), its linear counterpart
in Eq. (6) can be solved analytically in the considered limit
of weak adsorption. For the case of a single colloid, the exact
solution of the linearized equation given by Eq. (6) reads

q1(−→r ) = 1 + R(qs − 1)r−1e−2(r−R)/ξ ,
(7)

qs =
(

1 + ξ

2R

)(
1 − ξ

2α

)−1

,

where r = |−→r | is the distance from the center of the colloid
and qs is the value of the end density on the surface of the
colloid.

It is important to note that the above solution q1(−→r ) of the
linearized equation given by Eq. (6) is valid for any radius R of
the colloid. Still, care must be exercised in using this formally
exact solution, since it has restricted validity with respect to
the relation between the parameters ξ and α. This restriction
can be mathematically expressed as α ∈ (−∞,0] ∪ (ξ/2,∞),
which enforces the physical requirement that the surface end
density qs must be positive for any α and ξ . Note that the above
restriction does not impose any additional constraints on the
validity of Eq. (7) in the cases of physical interest considered
in the present work. Specifically, the above condition evidently
covers the limit of weak adsorption ξ � α where, up to the
leading order in ξ , the surface end density reduces to qs =
1 + ξ (R−1 + α−1)/2. Note that in the weak adsorption limit
ξ � α, the deviation correction expressed by the second term
on the r.h.s. of Eq. (7) is positive at any R, α, and ξ so that the
adsorption of polymers always leads to the enhancement of the
polymer density in the vicinity of the colloid. In the limiting
case of nonadsorbing polymers described by the limit α → 0,
qs tends to 0 as α → 0, so that q1 in Eq. (7) reduces to the
solution q1 = 1 − Rr−1e−2(r−R)/ξ of the linearized equation in
Eq. (6) obtained in Ref. [13]. In addition, taking the limit R →
∞ of the r.h.s. of Eq. (7) gives the end density q∞

1 (−→r ) = 1 +
(α−1ξ/2) exp[−2(r − R)/ξ ] of the polymers in the presence
of the planar adsorbing surface that can be directly obtained
as a leading term of the expansion of the exact solution [8,14]
of the planar version of Eq. (7) in ξ/α.

In the case of two colloids with the centers separated by the
distance H , it is instructive to look for the solution of Eq. (6)
in the form of the linear combination of the exponential terms
similar to the last term on the r.h.s. of Eq. (7) that satisfies
the boundary condition given by Eq. (3). The corresponding
solution reads

q2(−→r ) = 1 + R(qs − 1)
(
1 − RH−1(qs − 1)e−2H/ξ

)−1

×
(

e−2(r1−R)/ξ

r1
+ e−2(r2−R)/ξ

r2

)
, (8)

where qs is defined in Eq. (7), and r1 and r2 are the distances
from the point −→r to the centers of the first and second
colloids, respectively. Similarly to its one-colloid counterpart
given by Eq. (7), the end density given by Eq. (8) correctly
reproduces the corresponding expression describing the case
of nonadsorbing polymers considered in Ref. [13], which
can be formally obtained from Eq. (8) by taking the limit
α,qs → 0. However, due to the more complicated geometry of
the two-colloid problem, Eq. (8) has more restricted validity
with respect to the colloid radius R in comparison with the
above one-colloid counterpart given by Eq. (7). Formally
speaking, the above expression for q2 satisfies the boundary
condition, Eq. (3), only in the asymptotic limit of the “protein”
colloids R � H . Fortunately, this formal restriction can be
avoided in the semianalytical calculation of the PM potential
based on Eq. (8) discussed in what follows.

To derive the immersion energy W and the potential of the
PM interactions U , we substitute the obtained expressions for
the end density given by Eqs. (7) and (8) into the expression
for the excess grand potential �� given by Eq. (4) to write

βW = −3φP R−1
G R(qs − 1) (9)

and

βU = −6φP (HRG)−1R2(qs − 1)2e−2H/ξ , (10)

respectively. Here, φP is the polymer volume fraction defined
by φP = (4π/3)R3

GρP , and qs is defined in Eq. (7). Similarly
to the expression for the polymer end densities in the presence
of one and two colloids given by Eqs. (7) and (8), respectively,
Eqs. (9) and (10) can be straightforwardly reduced to their
nonadsorbing polymer and weakly adsorbing polymer limits.
According to the explanations given right below Eq. (7), those
limits can be obtained, respectively, by setting qs = 0 and qs =
1 + ξ (R−1 + α−1)/2 on the r.h.s. of Eqs. (9) and (10). Note
that the limit of nonadsorbing polymers derived from Eqs. (9)
and (10) by setting qs = 0 (α = 0) correctly reproduces the
corresponding expressions for the colloid immersion energy
and the depletion potential obtained in Ref. [13].

Note that in contrast to the expressions for the colloid
immersion energy W given by Eq. (9), the expression for
the PM potential U in Eq. (10) is valid only up to the leading
order in the colloid radius. In this limit, the formula for the PM
potential given by Eq. (10) allows for a simple interpretation
that can be elucidated by representing this formula as

βU = −(
βWρ−1

P

)2
K0(H/RG),

(11)
K0(x) = (2π )−1ρP R−3

G x−1e−2x/λ,

where λ ≡ ξ/RG is the reduced polymer correlation length
that depends on the overlap degree of the polymer coils
in the polymer solution. Note that λ decays from 1 at the
overlap threshold (corresponding to the semidilute solution
boundary) to 0 at strong overlaps, thus presenting a convenient
dimensionless parameter amenable to evaluations of the
overlap degree for each particular system of the excluded
volume polymers.

Two important remarks as to the derived expression for the
PM potential, Eq. (10), are in order here. First, according to this
expression, U is always negative, which corresponds to the at-
traction between colloids. In addition, the absolute magnitude
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of U increases upon increasing the inverse absorbance α−1 and
decreases upon increasing the correlation length ξ . The former
trend is caused by the fact that α−1 quantifies the adsorption
strength of the colloid that imposes the enhanced bridging
effect [15], which is known to play in favor of increasing
the strength of PM interactions. The latter, opposite trend of
decreasing the strength of the PM interaction upon increasing
the correlation length ξ can be attributed to increasing
the excluded volume screening effect that suppresses these
interactions. Secondly, the form of Eq. (11) suggests that in
the protein limit of small colloids, the potential of PM forces
factorizes into the terms that describe the colloid immersion
energies and the correlation function of the homogeneous
(bulk) system of the excluded volume polymers. Note that
this form of PM potential has similar structure as that obtained
[13,16] for the case of purely entropic repulsion between the
surface of protein colloids and polymers.

Note that the described simple factorization of the expres-
sion for the PM potential U into the immersion energy W

and the correlation function K0 provides a convenient route
to practical use of this expression. In fact, in the considered
limit ξ � α, the correlation function of the excluded volume
polymers K0 turns out to be independent of the nature of
the adsorption interactions between the colloid and these
polymers. The effect of weak adsorption of polymers to the
surfaces of small colloids leading to the appearance of the PM
interactions exhibits itself only in the dependence of the
colloid immersion energy on the adsorption strength quantified
through the parameter α. In other words, the approximate
expression for U given by Eq. (11) gives a possibility to
reduce the two-colloid problem of calculating the polymer
mediated interaction potential to the one-colloid problem of
determining the colloid immersion energy. The accuracy of
this approximate expression can therefore be easily improved
by using the refined correlation function K0 that is free of the
limitations of the used SCMFT approach. For instance, the
polymer-colloid interaction-independent polymer correlation
function K0 can be deduced from a comparison between the
results of the Monte Carlo simulations and the theoretical
formula for the depletion potential UD along the lines of our
previous work in Ref. [13]. Note that the analytic expression
obtained in Ref. [13] for the correlation function of the form

K = σgρP H−3(H/RG)
5
3 exp[−(2H/λRG)

5
6 ] (12)

leads to a good agreement between the simulations and the
theoretical predictions for UD , which proves the adequateness
of Eq. (12) for the case of the excluded volume polymers. The
second ingredient of the expression for the PM potential in
Eq. (11), the colloid immersion energy W , can be calculated
numerically for arbitrary values of the correlation length ξ ,
the absorbance α, and the colloid radius R. These calculations
are much less computationally intensive in comparison with
the corresponding exact solution of the Edwards equation in
bispherical geometry imposed by the presence of two colloids.
This significant simplification, outlined above, is achieved at a
cost of restricting the validity of the results to the protein limit
R <∼ ξ only, which establishes the hierarchy of length scales
R � ξ � α describing the domain of parameters where the
used approximation works best.

FIG. 2. Reduced PM potential for several values of the reduced
colloid radius R/ξ and the selected value of the reciprocal adsorption
length ξ/α = 0.1.

The above outlined calculation of the PM potential based on
the numerical evaluation of the immersion energy W and the
analytic result for the correlation function given by Eq. (12) are
illustrated in Fig. 2. Note that the reduced correlation length
λ and the polymer volume fraction φP used in parametrizing
the PM potential U are not independent. For the considered
case of the excluded volume polymers, these parameters can
be related by using the evaluation procedure described in
detail in Ref. [13]. This evaluation shows that φP λ is the
increasing function of φP that varies between 0.2 at the overlap
threshold φP = 1 and 0.39 at φP = 5. The at-contact reduced
PM potential βU (H = 2R), therefore, reaches the order of
unity at small colloid radii R ∼ 0.2ξ , and it decreases by
a factor of 10 upon increasing the colloid radius up to the
order of the correlation length ξ . Note that the described
dependence of the magnitude of the PM potential on the
colloid radius shows just the opposite trend in comparison
with the purely entropic depletion potential that increases with
R. This difference stems from different dependencies of the
colloid immersion energy W on its radius R for the above
cases of nonadsorbing and adsorbing polymers. In the case of
nonadsorbing polymers that mediate purely entropic depletion
interactions, the main factor that affects the strength of these
interactions is the colloid surface area, so that W turns out
to be proportional to R. For the case of reversibly adsorbed
polymers, the main factor affecting the immersion energy
is the strength of the adsorption interactions, so that even
small colloids can change considerably the polymer density
structure in their vicinity at large enough α−1. Interestingly,
in the case of nonadsorbing polymers, the increasing power
dependence of W on R overrides [13] the decreasing power
dependence of the correlation function K(H = 2R) described
by Eq. (12), so that the resulting at-contact depletion potential
UD ∼ W (R)2K(H = 2R) increases with increasing R. In
contrast, for the considered case of adsorbing polymers, the
mentioned decreasing power dependence K(H = 2R) is the
main factor contributing to the R dependence of U (H = 2R)
in the limit R � ξ . This results in the observed decreasing
U (H = 2R) with increasing R for adsorbing polymers, which
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is solely due to the decreasing H dependence of the correlation
function K(H ) given by Eq. (12).

In summary, we obtained an analytic expression of the
potential of the PM interaction between nanocolloids mediated
by reversibly adsorbing polymers. An adequate description
of the adsorption interactions between the polymers and
colloid surfaces has been achieved through using the boundary
condition that correctly describes the case of reversible
polymer adsorption onto nanosized “protein” colloids. The
obtained analytic expression for the PM potential can be
effectively used to investigate the thermodynamic properties
of polymer-nanocolloid mixtures in dependence on the affinity
of the colloid surface for polymers quantified by the adsorption
length α incorporated in the above BC. In particular, the
present results for the PM potential shown in Fig. 2 raise yet

another interesting question if the PM interactions mediated
by adsorbing polymers can induce the phase separation of the
colloid-polymer system. It is well known [16] that inducing
this separation by mixing nonadsorbing polymers with small
nanocolloids is hardly possible. According to our results, the
presence of the adsorption interactions between the colloids
and polymers can drastically change this picture and lead to
colloid-polymer demixing even at small R and large enough
α−1. A more detailed discussion of the colloid-polymer phase
diagram based on the calculated PM potential intended to rig-
orously answer the above question will be reported elsewhere.
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