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Relativistic Lagrangian model of a nematic liquid crystal interacting with an electromagnetic field
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We develop a relativistic variational model for a nematic liquid crystal interacting with an electromagnetic
field. The constitutive relation for a general anisotropic uniaxial diamagnetic and dielectric medium is analyzed.
We discuss light wave propagation in this moving uniaxial medium, for which the corresponding optical metrics
are identified explicitly. A Lagrangian for the coupled system of a nematic liquid crystal and the electromagnetic
field is constructed, from which a complete set of equations of motion for the system is derived. The canonical
energy-momentum and spin tensors are systematically obtained. We compare our results with those within the
nonrelativistic models. As an application of our general formalism, we discuss the so-called Abraham-Minkowski
controversy on the momentum of light in a medium.
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I. INTRODUCTION

Liquid crystals provide an interesting example of a subject
where the fundamental and applied sciences are deeply related.
After their first experimental discovery more than 120 years
ago, great number of substances (natural and synthesized)
with the properties of liquid crystals are known, which have
many important practical applications for modern technology.
Good overviews and introduction to this subject can be
found, for example, in Refs. [1–8]. In our study, we deal
with nematic liquid crystals (with a possible generalization
to cholesteric crystals) which fall into a particular class of
media with microstructure. In classical continuum mechanics,
a material medium consists of structureless points. In the
early 20th century, the Cosserat brothers [9] proposed a
generalization of this simple picture, in which the material
body or fluid is formed by particles whose microscopic
properties contribute to the macroscopic dynamics of the
medium. These more complex continuous mechanical models
are known under different names, such as the theories of
multipolar, micromorphic, or oriented media [10–12]. An
important particular case of continua with microstructure is
represented by the spinning fluids [13–15].

As a medium with anisotropic electromagnetic (optical)
properties, a nematic liquid crystal is another particular case
of a medium with microstructure. Just like the spinning
fluid, which is characterized by elements with an “internal”
degree of freedom associated with spin, the liquid crystal
is a medium of “stretched” particles whose orientational
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motion is described by an additional hydrodynamic variable.
Mathematically, this additional degree of freedom is a unit
vector field n = n(x,t), n2 = 1, which is called director.
The director is a microscopic variable that is assigned to
every material point of the medium. For the cholesteric liquid
crystals, in addition, the chirality (handedness) property is
assigned to the material points.

We construct here a complete relativistic Lagrangian theory
of nematic liquid crystals interacting with the electromagnetic
field. The nonrelativistic variational models were developed
previously in Refs. [16,17]; see also [7]. This variational
approach is convenient for the study of the full nonlinear dy-
namics of a liquid crystal, namely the equations of motion and
the conservation laws. Relativistic fluid models are working
tools in various fields of research such as high-energy plasma
astrophysics and nuclear physics (where nonideal fluids are
extremely successfully applied to the description of heavy
ion reactions) [18,19]. Also in cosmology, hydrodynamical
descriptions of matter are standard both for the early and for
the later stages of the evolution of the universe. Our derivations
make use of the earlier studies in which the relativistic
Lagrangian theories were developed for ideal fluids without
[20–22] and with microstructure [23]. Of special interest are
the models [24,25] of relativistic spinning fluids. Since we use
the Lagrangian formalism it is nontrivial to take into account
dissipative effects. In this work we neglect dissipation in the
motion of the relativistic liquid crystal and therefore our model
has to be understood as a first step towards a more realistic
theory. On the other hand, the description of light propagation
in this medium is not affected by the inclusion of viscosity.
Additionally, even in the case in which the medium is a “rigid”
nondissipative anisotropic (birefringent) crystal, a model in
terms of a “liquid” (i.e., a fluid) is needed to consistently
describe its response to the electromagnetic field, since the
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concept of rigid bodies is incompatible with a relativistic
description.

The general framework of the latter works has been used
recently for the investigation of the problem of the energy
and momentum of the electromagnetic field in moving media
[26,27]. However, this study has been restricted to isotropic
media only. Here we further develop a relativistic Lagrangian
fluid model and apply the extended theory to the description
of a nematic liquid crystal and its interaction with the
electromagnetic field. This is an example of light interacting
with a dynamical anisotropic medium, which can be used to
gain a deeper insight in the long standing Abraham-Minkowski
controversy [28–34].

As a starting point we use the nonrelativistic model [16,
17]. The important difference is, however, that we use the
Euler picture and not the Lagrange one as in Refs. [16,17].
The Euler approach seems to be more physically attractive
since it provides the field-theoretical treatment for both the
electromagnetic field and the material variables that describe
the dynamics of the liquid crystal.

Our discussion here is confined to the flat Minkowski
space-time. In other words, we do not consider the gravitational
effects encoded in a nontrivial Riemannian metric. However,
the generalization of the relativistic Lagrangian model of liquid
crystals to curved space-times is fairly straightforward. A
possible physically important application of such a gener-
alization would be a reanalysis of the structure and defect
formation (walls, strings, textures) in cosmology, relying on
the analogy between cosmological defects and defects in liquid
crystals [35,36].

Our notation follows [26] and the book [37]. In particular,
the indices from the middle of the Latin alphabet i,j,k, . . . =
0,1,2,3 label the four-dimensional space-time components, the
Latin indices from the beginning of the alphabet a,b,c, . . . =
1,2,3 refer to the three-dimensional spatial objects and
operations (the 3-vectors are also displayed in boldface). The
Minkowski metric is defined as gij := diag(c2, −1, −1, −1)
and the three-dimensional Levi-Civita symbol in the rest frame

is chosen so that
◦
ε123 := 1. The determinant is denoted as usual

by g = det( gij ); thus, in Minkowski space-time
√−g = c.

In the four-dimensional framework spatial components of
tensor must be raised or lowered by gab = −δab, but when
we are working only with three-dimensional tensors, we use
the convention of using just the Euclidean metric δab to raise
and lower spatial indices.

II. CONSTITUTIVE RELATIONS OF A LIQUID
CRYSTAL AT REST

In Maxwell’s theory [37] the electromagnetic field is de-
scribed by the electromagnetic field strength Fij = (E,B) and
the electromagnetic excitation Hij = (D,H). Additionally, in
order to obtain a predictive theory, one needs to specify the
constitutive relations Hij = Hij (Fkl) for the specific medium
under consideration.

A liquid crystal is a medium with uniaxial anisotropic
properties. The constitutive relations for a medium with
electric and magnetic properties of this kind can be expressed,

when the medium is at rest, by

Da = ε0
◦
εabEb, (2.1)

Ha = μ−1
0

◦
μ−1

ab Bb. (2.2)

Here
◦
εab is the relative permittivity tensor and

◦
μ−1

ab is the

inverse of the relative permeability tensor
◦
μab. The fact that

all quantities are considered in the frame where the medium is
at rest is indicated with the symbol ◦.

Alternatively to (2.1) and (2.2), it is also useful to write
the constitutive relations in terms of the polarization and
magnetization fields:

P a = ε0(
◦
εab − δab)Eb, (2.3)

Ma = μ−1
0

(
δab − ◦

μ−1
ab

)
Bb. (2.4)

In the case when the medium has the same optical axis
n for the electric and magnetic anisotropy, it is convenient

to decompose
◦
εab and

◦
μ−1

ab in terms of its eigenvectors. By
choosing these vectors as n, n1, and n2, with two eigenvalues
equal and one different, we have

◦
εab = ε‖nanb + ε⊥

(
na

1n
b
1 + na

2n
b
2

)
, (2.5)

◦
μ−1

ab = μ−1
‖ nanb + μ−1

⊥
(
n1

an
1
b + n2

an
2
b

)
. (2.6)

Here ε⊥ and ε‖ are the relative permittivities, perpendicular and
parallel to the optical axis vector n (with Cartesian components
na); μ⊥ and μ‖ are the corresponding perpendicular and

parallel relative permeability functions. Since the tensors
◦
εab

and
◦
μ−1

ab are symmetric and real for a nondissipative medium,
the eigenvectors satisfy the closure relation

nanb + na
1n

b
1 + na

2n
b
2 = δab. (2.7)

Inserting (2.7) in Eqs. (2.5) and (2.6), we obtain a simpler
expression for the dielectric and magnetic tensors when the
medium is at rest,

◦
εab = ε⊥ δab + �ε nanb, (2.8)

◦
μ−1

ab = μ−1
⊥ δab + �μ−1 nanb. (2.9)

The dielectric and magnetic anisotropies are defined, respec-
tively, by

�ε := ε‖ − ε⊥, (2.10)

�μ−1 := μ−1
‖ − μ−1

⊥ . (2.11)

The latter quantity should not be misunderstood as the inverse
of the difference μ‖ − μ⊥, that is, �μ−1 �= (�μ)−1. Strictly
speaking, one should write (2.11) as �(μ−1), but we omit the
parentheses to simplify the formulas.

III. NONRELATIVISTIC LAGRANGIAN FOR A NEMATIC
LIQUID CRYSTAL

The nonrelativistic liquid crystal theory is a well established
subject; see, for instance, [1,3,8,38–44]. Nevertheless, the
Lagrangian approach for the study of the dynamics of this
medium with microstructure was developed only recently in
Refs. [16,17] (although the variational methods were used in
Ref. [7] for the analysis of the equilibrium problems for the
liquid crystals).
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According to [16,17], the nonrelativistic kinetic energy
density of a liquid crystal reads

K := ρm
v2

2
+ ρmJ

ω2

2
. (3.1)

Here ρm(x,t) is the mass density of the liquid crystal, v(x,t)
its velocity field, J the geometric moment of inertia of a fluid
element (dimensionless), and ω the angular velocity of the
director, which is defined as

ω := n × ṅ, (3.2)

with n(x,t) the director field of the liquid crystal and

ṅ := ∂n
∂t

+ (v · ∇)n (3.3)

the convective derivative of the director.
The potential energy density is represented by the free

energy F , which is usually taken as the thermodynamic
potential in the theory of liquid crystals. Following [1,8,16,17],
we express the free energy as

F = F0 + Fd + Fe + Fm, (3.4)

where F0 = F0(ρm,T ) is the internal free energy which
describes the hydrodynamic portion of F and depends on the
density ρm and the temperature T . The pressure in the medium
is introduced as p := ρ2

m(∂F0/∂ρm)T . The internal dynamics
of the director field is described by the Frank deformation
potential Fd which is defined in Ref. [1], for the simpler liquid
crystal with group symmetry (∞/mm), by

Fd = 1
2K1(∇ · n)2 + 1

2K2(n · ∇ × n)2

+ 1
2K3(n × ∇ × n)2. (3.5)

The three parameters K1, K2, and K3 are known as Frank’s
elastic constants (elastic moduli), which are all independent
from each other and also positive. One usually calls K1 splay,
K2 twist, and K3 bend constants. The so-called saddle-splay
boundary term is omitted, since it is a total derivative that does
not contribute to the equations of motion. For a typical nematic
crystal, one has K1 = 2.3 × 10−12 N, K2 = 1.5 × 10−12 N,
K1 = 4.8 × 10−12 N (see [1,7]).

The cholesteric liquid crystals are characterized by an
additional modulus K0 and a constitutive constant τ , related
to the chirality of the medium. As a result, the Frank potential
(3.5) is modified to

Fd = K0τ (n · ∇ × n + τ ) + 1
2K1(∇ · n)2

+ 1
2K2(n · ∇ × n + τ )2 + 1

2K3(n × ∇ × n)2. (3.6)

We restrict ourselves to the case of the nematic crystals with
τ = 0, although the generalization to the cholesteric crystals
is straightforward.

The interaction free energy of the liquid crystal with an
electric field E is represented by Fe. Generally, controlled
in the field E, the electric free energy of the system [45]
readsFe = − ∫

P · d E. Using (2.3) and the expression for the
permittivity tensor in the comoving frame (2.8), we explicitly
obtain

Fe = − 1
2ε0(ε⊥ − 1)E2 − 1

2ε0�ε(n · E)2. (3.7)

Analogously [3,46], we have Fm = − ∫
M · d B for the

magnetic free energy controlled in the field B, which yields

Fm = − 1

2μ0
(1 − μ−1

⊥ )B2 + 1

2μ0
�μ−1(n · B)2. (3.8)

Then, the nonrelativistic Lagrangian of the nematic liquid
crystal is constructed as the difference Lnr = K − F of the
kinetic energy density K and the “potential” free energy
density F . Accordingly, we have

Lnr = ρm
v2

2
+ ρmJ

ω2

2
− F0(ρm,T ) − 1

2
K1(∂an

a)2

− 1

2
K2(εabcna∂bnc)2 − 1

2
K3(εabcn

bεcde∂dne)2

+ 1

2
ε0ε⊥ E2 + 1

2
ε0�ε(n · E)2

− 1

2μ0
μ−1

⊥ B2 − 1

2μ0
�μ−1(n · B)2, (3.9)

where we added the energy density of the pure electromagnetic
field ε0 E2/2 − B2/2μ0. This is necessary to describe the
electromagnetic field as a dynamical part of the system and
to guarantee the correct limit of the energy density in free
space.

The total nonrelativistic liquid crystal Lagrangian (3.9)
can be conveniently recast into the sum of the matter
part Lm

nr(ρm,T ,va,na,∂bn
a) and the electromagnetic part

Lem
nr (na,Ea,B

a),

Lnr = Lm
nr + Lem

nr , (3.10)

where

Lm
nr = ρm

v2

2
+ ρmJ

ω2

2
− F0(ρm,T ) − 1

2
K1(∂an

a)2

− 1

2
K2(εabcna∂bnc)2 − 1

2
K3(εabcn

bεcde∂dne)2, (3.11)

Lem
nr = 1

2
ε0ε⊥ E2 + 1

2
ε0�ε(n · E)2 − 1

2
μ−1

0 μ−1
⊥ B2

− 1

2
μ−1

0 �μ−1(n · B)2. (3.12)

The nonrelativistic variational theory based on the Lagrangian
(3.9) was developed in Refs. [16,17]. It used the Lagrange
approach and was formulated in terms of (E,H) instead of the
fields (E,B). Dynamics of the total system is determined by
the action integral Inr = ∫

dt d3x Lnr.

IV. RELATIVISTIC LIQUID CRYSTAL LAGRANGIAN

The formal theory of liquid crystals has been studied only
in the nonrelativistic domain, as can be seen in Refs. [1–8,16,
17,38–41]. Here we develop a truly relativistic model for these
systems, generalizing the nonrelativistic three-dimensional
objects and operations to the corresponding four-dimensional
notions. In contrast to [16,17], we work in the Euler approach
which is more convenient for field-theoretical applications.

First, we notice that the 3-velocity field of the liquid crystal
v is proportional to the spatial part of the 4-velocity ui =
(γ,γ v), which by definition always satisfies the condition

uiui = c2 > 0. (4.1)
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Thus, ui is a timelike 4-vector field. Here γ = 1/
√

1 − v2/c2

is the usual Lorentz factor. Analogously, we can define the
director 4-vector Ni as the relativistic covariant generalization
of the director na . When the medium is at rest, Ni should
reduce to na; that is,

◦
N

i = (0,n). (4.2)

We now recall that n, by definition, has a unit length. This
together with (4.2) imposes the scalar condition

NiNi = −1 < 0, (4.3)

which should be fulfilled in all reference frames. In other
words, Ni is a spacelike 4-vector. In the rest frame,

◦
ui = (1,0),

and together with (4.2), we have
◦
ui

◦
Ni = 0. Since this is a scalar

condition, it must be valid in all reference frames as well:

Niui = 0. (4.4)

In addition, it is necessary to define a relativistic general-
ization of the three-dimensional Levi-Civita symbol in order
to consistently express the “cross products” in Eq. (3.9). Let
us introduce

εijk := ηijkl

ul

c
, (4.5)

with the four-dimensional Levi-Civita tensor defined such
that η0123 := √−g = c and thus in the rest frame its spatial
components reduce to the usual three-dimensional Levi-Civita

symbol
◦
εabc, with

◦
ε123 = 1. Using this object, we immediately

define the angular 4-velocity of the director by

ωi := εijkNj Ṅk, (4.6)

where the convective “time” derivative is naturally

Ṅ i = uj∂jN
i. (4.7)

The relativistic variational theory of an ideal fluid with
structureless material elements is a well developed subject
[20–23,26]. The generalization to the ideal fluid with classical
spin (modeled after the Dirac particles) was done in Refs.
[24,25]; see also the references therein.

A liquid crystal medium represents another example of
a fluid with microstructure, represented by the director field
attached to each element of the fluid. Here we develop a
relativistic variational model for this system by combining
the variational model described in Ref. [26] (for the kinetic
translation energy and the internal energy), with the four-
dimensional generalization of the liquid crystal elastic terms
in Eq. (3.11):

Lm = −νui∂i
1 + 
2u
i∂is + 
3u

i∂iX − 1
2Jνωiωi

− ρ(ν,s) − 1
2K1(∂iN

i)2 − 1
2K2(εijkNi∂jNk)2

+ 1
2K3(εijkN

jεkln∂lNn)2 + 
0(uiui − c2)

+
4(NiNi + 1) + 
5u
iNi. (4.8)

Here ν is the particle number density of the liquid crystal,
J is the moment of inertia of one element [related to J in
Eq. (3.1) by means ofJ ρm = Jν], ρ(ν,s) is the internal energy
density of the relativistic fluid, s is the entropy density, X is
the identity (Lin) coordinate, and 
I , with I = 0, . . . ,5 are
Lagrange multipliers. By imposing these 
’s we ensure the

fulfillment of the conditions (4.1), (4.3), and (4.4) throughout
all the dynamics of the nematic liquid crystal, in addition to
the particle number continuity equation,

∂i(νui) = 0, (4.9)

and the conservation of entropy and identity of particles along
each streamline of the fluid:

ui∂is = 0, (4.10)

ui∂iX = 0. (4.11)

A different sign of the K3 term in Eq. (4.8), as compared to
(3.11), is explained by the fact that the 4-vector εijkN

jεkln∂lNn

is spacelike, hence the square of its 4-length is negative. Notice
that, as is usual in relativistic fluid models, we choose s and ν

as the indepedent thermodynamic quantities, instead of T and
ρm as in the nonrelativistic case. This choice is conventional,
since all the other thermodynamic quantities can be derived
from them.

The dynamics of the relativistic system is governed by the
action I = (1/c)

∫ √−g d4x Lm. One may wonder how the
nonrelativistic translational Lagrangian can be recovered from
the relativistic Lagrangian. As a first step, we represent the
internal energy density as the sum ρ = ρmc2 + F0 of the “rest-
mass” density and the hydrodynamic energy density. Consider
now an arbitrary volume element which reads

√−g d4x =
c dV0 dτ in the comoving reference frame with the 3-volume
dV0 and the proper time τ . The next step is to notice that the
rest mass of a fluid’s element dm0 = ρmdV0 is the same in
all frames and the invariant volume element dV0 dτ = dV dt

[with dτ =
√

1 − v2/c2dt ≈ (1 − v2/2c2)dt] in the reference
frame where the fluid’s element dV has velocity v. As a
result, in the nonrelativistic limit we indeed recover the
translational part of the Lagrangian: (1/c)

∫ √−gd4x (−ρ) ≈∫
dtdV

(
ρmv2/2 − F0

)
. A more detailed discussion can be

found in Ref. [47], for example.

V. LAGRANGIAN FOR THE ELECTROMAGNETIC FIELD
INTERACTING WITH THE LIQUID CRYSTAL MEDIUM

In order to describe the interaction of the electromagnetic
field with matter in an explicitly covariant manner, we make
use of the standard electromagnetic Lagrangian given by

Lem = − 1
4HijFij . (5.1)

It yields the macroscopic Maxwell equations as Euler-
Lagrange equations without sources (we assume that the fluid
elements are not electrically charged):

∂jH
ij = 0. (5.2)

Here the electromagnetic strength tensor Fij is expressed
in terms of the electromagnetic 4-potential Ai , as usual by
Fij := ∂iAj − ∂jAi and Hij is the covariant electromagnetic
excitation tensor [26,37].

The constitutive relations for any linear, nondissipative, and
nondispersive medium can be expressed in general covariant
form by

Hij = 1
2χijklFkl, (5.3)
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where χijkl is the so-called constitutive tensor with the
symmetries

χijkl = −χjikl = −χijlk = χklij . (5.4)

Therefore, it has 21 independent components, in general. If we
insert (5.3) into (5.1), we obtain

Lem = − 1
8χijklFijFkl. (5.5)

Historically, the general constitutive relation (5.3) was first
formulated by Bateman [48], Tamm [49–51], and later in the
modern notation by Post [52].

As we commented in Sec. II, the nematic liquid crystal is an
example of a uniaxial dielectric and diamagnetic anisotropic
medium and therefore we need to find an explicit covariant
expression for the constitutive tensor χijkl for a medium of
this kind.

A. Constitutive tensor in the comoving frame

The components of the covariant constitutive relation (5.3)
must reproduce the expressions (2.8) and (2.9), in the rest

frame of the medium. Therefore, given
◦
εab and

◦
μ−1

ab in terms
of the director n and the eigenvalues ε⊥, ε‖, μ−1

⊥ , and μ−1
‖ , the

nonvanishing components of
◦
χijkl must explicitly read

◦
χ0ab0 = ◦

εab = ε⊥δab + �ε nanb, (5.6)
◦
χabcd = εabf εcdg

◦
μ−1

fg

= μ−1
‖ (δacδbd − δadδbc) − �μ−1(δacnbnd − δadnbnc

+ δbdnanc − δbcnand ). (5.7)

It is worthwhile to notice that this constitutive tensor
characterizes all nonmagnetoelectric anisotropic media with
dielectric and diamagnetic uniaxial properties in the direction
of the optical axis n. In the special case of nematic liquid
crystals, the optical axis coincides with the director field.

B. Dispersion relations and factorization of the Fresnel equation

If we look for wave solutions to the macroscopic Maxwell’s
equations (5.2) in a source-free and homogeneous medium
(described by χijkl), then the general dispersion relation is
determined in covariant form by the fourth order Fresnel
equation for the 4-wave covector ki :

Gijklkikj kkkl = 0. (5.8)

Here Gijkl is the Tamm-Rubilar tensor [53], given by

Gijkl := 1

4!c2
ηmnpqηrstuχ

mnr(iχj |ps|kχ l)qtu. (5.9)

We can use the nonvanishing components of the constitutive
tensor (5.6) and (5.7) in Eqs. (5.9) and (5.8) and thereby verify
the factorization of the fourth order Fresnel wave surface into a
product of two light cones, determined by two optical metrics
in the rest frame of the medium:

◦
Gijklkikj kkkl = ( ◦

γ ij
e kikj

)( ◦
γ kl

m kkkl

) = 0. (5.10)

Here the light cones read explicitly
◦
γ ij

e kikj = n2k2
0 − αek2 + (αe − 1)(n · k)2, (5.11)

◦
γ ij

m kikj = n2k2
0 − αmk2 + (αm − 1)(n · k)2, (5.12)

with the refractive index

n2 := μ⊥ε⊥. (5.13)

The parameters αe and αm quantify the proportion of dielectric
and diamagnetic uniaxial anisotropy in the medium and read

αe := ε⊥
ε‖

, αm := μ⊥
μ‖

. (5.14)

One of the reduced quadratic Fresnel dispersion relations,
◦
γ ij

e kikj = 0, implies that if k is parallel to n, then n2k2
0 −

k2 = 0, which means that in this case light propagates with
the expected effective refraction index of the ordinary ray:
n. On the other hand, if k is orthogonal to n then the
dispersion relation reduces to n2k2

0 − αek
2 = 0. This means

that light propagates with an effective refraction index ne,
given by n2

e = n2/αe = ε‖μ⊥. We may call this the dielectric
extraordinary ray. Similarly, the second Fresnel dispersion

relation,
◦
γ ij

mkikj = 0, leads to a normal ordinary ray refraction
index n for waves with wave vector k parallel to the optical axis
n. For k ⊥ n, it implies that light propagates with a refraction
index nm, with n2

m = n2/αm = ε⊥μ‖, corresponding to the
diamagnetic extraordinary ray.

C. Covariant description

Since both (5.11) and (5.12) must be covariant equations,
it is not difficult to derive the general expressions of the two
optical metrics in a frame where the medium moves with an
arbitrary 4-velocity ui = (γ,γ v):

γ ij
e = αe gij + (n2 − αe)

c2
uiuj + (αe − 1)NiNj , (5.15)

γ ij
m = αm gij + (n2 − αm)

c2
uiuj + (αm − 1)NiNj . (5.16)

One can then verify that the covariant form of the constitutive
tensor, which takes into account all the necessary symmetries
and which reduces to (5.6) and (5.7) in the rest frame of the
medium, is given by

χijkl = 1

μ0
(μ−1

⊥ + �μ−1)(gikgjl − gilgjk)

+ 1

μ0c2

[
(n2 − 1)

μ⊥
− �μ−1

]
(gikujul − gilujuk

+ gjluiuk − gjkuiul) + 1

μ0
�μ−1(gikNjNl

− gilNjNk + gjlNiNk − gjkNiNl)

− 1

μ0c2
(�ε + �μ−1)(uiukNjNl − uiulNjNk

+ujulNiNk − ujukNiNl). (5.17)

Generalizing the result obtained by Balakin and Zimdahl
in Ref. [54], the constitutive tensor can also be expressed in
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terms of the two optical metrics (5.15) and (5.16), by

χijkl = 1

αe μ0μ⊥

(
γ ik

e γ jl
e − γ il

e γ jk
e

)
+ 1

(αm − αe)μ0μ⊥
(�γ ik�γ jl − �γ il�γ jk),

(5.18)

where �γ ij is the difference of the optical metrics,

�γ ij := γ ij
e − γ ij

m . (5.19)

D. The projector π i j and the isotropic limit

Let us define the projector πij to the two-dimensional space
orthogonal to Ni and ui ,

πij := gij − 1

c2
uiuj + NiNj . (5.20)

It obviously has the properties πi
jπ

j
k = πi

k and det(πij ) = 0.
With this object we can write the optical metrics in a more
compact form:

γ ij
e = γ ij + (αe − 1)πij , (5.21)

γ ij
m = γ ij + (αm − 1)πij , (5.22)

where γ ij is the usual optical Gordon metric of an isotropic
medium [26,55],

γ ij = gij + (n2 − 1)

c2
uiuj . (5.23)

Also the difference of optical metrics Ref. (5.19) can be
expressed in terms of πij ,

�γ ij = (αe − αm)πij . (5.24)

Therefore, the constitutive tensor in Ref. (5.18) can be recast
into the form

χijkl = 1

μ0μ⊥

[
1

αe

(
γ ik

e γ jl
e − γ il

e γ jk
e

)
− (αe − αm)(πikπjl − πilπjk)

]
. (5.25)

From (5.25), we can easily check that our χijkl reduces to the
well-known expression for the isotropic case in terms of the
Gordon metric (5.23), when

ε‖ → ε⊥ = ε ⇔ αe → 1, (5.26)

μ‖ → μ⊥ = μ ⇔ αm → 1. (5.27)

Then both optical metrics in Eqs. (5.21) and (5.22) become the
single Gordon metric, and the constitutive tensor reduces to

χijkl → χijkl
iso := 1

μ0μ
(γ ikγ jl − γ ilγ jk). (5.28)

E. Explicit expression for the electromagnetic Lagrangian

With the help of the constitutive tensor (5.17), we can use
(5.3) to obtain an explicit expression for the electromagnetic

excitation Hij :

Hkl = 1

μ0
(μ−1

⊥ + �μ−1)Fkl + 2

μ0
�μ−1 F [k

nN
l]Nn

+ 2

μ0c2
(ε⊥ − μ−1

⊥ − �μ−1)F [k
nu

l]un

− 2

μ0c2
(�ε + �μ−1)N [kul] FpqN

puq. (5.29)

From here on, we assume that the permittivity and permeability
can be functions of the particle density, μ⊥ = μ⊥(ν), ε⊥ =
ε⊥(ν), and �μ−1 = �μ−1(ν), in general. Then, from (5.1) and
(5.29), it is straightforward to compute an explicit expression
for the electromagnetic Lagrangian Lem = Lem(ν,ui,Ni,Fij ),
which reads

Lem = − 1

4μ0
(μ−1

⊥ + �μ−1)FijF
ij − 1

2μ0
�μ−1 (FklN

l)2

− 1

2μ0c2
(ε⊥ − μ−1

⊥ − �μ−1)(Fklu
l)2

+ 1

2μ0c2
(�ε + �μ−1)(FpqN

puq)2. (5.30)

For completeness, we also give an alternative derivation of
(5.30) based directly on the nonrelativistic Lagrangian (3.12).
In the four-dimensional relativistic framework, the electric E
and magnetic B fields are substituted with the 4-vectors of
electric field Ei and magnetic field Bi , defined as

Ei := Fiju
j , (5.31)

Bi := 1

2c
ηijklFjkul. (5.32)

Then the electromagnetic Lagrangian (5.1) can be alternatively
written in a “three-dimensional-like” form,

Lem = 1
2

(
ε0ε

ijEiEj − μ−1
0 μ−1

ij BiBj
)
, (5.33)

where εij is the 4-permittivity tensor and μ−1
ij the inverse of

the 4-permeability tensor, given by

εij := −ε⊥gij + �εNiNj , (5.34)

μ−1
ij := −μ−1

⊥ gij + �μ−1NiNj . (5.35)

Notice that the spatial components of these expressions
consistently reduce to (2.8) and (2.9). Inserting (5.34) and
(5.35) into (5.33), we can separate the contributions of the
electromagnetic Lagrangian in “isotropic” and “anisotropic”
parts, that is,

Lem = Liso + Lani, (5.36)

with

Liso = − 1
2

[
ε0ε⊥E iEi − μ−1

0 μ−1
⊥ BiBi

]
, (5.37)

Lani = 1
2

[
ε0�ε(EiN

i)2 − μ−1
0 �μ−1(BiN

i)2
]
. (5.38)

As we see, the structure of (5.36), (5.37), and (5.38) follows
exactly the structure of the nonrelativistic Lagrangian (3.12).
By inserting (5.31) and (5.32) into (5.37), we can write the
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isotropic electromagnetic Lagrangian Liso in terms of F ij :

Liso = − 1

4μ0μ⊥
gikgjlFijFkl − (n2 − 1)

2μ0μ⊥c2
gikujulFijFkl

(5.39)

= − 1

4μ0μ⊥
γ ikγ jlFijFkl (5.40)

= −1

8
χijkl

iso FijFkl, (5.41)

where χ
ijkl
iso is the constitutive tensor for the isotropic case

given in (5.28) and written in terms of the Gordon metric
(5.23). In this case n2 = ε⊥μ⊥ as expected.

Now we do the same for the anisotropic part of the
electromagnetic Lagrangian (5.38). First, using the definitions
(5.31) and (5.32), we explicitly have the following expressions:

(NiBi)
2 = 1

2
F ijFij + (FijN

j )2 − 1

c2
(Fiju

j )2

− 1

c2
(FijN

iuj )2, (5.42)

(NiEi)
2 = (FijN

iuj )2. (5.43)

Then, using (5.42) and (5.43) in Eq. (5.38), we derive the
explicit expression for the anisotropic Lagrangian,

Lani = − 1

4μ0
�μ−1gikgjlFijFkl − 1

2μ0
�μ−1gikNjNlFijFkl

+ 1

2μ0c2
�μ−1gikujulFijFkl

+ 1

2μ0c2
(�ε + �μ−1)NiNkujulFijFkl (5.44)

= −1

8
χijkl

ani FijFkl, (5.45)

with

χijkl
ani := μ−1

0 �μ−1(gikgjl − gilgjk)

− 1

μ0c2
�μ−1(gikujul−gilujuk+gjluiuk−gjkuiul)

+ μ−1
0 �μ−1(gikNjNl − gilNjNk + gjlNiNk

− gjkNiNl) − 1

μ0c2
(�ε + �μ−1)(uiukNjNl

− uiulNjNk + ujulNiNk − ujukNiNl). (5.46)

Finally, the total constitutive tensor χijkl in Eq. (5.17), is
formed by adding (5.18) and (5.28), as can be easily checked,

χijkl = χijkl
iso (ε⊥,μ⊥) + χijkl

ani (�ε,�μ−1). (5.47)

The resulting constitutive tensor is identical to (5.17).

VI. VARIATION OF THE MATTER LAGRANGIAN

With a well defined Lagrangian (4.8) for our relativistic
model of a nematic liquid crystal, we can now derive the field
equations of the system. For this task, we write the matter
Lagrangian Lm = Lm(ν,ui,Ni,∂jN

i,s,X,
I ), I =
0,1,2,3,4,5, as a sum of three terms,

Lm = Lk + Lp + L
, (6.1)

where

Lk := − 1
2 Jν ωiωi (6.2)

is the kinetic Lagrangian and

Lp := −ρ(ν,s) − V (6.3)

is the Lagrangian of the potential energy, with the Frank
deformation potential given by

V := 1
2K1(∂iN

i)2 + 1
2K2(εijkNi∂jNk)2

− 1
2K3(εijkN

jεkln∂lNn)2. (6.4)

The Lagrangian part containing the constraints reads

L
 := 
0(uiui − c2) − νui∂i
1 + 
2u
i∂is

+
3u
i∂iX + 
4(NiNi + 1) + 
5u

iNi. (6.5)

A. Kinetic term

To begin with, we notice that making use of the definition
(4.6), we can recast the square of the angular velocity into

ωiωi = P i
j ṄiṄ

j = Ṅ iṄi − 1

c2
(uiṄ

i)2, (6.6)

where P i
j is the usual projector operator, perpendicular to the

4-velocity field:

P i
j := δi

j − 1

c2
uiuj . (6.7)

Therefore, the kinetic Lagrangian (6.2) depends only on
ν,ui , and the derivatives of the director field ∂kN

i . The
derivative with respect to the latter reads

∂Lk

∂∂kNi
= −Jν uk P

j

i Ṅj . (6.8)

As a result, we find the variational derivatives of the kinetic
Lagrangian with respect to its arguments

δLk

δν
= ∂Lk

∂ν
= −J

2
ωiωi, (6.9)

δLk

δui
= ∂Lk

∂ui
= Jν

( − P
j

k ∂iN
k + Ṅiu

j /c2
)
Ṅj , (6.10)

δLk

δNi
= −∂k

(
∂Lk

∂∂kNi

)
= ∂k

(
Jν uk P

j

i Ṅj

)
. (6.11)

B. Potential term

The potential Lagrangian (6.3) depends on ν,s,ui,Ni , and
the derivatives of the director field ∂kN

i . The derivative with
respect to the latter reads

∂Lp

∂∂kNi
= − ∂V

∂∂kNi
. (6.12)

We straightforwardly compute the variational derivatives

δLp

δν
= ∂Lp

∂ν
= −∂ρ

∂ν
= −p + ρ

ν
, (6.13)

δLp

δs
= ∂Lp

∂s
= −∂ρ

∂s
= − νT , (6.14)

δLp

δui
= ∂Lp

∂ui
= − ∂V

∂ui
, (6.15)
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δLp

δNi
= − δV

δNi
= − ∂V

∂Ni
+ ∂k

(
∂V

∂∂kNi

)
. (6.16)

In Eqs. (6.13) and (6.14) we used the thermodynamic (Gibbs)
law

T ds = d

(
ρ

ν

)
+ pd

(
1

ν

)
. (6.17)

C. Constraint term

Variation with respect to the Lagrange multipliers 
I yields
the complete set of constraints:

uiui = c2, (6.18)

∂i(νui) = 0, (6.19)

ui∂is = 0, (6.20)

ui∂iX = 0, (6.21)

NiNi = −1, (6.22)

Niui = 0. (6.23)

Additionally, the variations of the constraint Lagrangian with
respect to the field variables read

δL


δν
= ∂L


∂ν
= −ui∂i
1, (6.24)

δL


δs
= −∂i

(
∂L


∂∂is

)
= − ∂i(u

i
2), (6.25)

δL


δX
= −∂i

(
∂L


∂∂iX

)
= − ∂i(u

i
3), (6.26)

δL


δui
= ∂L


∂ui

= 2
0ui − ν∂i
1 + 
2∂is + 
3∂iX + 
5Ni, (6.27)

δL


δNi
= ∂L


∂Ni
= 2
4Ni + 
5ui. (6.28)

D. Field equations

We are now in a position to write the field equations,
collecting the variations of the three terms in Eq. (6.1). We
can distinguish three groups of equations. The first group
describes the constraints (6.18)–(6.23). The second group
concerns the variables s,X which do not enter the Lagrangian
of the electromagnetic field. This yields

∂i(u
i
2) + νT = 0, (6.29)

∂i(u
i
3) = 0. (6.30)

The third group of equations is obtained from the variations
with respect to the essential field variables ν, ui , and Ni . We
have explicitly

δLm

δν
= −J

2
ω2 − p + ρ

ν
− ui∂i
1, (6.31)

δLm

δui
= Jν

(
−P

j

k ∂iN
k + 1

c2
Ṅiu

j

)
Ṅj − ∂V

∂ui
+ 2
0ui

− ν∂i
1 + 
2∂is + 
3∂iX + 
5Ni, (6.32)

δLm

δNi
= ∂k(Jν uk P

j

i Ṅj ) − δV
δNi

+ 2
4Ni + 
5ui. (6.33)

Contracting (6.33) with ui and Ni , we find the Lagrange
multipliers


5 = 1

c2
ui

[
δLm

δNi
− ∂k

(
Jν uk P

j

i Ṅj

) + δV
δNi

]
, (6.34)

2
4 = −Ni

[
δLm

δNi
− ∂k

(
Jν uk P

j

i Ṅj

) + δV
δNi

]
. (6.35)

Substituting these back into (6.33), we end with the field
equation for the director field:

π
j

i

δLm

δNj
= π

j

i

[
∂k(Jν uk P l

j Ṅl) − δV
δNj

]
. (6.36)

Here π
j

i is the projector defined in Eq. (5.20). Note that we
cannot yet put equal zero the left-hand side of (6.36); it will be
evaluated later from the variation of the electromagnetic part
(5.30) of the total Lagrangian.

Contracting (6.32) with ui , we find another Lagrange
multiplier:

2
0 = 1

c2

{
ui δLm

δui
− ν

δLm

δν
− ρ − p

+ Jν

[
1

2
ω2 −

(
1

c2
uiṄi

)2]
+ ui ∂V

∂ui

}
. (6.37)

Here again we cannot put equal zero the first two terms on the
right-hand side of (6.37); they also should be inserted from the
variation of (5.30).

Finally, let us notice that the material Lagrangian “on-shell”
(i.e., after making use of the field equations) reads

Lm = p + ν
δLm

δν
− V. (6.38)

VII. CANONICAL NOETHER CURRENT TENSOR
FOR MATTER

The general form of the canonical energy-momentum
tensor for the matter part is

m
�i

j := ∂Lm

∂∂j�A
∂i�

A − δ
j

i Lm. (7.1)

Here �A are all dynamical variables. The matter Lagrangian
(6.1) depends on the derivatives of Ni as well as on 
1, s, and
X. The derivatives with respect to the velocity of the director
field are computed from (6.8) and (6.12):

∂Lm

∂∂kNi
= ∂Lk

∂∂kNi
+ ∂Lp

∂∂kNi
= −Jν uk P

j

i Ṅj − ∂V
∂∂kNi

.

(7.2)

On the other hand, from the constraint Lagrangian we find

∂L


∂∂i
1
= −ν ui,

∂L


∂∂is
= 
2 ui,

∂L


∂∂iX
= 
3 ui. (7.3)

Consequently, we have

∂Lm

∂∂iNk
∂jN

k = − ui J ν P l
k Ṅl∂jN

k − ∂V
∂∂iNk

∂jN
k, (7.4)
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and

∂Lm

∂∂i
1
∂j
1 + ∂Lm

∂∂is
∂j s + ∂Lm

∂∂iX
∂jX

= ui(−ν∂j
1 + 
2∂j s + 
3∂jX). (7.5)

In order to compute the right-hand side of (7.5), we can use
(6.27). The latter equation yields, with the help of (6.37) and
(6.34):

−ν∂j
1 + 
2∂j s + 
3∂jX

= uj

c2

[
ν
δLm

δν
+ p + ρ + J

2
νω2

]

+P k
j

[
Jν

(
P n

l ∂kN
l − 1

c2
unṄk

)
Ṅn + δLm

δuk
+ ∂V

∂uk

]

−Nj

uk

c2

[
δLm

δNk
− ∂n

(
JνunP l

kṄl

) + δV
δNk

]
. (7.6)

Substituting (6.38), (7.4), (7.5), and (7.6) into (7.1), we find
explicitly the canonical energy-momentum tensor of the liquid
crystal:

m
�i

j = F
T i

j + uj Pi − P
j

i peff . (7.7)

Here the Frank deformation stress tensor is
F
T i

j := − ∂V
∂∂jNk

∂iN
k + δ

j

i V, (7.8)

the effective pressure peff reads

peff := p + ν
δLm

δν
, (7.9)

and the relativistic 4-momentum density of the fluid is

Pi := 1

c2
ui

(
ρ − 1

2
Jνω2

)

+P k
i

[
− Jν

c2
Ṅk ulṄl + δLm

δuk
+ ∂V

∂uk

]

−Ni

uk

c2

[
δLm

δNk
− ∂n

(
JνunP l

kṄl

) + δV
δNk

]
. (7.10)

As usual, we have to compute the variational derivatives
of the matter Lagrangian with respect to ν,ui,Ni from the
electromagnetic part of the total Lagrangian (5.30).

A. Canonical spin of liquid crystal

Denoting all the fields in the system by the symbol �A,
that carries a “multi-index” A, with (ρij )AB as the generators of
the Lorentz algebra for these fields, the spin of the system is
defined by

m
Sij

k = ∂Lm

∂(∂k�A)
(ρij )AB�B. (7.11)

Since the matter Lagrangian does not depend on the derivatives
of ui , the spin of the system is straightforwardly computed with
the help of (7.2):

m
Sij

k = N[i
∂Lm

∂∂kNj ]
= −Jν ukN[iP

l
j ] Ṅl − N[i

∂V
∂∂kNj ]

.

(7.12)

Using the results of the Appendix, we can write down the
variational derivatives for the Frank potential (6.4). They read

∂V
∂ui

= −K2

c2
(∂iNj − ∂jNi)(Ṅ

j − uk∂jNk)

− 1

c2
(K2 − K3)(Np∂pNi)(N

q∂qN
k)uk, (7.13)

∂V
∂∂jNi

= K1(∂kN
k)δj

i + K2 P
j

k P l
i (∂kNl − ∂lN

k)

+ (K2 − K3) NjP k
i (Np∂pNk), (7.14)

δV
δNi

= ∂j

[
K1(∂kN

k)δj

i + K2 P
j

k P l
i (∂kNl − ∂lN

k)

+ (K2 − K3) NjP k
i (Np∂pNk)

]
+ (K2 − K3)(∂iN

p)(Nk∂kNq)P q
p . (7.15)

As a consequence, the Frank stress tensor (7.8) is

F
T i

j = −K1(∂kN
k)(∂iN

j ) + 1
2K1δ

j

i (∂kN
k)2

−K2(∂iNk)P j
p P k

q (∂pNq − ∂qNp)

− (K2 − K3)(∂iNk)NjP k
l (Np∂pNl)

+ 1
2K2δ

j

i (εklmNk∂lNm)2 − 1
2K3δ

j

i (εpmkN
mεkln∂lNn)2,

(7.16)

and the spin density tensor of matter (7.12) reads
m
Sij

k = −Jν ukN[iP
l
j ] Ṅl − K1N[i δ

k
j ] ∂lN

l

−K2P
knN[iP

l
j ](∂nNl − ∂lNn)

− (K2 − K3)NkN[iP
l
j ]N

n∂nNl. (7.17)

B. Balance equation of the angular momentum of matter

Let us check that the angular momentum balance equation
is satisfied for the open material system under consideration.
This balance equation follows from the Noether theorem and
it reads [26]:

m
�[ij ] + ∂k

m
Sij

k = − δLm

δ�A
(ρij )AB�B. (7.18)

In our system, we have two vector fields, ui and Ni , and
the corresponding Lorentz generators are (ρi

j )pq = δ[i
q δ

p

j ]. As a
result, the right-hand side of (7.18) explicitly reads

− δLm

δup
(ρij )pq uq − δLm

δNp
(ρij )pq Nq = δLm

δu[i
uj ] + δLm

δN [i
Nj ].

(7.19)

From (7.7) we derive the first term on the left-hand side of
the balance equation (7.18):

m
�[ij ] = F

T [ij ] + P[i uj ]. (7.20)

Denote

�k := δLm

δNk
− ∂n

(
JνunP l

kṄl

) + δV
δNk

, (7.21)

then the field equation for the director (6.36) is recast into

πk
i �k = 0. (7.22)
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Let us consider the last term in Eq. (7.20). By making use of
(7.10), we have

P[i uj ] = δLm

δu[i
uj ] + ∂V

∂u[i
uj ] − JνṄ[i

uj ]u
k

c2
Ṅk − N[i

uj ]u
k

c2
�k

= δLm

δu[i
uj ] + ∂V

∂u[i
uj ] + Jν Ṅ[iP

k
j ]Ṅk

−N[i�j ] + N[iπ
k
j ]�k. (7.23)

We used the definition of the projector (5.20) that yields

−uju
k

c2
= πk

j − δk
j − NjN

k (7.24)

to transform the two last terms on the first line in Eq. (7.23).
In view of the field equation (7.22) the last term in Eq.

(7.23) vanishes, and we find

P[i uj ] = δLm

δu[i
uj ] + ∂V

∂u[i
uj ] + Jν Ṅ[iP

k
j ]Ṅk − N[i�j ]

= δLm

δu[i
uj ] + δLm

δN [i
Nj ] + ∂V

∂u[i
uj ] + δV

δN [i
Nj ]

+ Jν Ṅ[iP
k
j ]Ṅk + N[i∂n

(
JνunP k

j ]Ṅk

)
. (7.25)

Recalling that Ṅi = un∂nNi , we see that the last line reduces
to the total divergence

JνṄ[iP
k
j ]Ṅk + N[i∂n

(
JνunP k

j ]Ṅk

)
= ∂n

(
JνunN[iP

k
j ]Ṅk

)
. (7.26)

After these preparations, we can find the left-hand side of
the balance equation (7.18):

m
�[ij ] + ∂k

m
Sij

k = δLm

δu[i
uj ] + δLm

δN [i
Nj ] + F

T [ij ] + ∂V
∂u[i

uj ]

+ δV
δN [i

Nj ] − ∂k

(
N[i

∂V
∂∂kNj ]

)
. (7.27)

The last four terms in Eq. (7.27) disappear in view of the
Lorentz invariance of the Frank potential V that results, via the

Noether theorem, in the following identity (see the Appendix):

F
T [ij ] + ∂V

∂u[i
uj ] + δV

δN [i
Nj ] − ∂k

(
N[i

∂V
∂∂kNj ]

)
= 0.

(7.28)

Finally, using the identity (7.28) in Eq. (7.27), the angular
momentum balance equation for matter can be recast into

m
�[ij ] + ∂k

m
Sij

k = δLm

δu[i
uj ] + δLm

δN [i
Nj ]. (7.29)

Accordingly, by comparing (7.29) with (7.19) we indeed verify
the identity (7.18) of the angular momentum for the open
material system.

VIII. CANONICAL ENERGY-MOMENTUM TENSOR
FOR THE ELECTROMAGNETIC FIELD INSIDE

THE MEDIUM

The canonical energy-momentum tensor for the electro-
magnetic field is obtained with the usual definition [26]
applied to the electromagnetic Lagrangian Lem in Eq. (5.1).
If we consider the 4-potential covector Ai as the fundamental
electrodynamical variable, then the electromagnetic canonical

tensor
em
�i

j reads

em
�i

j := ∂Lem

∂∂iAk

∂jAk − δi
j Lem (8.1)

= M
�i

j + Hkj (∂kAi), (8.2)

where
M
�i

j is the usual Minkowski tensor for the electromag-
netic field in matter, given by

M
�i

j := −FikH
jk + 1

4δ
j

i FklH
kl. (8.3)

Now, using the expression (5.29) in Eqs. (8.2) and (8.3), we
get explicitly

M
�i

j = 1

μ0
(μ−1

⊥ + �μ−1)

[
−F jkFik + 1

4
δ

j

i F
klFkl

]
+ 1

μ0c2
(ε⊥ − μ−1

⊥ − �μ−1)

[
−F jkukFilu

l + 1

2
δ

j

i (Fklu
l)2 + ujFikF

klul

]

+ 1

μ0
�μ−1

[
−F jkNkFilN

l + 1

2
δ

j

i (FklN
l)2 + NjFikF

klNl

]
+ 1

μ0c2
(�ε + �μ−1)(FpqN

puq)

×
[
−1

2
δ

j

i (FklN
kul) − ujFinN

n + NjFinu
n

]
, (8.4)

which is the explicit expression for the Minkowski tensor of
the field inside the liquid crystal.

A. Balance equation for the angular momentum of the
electromagnetic field

From the general definition [26], the spin density
m
Sij

k of
the electromagnetic part of the system is given by

m
Sij

k = ∂Lem

∂(∂kAm)
(ρij )lmAl = Hk

[iAj ] �= 0. (8.5)

Now we are in position to evaluate the angular momentum
balance equation for the electromagnetic part of the system,
which has the same form as the one for the matter part (7.18).
Taking the antisymmetric part of (8.2) and using the expression
(8.5), together with the Maxwell equations without sources,
∂jH

ij = 0, we see that the left-hand side of the identity for
electromagnetic angular momentum is simply given by the
antisymmetric part of the Minkowski tensor:

em
� [ij ] + ∂k

m
Sij

k = M
�[ij ], (8.6)
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where

M
�[ij ] = u[jFi]k

[
1

μ0c2
(ε⊥ − μ−1

⊥ − �μ−1)Fklul

− 1

μ0c2
(�ε + �μ−1)(FpqN

puq) Nk

]

+N[jFi]k

[
1

μ0
�μ−1FklNl

+ 1

μ0c2
(�ε + �μ−1)(FpqN

puq) uk

]
. (8.7)

We see that the electromagnetic canonical energy-momentum
tensor as well as the Minkowski tensor are not symmetric.
However, it is not surprising that the right-hand side of (8.7) is
not equal to zero since the electromagnetic Lagrangian inside
matter Lem describes an open system.

On the other hand, computing the variations of Lem in
Eq. (5.30) with respect to the material variables yields

δLem

δui
= 1

μ0c2
(ε⊥ − μ−1

⊥ − �μ−1)FikF
klul

− 1

μ0c2
(�ε + �μ−1)(FpqN

puq) FikN
k, (8.8)

δLem

δNi
= 1

μ0
�μ−1 FikF

klNl

+ 1

μ0c2
(�ε + �μ−1)(FpqN

puq) Fiku
k. (8.9)

Comparing (8.8) and (8.9) with (8.7), we immediately verify
the correct balance equation for the electromagnetic angular
momentum part of the system,

em
� [ij ] + ∂k

m
Sij

k = δLem

δu[i
uj ] + δLem

δN [i
Nj ]. (8.10)

This is in perfect agreement with the general Noether identity
(7.18).

IX. TOTAL CANONICAL ENERGY-MOMENTUM TENSOR

The complete system of material medium plus electromag-
netic field is described by the total Lagrangian

L := Lm + Lem. (9.1)

As a result, the total canonical energy-momentum tensor of
the closed system is given by

�i
j := m

�i
j + em

�i
j , (9.2)

with the electromagnetic part
em
�i

j given in Eqs. (8.2) and (8.4)

and the material part
m
�i

j given in Eq. (7.7).
In order to find an explicit expression for the total canonical

energy-momentum tensor �i
j , we first need to evaluate the

variations δLm/δν,δLm/δui , and δLm/δNi and then insert
them in Eqs. (7.9) and (7.10). For this aim, we take into account
the equations of motion of the material variables

δLm

δν
+ δLem

δν
= 0, (9.3)

δLm

δui
+ δLem

δui
= 0, (9.4)

δLm

δNi
+ δLem

δNi
= 0, (9.5)

from where we clearly see that the variations of the matter
Lagrangian are exactly the negative of the variations of the
electromagnetic Lagrangian, which we have already explicitly
computed in Eqs. (8.8) and (8.9). In addition, the variation
of the electromagnetic Lagrangian with respect to the particle
number density ν, explicitly yields

δLem

δν
= −1

2

(
ε0

∂ε

∂ν
E2 + 1

μ0μ
2
⊥

∂μ⊥
∂ν

B2

)

+ 1

2

(
ε0

∂�ε

∂ν
(EiN

i)2 − 1

μ0

∂�μ−1

∂ν
(BiN

i)2

)
,

(9.6)

where we defined the 4-vectors electric field Ei and magnetic
field Bi in Eqs. (5.31) and (5.32), respectively.

The variation (9.6) enters in the expression of the “effec-
tive” pressure (7.9), which include the terms describing the
electrostriction and magnetostriction effects. Then, replacing
the negative of the three variations (8.8), (8.9), and (9.6) into
(7.7), (7.9), and (7.10), we explicitly obtain

m
�i

j = F
T i

j + uj P̂i − P
j

i peff + 1

c2
Niu

jukφk

− 1

μ0c2
(ε⊥ − μ−1

⊥ − �μ−1)ujP k
i FklF

lmum

+ 1

μ0c2
�μ−1Niu

jukFklF
lmNm

+ 1

μ0c2
(�ε + �μ−1)ujP k

i FklN
l(FpqN

puq),

(9.7)

where we denoted

P̂i := 1

c2
ui(ρ − Jνω2/2) + P k

i

[
−Jν

c2
Ṅk ulṄl + ∂V

∂uk

]
,

(9.8)

φi := ∂k

(
JνukP

j

i Ṅj

)
− δV

δNi
. (9.9)

The definitions of
F
T i

j and peff are given in Eqs. (7.8) and (7.9),
respectively. Finally, if we consider (8.2), (8.4), and (9.7), we
can write the total canonical tensor (9.2) explicitly, which reads

�i
j = uj P̂i + (−δ

j

i + ujui/c
2
)
peff + F

T i
j + 1

c2
Niu

jukφ
k, + 1

μ0
(μ−1

⊥ + �μ−1)

[
−F jkFik + 1

4
δ

j

i F
klFkl

]

+ 1

μ0c2
(ε⊥ − μ−1

⊥ − �μ−1)

[
−F jkukFilu

l +
(

1

2
δ

j

i − 1

c2
uiu

j

)
(Fklu

l)2

]
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+ 1

μ0
�μ−1

[
−F jkNkFilN

l + 1

2
δ

j

i (FklN
l)2 + NjFikF

klNl + 1

c2
Niu

jukFklF
lmNm

]

+ 1

μ0c2
(�ε + �μ−1)(FpqN

puq)

[
NjFinu

n +
(

−1

2
δ

j

i + 1

c2
uiu

j

)
(FklN

kul)

]
+ Hkj (∂kAi). (9.10)

Since we already checked that the angular momentum
balance equations are fulfilled both for the matter and elec-
tromagnetic parts of the total closed system in Eqs. (7.29) and
(8.10), respectively, it is obvious that if we add both equations,
then the angular balance equation for the total system will be
also valid,

�[ij ] + ∂k Sij
k = 0, (9.11)

where

Sij
k := m

Sij
k + em

S ij
k. (9.12)

It is worthwhile to notice that the right-hand side of (9.11)
vanishes since the total system is closed; however, the total
energy-momentum tensor (9.10) is not symmetric, since the
spin density of the system (9.12) is nontrivial.

X. FULLY EXPLICIT ENERGY-MOMENTUM
CONSERVATION LAW

The total system under consideration, composed of a
relativistic liquid crystal plus electromagnetic field, is a closed
system. There are no external fields present like J i

ext and
therefore the total canonical energy-momentum tensor (9.10)

of the system is conserved:

∂j�i
j = 0. (10.1)

Notice that in the expressions (7.12), (8.5), and (9.10)–
(9.12), we have obtained the total energy-momentum tensor of
the system and the identity of total angular momentum of the
system, but without using a specific expression for the potential
function V = V(Ni,∂jN

i,ui). As a consequence, all the latter
expressions are valid for an anisotropic uniaxial diamagnetic
and dielectric medium, with any internal dynamics for the
4-director field Ni . By considering the expression (6.4) for
the Frank potential V , one can derive explicit expressions of
the derivatives δV/δui , ∂V/∂(∂jN

i), δV/δNi and of the

tensors
F
T i

j ,
m
Sij

k . This is done in detail in the Appendix.
In order to obtain an explicit expression of this conservation

law, we can insert (9.8), (9.9), (7.13), (7.15), and (7.16) into
(9.10). Due to the macroscopic Maxwell equations (5.2), the
gauge noninvariant term in Eq. (9.10) vanishes and we finally
obtain

∂j

c
�i

j + ∂j

f
�i

j = 0. (10.2)

Here the nonsymmetric energy-momentum tensor
c
�i

j only
depends on the material variables, as if the relativistic liquid
crystal were in isolation,

c
�i

j : = 1

c2
uiu

j

(
ρ − 1

2
Jν ωkωk

)
− P

j

i peff − 1

c2
P k

i uj [K2 (∂kNl − ∂lNk)(Ṅ l − up∂lNp) + JνṄk ulṄl

+ (K2 − K3)(Np∂pNk)(Nq∂qN
l)ul] − K1(∂kN

k)(∂iN
j ) − K2(∂iNk)P j

p P k
q (∂pNq − ∂qNp)

− (K2 − K3)(∂iNk)NjP k
l (Np∂pNl) + 1

2
K1δ

j

i (∂kN
k)2 + 1

2
K2δ

j

i (εklmNk∂lNm)2 − 1

2
K3δ

j

i (εpmkN
mεkln∂lNn)2

+ 1

c2
Niu

j
[
Jνuku

l∂l

(
P k

j Ṅj
) + K1u

k∂k(∂mNm) + (K3 − K2)uk(∂kN
p)(Nl∂lNq)P q

p

]
, (10.3)

except for some electromagnetic terms inside the effective pressure peff , which describe possible electrostriction and
magnetostriction effects:

peff = p + 1

2
ν

(
ε0

∂ε

∂ν
E2 + 1

μ0μ
2
⊥

∂μ⊥
∂ν

B2

)
− 1

2
ν

(
ε0

∂�ε

∂ν
(EiN

i)2 − 1

μ0

∂�μ−1

∂ν
(BiN

i)2

)
. (10.4)

The second term in Eq. (10.2) corresponds to the 4-divergence of a nonsymmetric “field” energy-momentum tensor
f
�i

j , which
contains electromagnetic field terms coupled to the material variables:

f
�i

j : = 1

μ0
(μ−1

⊥ + �μ−1)

[
−FikF

jk + 1

4
δ

j

i F
klFkl

]
+ 1

μ0c2
(ε⊥ − μ−1

⊥ − �μ−1)

[
−F jkukFilu

l

+
(

1

2
δ

j

i − 1

c2
uiu

j

)
(Fklu

l)2

]
+ 1

μ0
�μ−1

[
−F jkNkFilN

l + 1

2
δ

j

i (FklN
l)2 + NjFikF

klNl + 1

c2
Niu

jukFklF
lmNm

]

+ 1

μ0c2
(�ε + �μ−1)(FpqN

puq)

[
NjFinu

n +
(

−1

2
δ

j

i + 1

c2
uiu

j

)
(FklN

kul)

]
. (10.5)
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XI. RELATIVISTIC DIRECTOR DYNAMICS

Let us analyze the equations of motion for the director Ni .
Rewriting equations (6.36) or (7.22), we have

π
j

i

[
∂k

(
Jν uk P l

j Ṅl

) + hj

] = 0, (11.1)

where we defined

hj : = − δV
δNj

+ ∂Lem

∂Nj
, (11.2)

as the total 4-molecular field, since its spatial components
reduce, in the nonrelativistic limit, to the standard “molecular
field” [1,16]. In Sec. XII we study this limit in more detail. In
order to better interpret the dynamics of Ni , we can contract
(11.1) with εpqiNq , make use of (A6) and the continuity
equation (6.19), to obtain

Jν πi
j ω̇j = −εijkNjhk. (11.3)

From (11.3) we see that the 4-molecular field hi is
responsible for the “torques” and changes in the 4-director Ni

of the liquid crystal. We can identify two contributions to the

4-molecular field hi := F
hi + em

h i . One is the Frank deformation
4-molecular field

F
hi : = − δV

δNi
(11.4)

= ∂j

[
K1(∂kN

k)δj

i + K2 P
j

k P l
i (∂kNl − ∂lN

k)

− (K3 − K2) NjP k
i (Np∂pNk)

]
+ (K3 − K2)(∂iN

p)(Nk∂kNq)P q
p , (11.5)

which describes the changes in Ni caused by the deformations
of the liquid crystal itself, and the other contribution is the
electromagnetic 4-molecular field

em
h i : = ∂Lem

∂Ni
(11.6)

= 1

μ0
�μ−1 FikF

klNl

+ 1

μ0c2
(�ε + �μ−1)(FpqN

puq) Fiku
k, (11.7)

which describes the influence of the dynamical electromag-
netic field on the orientation of the 4-director.

With the knowledge of (10.2), together with Eq. (11.3) for
Ni , the continuity equation ∂i(νui) = 0 in Eq. (6.19) for ui , ν

and the Maxwell equations (5.2) for Fij , we can completely
determine the dynamics and evolution of this system, com-
posed of the relativistic liquid crystal with anisotropic optical
properties interacting with the electromagnetic field.

XII. NONRELATIVISTIC LIMIT

Let us study the dynamics of the liquid crystal in the
nonrelativistic limit, when the motion of the fluid is such
that |v| � c. In particular, this approximation can be applied
when the liquid crystal is at rest in the laboratory frame.
In the nonrelativistic limit, we expect consistency with the
earlier results [1,8,16,17], but first we need some technical
preparations. The 4-velocity reads

ui = γ (1,v), (12.1)

and therefore we have for the components of the projector:

P b
a = δb

a + vav
b

c2
, P 0

a = γ 2 va

c2
, (12.2)

P a
0 = −γ 2va, P 0

0 = γ 2 v2

c2
. (12.3)

Hereafter, the three-dimensional indices are raised and lowered
by the Euclidean metric; in particular, v = va , va = δabv

b,
v2 = vava = δabv

avb, etc. For the skew-symmetric tensor
(4.5) we find explicitly

εabc = γ
◦
εabc, ε0ab = γ

◦
εabc vc

c2
, (12.4)

εabc = −γ
◦
εabc, ε0ab = γ

◦
εabcv

c. (12.5)

Taking into account the orthogonality conditions (4.2)–(4.4),
the 4-director Ni reads in components

Ni =
(

(v · n)

c2
,n

)
. (12.6)

Notice that the 3-vector n, with Cartesian components na ,
recovers its normalization n2 = δabn

anb = 1 only in the non-
relativistic limit. In general, it satisfies n2 = 1 + (v · n)2/c2.

A. Nonrelativistic director dynamics to zeroth order in v/c

First we note that Njω̇
j = 0 in Eq. (11.3) and therefore we

obtain

JνP i
j ω̇

j = −εijkNjhk. (12.7)

Then, inserting (12.1)–(12.6) into (12.7), we find the nonrela-
tivistic equation for na to zeroth order in v/c

Jν ω̇◦ = n × h◦. (12.8)

Here,

ω̇◦ = n × ∂2n
∂t2

(12.9)

is the angular acceleration of a liquid crystal fluid element to
zeroth order in v/c. The right-hand side of (12.8) is determined

by the molecular field, h◦ :=
F
h◦ +

em
h ◦. The fluid part,

F
ha

◦ = (K1 − K2)(∂a∂bn
b) + K2δab∇2nb

+ (K3 − K2)δad ∂b(nbnc∂cn
d )

− (K3 − K2)δbd (∂an
b)(nc∂cn

d ), (12.10)

is the zeroth order Frank deformation molecular field (cf. the
nonrelativistic equation (2.147) of [8]). The electromagnetic
part of the molecular field can be computed by taking the
nonrelativistic limit to zeroth order in v/c of (11.7), which
explicitly reads

em
h ◦ = ε0�ε(E · n)E − μ−1

0 �μ−1(B · n)B

+μ−1
0 �μ−1B2n. (12.11)

The result (12.11) looks slightly different from the usual
electromagnetic molecular field of the nonrelativistic models
[1,8,17], since we use the fields E and B as the independent
fields and not E and H . One can, however, easily recover
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the same formulas in a different disguise by making use of
the inverse of the constitutive relations (2.2). Notice that the
last term in Eq. (12.11) is proportional to the director n and
therefore it does not contribute to the torque when replaced in
the cross product of (12.8). Therefore, we can ignore this last
term and redefine the electromagnetic molecular field to zeroth
order in v/c, as a sum of two terms, the electric molecular field
e
h◦ and the magnetic molecular field

m
h◦, given by

e
h◦ = ε0�ε(E · n)E, (12.12)

m
h◦ = − 1

μ0
�μ−1(B · n)B. (12.13)

Collecting together all the results of this section, the
dynamics of the director n in the nonrelativistic limit, to zeroth
order in v/c, is described by

Jν n × ∂2n
∂t2

= n × hF
◦ + n × he

◦ + n × hm
◦ , (12.14)

where the molecular field has independent contributions from
the Frank deformations and the interactions with electric and
the magnetic fields.

B. Nonrelativistic solutions

Let us assume that the electromagnetic field vanishes, so
that he

◦ = hm
◦ = 0.

Stewart in Sec. 2.5 of [8] describes some exact solutions of
the equations of motion. One is an obvious constant director
solution; the other is the static spherical solution and the twist
solution [with the local coordinates x = (x1,x2,x3)]:

na = xa

r
, (12.15)

na = (cos θ, sin θ,0) , θ = c1x
3 + c2. (12.16)

Here we notice that the static twist solution (12.16) can be
generalized to a dynamical “plane wave” solution:

na = (cos �, sin �,0) , � = c0t + c1x
3 + c2, (12.17)

where c0,c1,c2 are arbitrary constants. In this case, we
explicitly have

∂2n
∂t2

= −(c0)2n, (12.18)

hF
◦ = −K2(c1)2n, (12.19)

and thus (12.14) is satisfied. In the literature, the wave solutions
of the full nonlinear equations of motion has attracted some
attention (see [16,17,56]).

XIII. SUMMARY AND DISCUSSION:
ABRAHAM-MINKOWSKI CONTROVERSY

In this paper, we have constructed a complete relativistic La-
grangian theory of a nematic liquid crystal. Our results provide
a consistent relativistic model for a medium with anisotropic
optical properties in interaction with the electromagnetic field.
In particular, in such a framework one can study the problem of
the proper description of the energy and momentum of light in
anisotropic media. This should shed light on the long standing

Abraham-Minkowski controversy, traditionally discussed only
for isotropic media.

We have generalized the earlier nonrelativistic model
[16,17] and the variational model of an ideal relativistic
fluid [26] and derived a complete theory of the nematic liquid
crystal medium and its interaction with the electromagnetic
field. We have derived the nonlinear equations of motion for
the liquid crystal fluid, and explicitly verified the total energy,
momentum and angular momentum balance laws, which arise
as consequences of the Noether theorem from the invariance
of the (field plus matter) system under space-time translations
and Lorentz transformations, respectively. In this work the
general formalism is presented in full detail. We will analyze
the solutions and applications separately. The analysis of the
properties of electromagnetic waves in the moving liquid
crystal will be also considered elsewhere.

As we have seen, liquid crystals are an interesting example
of continuous media with microstructure. The “internal”
degrees of freedom of such a medium is represented by the
director vector field Ni assigned to every material point of
the fluid. This field gives rise to a nontrivial spin of the
medium (7.17). As a consequence, the total energy-momentum
tensor (9.2) of the closed system of the medium plus the
electromagnetic field is not symmetric. This asymmetry is
crucial for the validity of the Noether identities.

In this paper, we have neglected dissipation. The general
formalism developed here is applicable to any moving medium
with uniaxial anisotropic properties. In particular, one should
have in mind possible astrophysical applications [54], where
our model provides an explicit dynamical mechanism for the
description of a physical medium with uniaxial anisotropy.
As concerns the liquid crystals which belong to the class of
moving uniaxial media, they are characterized by a nontrivial
dissipation. In this sense, our theory has limited applicability
and it should be considered only as a first step in constructing
a full realistic physical model. The relativistic mechanics of
dissipative fluids has a long and controversial history, with
the first attempts going back to Eckart [57] and Landau-
Lifshitz [58]. Later an essential improvement was achieved
in the works of Israel and Stewart [59,60]. However, these
models used a phenomenological approach with numerous ad
hoc assumptions, and it seems more appropriate to use the
approach of Carter [61–63], which generalizes the variational
principle by replacing the Lagrangian with the so-called master
function that systematically takes into account the irreversible
viscosity and thermal effects. The development of the Carter
type approach for dissipative media with microstructure will
constitute the next step for the construction of the variational
theory of liquid crystals. An important feature is that the
Noether type identities play a central role in Carter’s approach.

Our current results contribute to the discussion of the
energy and momentum problem of the electromagnetic field
in a medium. In particular, our analysis clearly demonstrates
that for the case of an uniaxial anisotropic medium it is the
total energy-momentum tensor of the coupled system (matter
plus field) that is important for the understanding of the
balance of the momentum and angular momentum. For the
case of an isotropic medium, this was pointed out more that
40 years ago by Penfield and Haus [28,29] and more recently
in Refs. [26,27,30].
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Notwithstanding this general fact of the importance of
the total energy momentum, one can split it into a “matter”
and a “field” part in many different ways. Specifically, by
expressing (9.10) in terms of Ni , ui , Fij , permittivities and
impermeabilities, we have shown that there exists a split of
the form (10.3) plus (10.5). The purely matter part (10.3)
does not depend explicitly on the field strength Fij , except for
the terms present in effective pressure. Therefore, it could be
identified with what is sometimes called a “kinetic” energy
momentum [31,32]. The corresponding field part (10.5) has
a form which is more complicated than the usual Abraham
tensor for isotropic media [26], since the former involves not
only the field Fij , the 4-velocity ui , the isotropic permittivity
ε and the permeability μ, but also the 4-director Ni , its
derivatives, and the anisotropies �ε, �μ−1. Despite the fact
that its structure is different from that of Abraham, this tensor
plays a role analogous to that of the traditional Abraham tensor
and moreover reduces to it in the case �ε = �μ−1 = 0.

However, the tensor (10.5) is not symmetric. It was pointed
out in Ref. [26] that, for simple media where the 4-velocity ui

is the only nonscalar field contained in the constitutive relation,
the total energy-momentum tensor turns out to be the sum of a
kinetic term plus the Abraham tensor. It was not clear whether
the same is the case for anisotropic media. Our results now
clarify this point. Another interesting problem would be to find
a consistent definition of some kind of “generalized Abraham
tensor,” possessing the same properties of the Abraham tensor
in the isotropic case, but valid in any type of medium. This
would certainly improve our understanding of the Abraham-
Minkowski controversy, which has been restricted only to
simple media. Results in this direction will be analyzed in
a forthcoming publication.
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APPENDIX: EXPLICIT CALCULATION OF THE FRANK
POTENTIAL TERMS

In this Appendix the explicit derivatives of the Frank
potential are computed and an explicit verification of the
Noether identity (7.28) is given. For the computation of the
derivatives of the Frank potential (6.4), the following identities
will be useful:

εijkε
pqk ≡ P

p

j P
q

i − P
p

i P
q

j , (A1)

P i
j N

j ≡ Ni, (A2)

Nlεpqr ≡ Npεlqr + Nqεplr + Nrεpql, (A3)

where P i
j and εijk are defined in Eqs. (6.7) and (4.5),

respectively. Then, using (A1)–(A3), we can prove these other

useful relations:

εijkN
jεkln∂lNn = P n

i Nl∂lNn, (A4)

P i
j Ṅj = εijnωjNn, (A5)

2N[kεl]ijω
iNj = −εklnω

n = 2N[kP
j

l] Ṅj . (A6)

We now are in condition to compute the contribution of
the Frank potential to the dynamics of the fluid. For this, it is
convenient to separate the potential (6.4) into three pieces:

V := V1 + V2 + V3. (A7)

1. The first elastic constant

For the splay deformation elastic potential,

V1 = 1
2K1(∂iN

i)2, (A8)

we find

∂V1

∂ui
= ∂V

∂Ni
= 0, (A9)

∂V1

∂∂jNi
= K1(∂kN

k) δ
j

i , (A10)

δV1

δNi
= ∂V1

∂Ni
− ∂j

(
∂V1

∂∂jNi

)
= −K1∂i(∂kN

k). (A11)

Then, using (A9)–(A11) in Eq. (7.8), we obtain

F1
T i

j = −K1(∂kN
k)(∂iN

j ) + δ
j

i V1, (A12)

F1
T [ij ] = −K1(∂kN

k)(∂[iNj ]). (A13)

Finally, let us calculate explicitly the terms

δV1

δN [i
Nj ] = −K1N[j ∂i](∂kN

k), (A14)

−∂k

(
N[i

∂V1

∂∂kNj ]

)
= −K1(∂kN

k)(∂[jNi])

−K1N[i∂j ](∂kN
k). (A15)

Substituting all this into (7.28), we verify the Noether identity
for V1.

2. The second elastic constant

The second term (twist deformation) in the Frank potential
is given by

V2 = 1
2K2(εijkNi∂jNk)2. (A16)

Using the identities (A1) and (A3), we can rewrite this as

V2 = 1
4K2 πi

kπ
j

l (∂iNj − ∂jNi)(∂
kNl − ∂lNk) (A17)

= 1
2K2

[
P i

kP
j

l (∂iNj − ∂jNi)∂
kNl

+P i
j (Np∂pNi)(N

q∂qN
j )

]
. (A18)

The derivatives of the potential V2 with respect to the director
and its derivatives are straightforwardly calculated:
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∂V2

∂Ni
= K2(∂iN

p)(Nk∂kNq)P q
p

= K2 (∂iN
k)(Np∂pNk) − K2

c2
(∂iN

p)up(Nq∂qN
k)uk,

(A19)

∂V2

∂∂jNi
= K2

[
P

j

k P l
i (∂kNl − ∂lN

k) + NjP k
i (Np∂pNk)

]
= K2(∂jNi − ∂iN

j + NjNp∂pNi)

− K2

c2
[uj (Ṅi − uk∂iNk) − ui(Ṅ

j − uk∂jNk)

+Njui(N
p∂pNk)uk]. (A20)

In addition, the derivative with respect to the velocity reads

∂V2

∂ui
= −K2

c2
[(∂iNj − ∂jNi)(Ṅ

j − uk∂jNk)

+ (Np∂pNi)(N
q∂qN

k)uk]. (A21)

Substituting (A20) into the definition (7.8), we obtain the
contribution of K2 to the energy-momentum tensor

F2
T i

j = δ
j

i V2 − K2(∂iNk)
[
P j

p P k
q (∂pNq − ∂qNp)

+NjP k
l (Np∂pNl)

]
(A22)

= δ
j

i V2 − K2(∂iNk)[∂jNk − ∂kNj + Nj (Np∂pNk)]

+ K2

c2
(∂iNk)[uj (Ṅk − ul∂kNl) − uk(Ṅj − ul∂jNl)

+Nj (Np∂pNl)ukul]. (A23)

In order to check the Noether identity (7.28) for theV2 term,
we first notice that it can be identically recast into

F2
T [ij ] + ∂V2

∂u[i
uj ] + ∂V2

∂N [i
Nj ] − (∂kN[i)

∂V2

∂∂kNj ]
= 0. (A24)

Using (A20), we derive an intermediate result:

(∂kNj )
∂V2

∂∂kNi

= K2[(∂kNj )(∂kNi − ∂iNk) + (Np∂pNj )(Nq∂qNi)]

− K2

c2
[Ṅj (Ṅi − uk∂iNk) − ui(∂

kNj )(Ṅk − ul∂kNl)

+uiu
k(Np∂pNj )(Nq∂qNk)]. (A25)

It is straightforward to find the antisymmetric objects using
(A19), (A21), (A23), and (A25):

F2
T [ij ] = −K2(∂kN[i)∂j ]Nk − K2

c2
Ṅ[j (∂i]Nk)uk

+K2N[i(∂j ]N
k)(Np∂pNk)

− K2

c2
u[i(∂j ]Nk)(Ṅk − ul∂kNl)

− K2

c2
N[i(∂j ]N

k)uk(Nq∂qNl)u
l, (A26)

∂V2

∂u[i
uj ] = K2

c2
u[i(∂j ]Nk)(Ṅk − ul∂kNl)

− K2

c2
u[i(∂

kNj ])(Ṅk − ul∂kNl)

+ K2

c2
u[iN

p(∂|p|Nj ])(N
q∂qNk)uk, (A27)

∂V2

∂N [i
Nj ] = −K2N[i(∂j ]N

k)(Np∂pNk)

+ K2

c2
N[i(∂j ]N

k)uk(Nq∂qNl)u
l, (A28)

and

(∂kN[i)
∂V2

∂∂kNj ]
= K2(∂kN[j )∂i]Nk − K2

c2
Ṅ[j (∂i]Nk)uk

− K2

c2
u[i(∂

kNj ])(Ṅk − ul∂kNl)

+ K2

c2
u[iN

p(∂|p|Nj ])(N
q∂qNk)uk. (A29)

Substituting all this into (A24), we verify the Noether identity
(7.28) for the second term V2.

3. The third elastic constant

Analogously, we consider the third term (bend deformation)
in the Frank potential,

V3 = − 1
2K3(εijkN

jεkln∂lNn)2 (A30)

= − 1
2K3 P

j

i (Np∂pNj )(Nq∂qN
i), (A31)

where we have used (A4) to simplify the potential. It is
worthwhile to notice that this quadratic invariant has the same
form as the last term in the K2 potential (A18). As a result, the
corresponding derivatives of the potential (A30) with respect to
its arguments can be conveniently extracted from the formulas
(A19)–(A21). These derivatives are given by

∂V3

∂Ni
= −K3(∂iN

p)(Nk∂kNq)P q
p (A32)

= −K3 (∂iN
k)(Np∂pNk)

+ K3

c2
(∂iN

p)up(Nq∂qN
k)uk, (A33)

∂V3

∂∂jNi
= −K3 NjP k

i (Np∂pNk) (A34)

= −K3 NjNp∂pNi

+ K3

c2
Njui(N

p∂pNk)uk, (A35)

∂V3

∂ui
= K3

c2
(Np∂pNi)(N

q∂qN
k)uk. (A36)

The stress tensor (7.8) for V3 reads

F3
T i

j = δ
j

i V3 + K3(∂iNk)NjP k
l (Np∂pNl) (A37)

= δ
j

i V3 + K3(∂iNk)Nj (Np∂pNk)

− K3

c2
(∂iNk)Nj (Np∂pNl)ukul. (A38)
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In order to check the Noether identity for this last part of the
potential V , we observe that Eqs. (A33)–(A38) yield

F3
T [ij ] = −K3N[i(∂j ]N

k)(Np∂pNk)

+ K3

c2
N[i(∂j ]N

k)uk(Nq∂qNl)u
l, (A39)

∂V3

∂u[i
uj ] = −K3

c2
u[iN

p(∂|p|Nj ])(N
q∂qNk)uk, (A40)

∂V3

∂N [i
Nj ] = K3N[i(∂j ]N

k)(Np∂pNk)

− K3

c2
N[i(∂j ]N

k)uk(Nq∂qNl)u
l, (A41)

(∂kN[i)
∂V3

∂∂kNj ]
= −K3

c2
u[iN

p(∂|p|Nj ])(N
q∂qNk)uk. (A42)

Substituting all this into (A24), we verify the Noether identity
(7.28) for the third term V3.
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