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Spontaneous wrinkle branching by gradient stiffness
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The concept of coherency loss is proposed to understand wrinkle branching as a pathway toward hierarchical
wrinkling pattern formation in a compressed film-substrate system with gradient stiffness of the film or substrate.
A simple model indicates that the wrinkle branching arises when the characteristic length of the stiffness
inhomogeneity zone is larger than the coherency persistent length, which depends on the amplitude of the stiffness
inhomogeneity. Numerical simulations of nonlinear wrinkles based on the model of the Föppl–von Kármán plate
on compliant substrates show how regulating the size and amplitude of the stiffness inhomogeneities results in
branched wrinkles in striking agreement with the existing observations. The paper reveals the origin of such
kinds of branched wrinkles and may provide a guideline for controllable hierarchical wrinkles by patterning the
stiffness gradient.
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I. INTRODUCTION

Elastic-energy-driven hierarchical pattern formation has
been found in martensitic twinning [1–4], undulations in the
meniscus of smectic membranes [5], film blistering [6–8],
folding [9–11], and wrinkles [12–16]. Formation of these
patterns has been explained on the basis of minimization of
nonconvex elastic strain energy and interface energy from
a strain gradient contribution. In the twins near an interface
between austenite and twinned martensite, the classic theory
of domains predicts parallel twins of constant width when
the austenite and martensite have the same stiffness [17,18]
and twin branching when their stiffnesses are significantly
different [1]. The hierarchical twinned microstructure may be a
manifestation as the coexistence of twins with different widths
due to twin branching. The analogy between the hierarchical
twin pattern and the buckling pattern in a confined film has
been drawn wherein both of them can be classified into a mul-
tiscale variational problem for an extended Ginzburg-Landau
functional including gradient and nonlocal terms [7]. However,
due to the rare observation of the hierarchical twin pattern, it
is still unclear that the formation of such kinds of twin patterns
is solely dominated by energy minimization or just local
minima prevented by dynamic inaccessibility [1]. Recently,
hierarchical wrinkling patterns have been observed in a film
under uncompressed boundary confinement [12–14] or in
solvent-induced wrinkling of multilayer systems [15]. This
provides another platform to revisit the hierarchical pattern
driven by elastic energy. In addition, the hierarchical wrinkling
pattern as a tunable microstructured surface is attracting more
and more interest in applications of flexible electronics [19],
artificial skin [20], and cell mechanosensitivity [15].

We note that the reported hierarchical wrinkling patterns
are closely related to the stiffness inhomogeneities of the
film or the substrate, and the coexistence of the straight
wrinkles with different wavelengths is topologically like
a dislocated configuration due to coherency loss. In this
paper, we propose a model based on energy minimization to
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demonstrate that the coherency loss in hierarchical wrinkles
induced by gradient stiffness can be viewed as a mechanism of
the wrinkle-branching instability, which is a pathway toward
the formation of the hierarchical wrinkling pattern. Nonlinear
wrinkling simulation based on the continuum modeling for an
elastically heterogeneous Föppl–von Kármán (FvK) plate on
the compliant substrate and a homogeneous FvK plate on the
viscoelastic substrate is also developed. The numerical results
have confirmed the critical condition for the wrinkle-branching
instability derived in the simple model and have revealed how
the hierarchical wrinkle forms during the buckling process.

II. THEORETIC MODEL OF WRINKLE BRANCHING

Previous papers have shown that a film of thickness h on a
semi-infinite compliant substrate under a uniaxial compression
εpre may buckle with straight wrinkle morphology, which is
determined by the optimal release of the elastic energies in
the film and substrate [21–24]. In the approximation of the
sinusoidal wrinkling mode, following the analysis given by
the reference in Ref. [24], the shear stress at the film-substrate
interface can be neglectable, and it leads to uniform membrane
stress and membrane strain. If the out-of-plane deflection in the
film is u

f

3 = A cos(2πx/λ) with A and λ as the amplitude and
wavelength of the wrinkle, respectively, the in-plane displace-
ment fields can be obtained as u

f

1 = πA2

4λ
sin(4πx/λ) and u

f

2 =
0 according to the condition of uniform membrane strains,
wherein the membrane strain and stress are ε

f

11 = π2A2

λ2 − εpre,

ε
f

22 = 0, N
f

11 = Ēf ε
f

11, and N
f

22 = vf Ēf ε
f

11, respectively. The
elastic energy per unit area in the wrinkled film, including the

bending and stretching terms, is then expressed as h3Ēf π4A2

3λ4 +
1
2N

f

11ε
f

11. The elastic energy per unit area in the substrate is

U sub = 1
λ

∫ λ

0
1
2T3u

f

3 dx1 = πĒsA
2

4λ
by using the Gauss diver-

gence theorem, where T3 = π
λ
Ēsu

f

3 is given by the Green’s
function method. The total elastic energy in the film-substrate
system minimizes at A = 0 as εpre < εc = (3Ēs/Ēf )2/3/4,

whereas, at A(λ) = λ
π

√
εpre − (π2h2

3λ2 + λĒs

4πhĒf

), it minimizes as

εpre > εc. Finally, the total elastic energy per unit area in the

031604-11539-3755/2012/86(3)/031604(7) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.86.031604


YONG NI, DONG YANG, AND LINGHUI HE PHYSICAL REVIEW E 86, 031604 (2012)

3 6 9
0.80

0.82

0.84

0.86

2
e

1
e

UΔ

U
/U

0

λ/2πh

⎯Εf/⎯Εs= 1500

 Εf/⎯Εs= 300

FIG. 1. (Color online) The reduced total elastic energy as a
function of the reduced wavelength λ/2πh under different values
of the film-substrate modulus ratio.

wrinkled state has the form in terms of εpre and λ,

U

U0
= 1 −

[
1 −

(
π2h2

3λ2
+ λĒs

4πhĒf

)/εpre

]2

, (1)

with U0 = 1
2hĒf ε2

pre and Ēf,s = Ef,s/(1 − v2
f,s), where Ef ,s

and vf ,s are the Young’s modulus and the Poisson’s ratio of the
film or substrate, respectively. The plot in Fig. 1 shows that,
if both the film and the substrate are elastically homogeneous,
i.e., Ē

(1)
f /Ēs = 300 above a critical buckling strain εc1 =

(3Ēs/Ē
(1)
f )2/3/4, the total elastic energy has a minimum at

λ = λe
1 with λe

1/2πh = (Ē(1)
f /3Ēs)1/3 and the amplitude of

the equilibrium out of displacement A/h = (εpre/εc1 − 1)1/2.
If the modulus ratio of the film and the substrate changes, the
minimum of the elastic energy shifts to another value λe

2 as
shown in Fig. 1. The plot of the elastic energy U per unit area
at Ē

(2)
f /Ēs = 1500 plus a constant Umin(λe

1) − Umin(λe
2) with

respect to λ is added in Fig. 1. The combination of two curves
in Fig. 1 shows that, if the modulus ratio between the film
and the substrate is positionally dependent, the elastic energy
is split into a double well or multiwell, which indicates the
possibility of coexistence of the straight wrinkles with different
wavelengths. Figure 2 shows two typical coexistent wrinkling
configurations. Figure 2(a) is the coherent wrinkle where both
the wrinkles deviate from each equilibrium configuration with
its wavelength matched with an intermediate value λe

1 < λe <

λe
2. Figure 2(b) is the coherency-loss wrinkle where there is a

dislocated boundary bridging the wrinkle of its wavelength λe
1

w

2
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1
e

L

(2)
fE

(1)
fE

e

(a) (b)

FIG. 2. (Color online) Sketches of two typical coexistent wrin-
kling configurations with stiff inhomogeneity.

and the wrinkle of its wavelengthλe
2. The energy change in the

configuration with respect to the case of the uniform modulus
ratio in Fig. 2(a) is �U Lw with �U = U (λe), whereas, it is
γlw for the configuration in Fig. 2(b), where γl is the effective
line energy per unit length along the dislocated boundary, and
�U is the energy increase per unit area due to the coherency
as shown in Fig. 1. The coherent wrinkle configuration has
a lower free energy when �U Lw < γlw. This defines a
coherency persistent length Lc = γl/�U .

Using the two-well parabolic approximation, the elastic
energy curves in Fig. 2 can be approximately fitted into
U ≈ B(λ − λe

1)2(λ − λe
2)2 where B is a factor dependent on

the value of the uniaxial compression. When the wrinkle
branching occurs, there is a wrinkle wavelength gradient
as well as additional film bending and substrate distortion
energies localized at the transition boundary from the wrinkle
of its wavelength λe

1 to the wrinkle of its wavelength λe
2.

Following the Gibbs’s description, if we assume the wrinkle-
branched system as two phases separated by the boundary,
the excess energy at the sharp boundary is defined as the
effective line energy, which is determined by direct numerical
calculation. It can also be estimated according to classic diffuse
interface theory [25]. Using the theory, the equilibrium wrinkle
wavelength gradient profile is determined by minimizing the
elastic energy plus the contribution of the gradient term with
respect to λ(x) under the boundary condition λ(x → ∞) = λe

2,

λ(x → −∞) = λe
1. If we introduce a long-range order pa-

rameter η = λ−λe
1

λe
2−λe

1
(0 � η � 1), the total elastic energy in the

wrinkle-branched system with respect to η is assumed to have
the form U tot = ∫ +∞

−∞ w[16 �Uη2(1 − η)2 + β( ∂η

∂x
)2]dx with

�U = B(λe
2 − λe

1)4/16 at λe ∼ (λe
2+λe

1)
2 . β( ∂η

∂x
)2 with β as the

gradient coefficient, is the gradient energy term. The solution
η(x) = 1

2 [1 − tanh(−x/l)] with l = √
β/�U/2 is obtained by

solving the equation 2β
d2η

dx2 = dU
dη

from δU tot(η)/δη = 0 under
the boundary condition η(x → ∞) = 1, η(x → −∞) = 0.
The calculated equilibrium line energy γl is calculated as

γl = 4
3

√
β �U through γl = ∫ +∞

−∞ 2β( ∂η

∂x
)
2
dx. Substituting

the expression of γl ∼ √
β �U and �U ∼ B(λe

2 − λe
1)4 with

λe
i /2πh = (Ē(i)

f /3Ēs)1/3 into Lc = γl/�U , the coherency
persistent length, thus, has the form as a function of α =
Ē

(1)
f /Ē

(2)
f (Ē(1)

f � Ē
(2)
f ),

Lc = C

(1 − α1/3)2
, (2)

where C ≈ √
β/B(3Ēs/Ē

(2)
f )1/3/(2πh)2 is a constant. This

indicates that there is a wrinkle-branching instability when
the characteristic length of the stiffness inhomogeneity zone
satisfies the critical condition L > Lc. The coherency persis-
tent length increases as the increase in α, and it is divergent as
α → 1 where the stiffness inhomogeneity in the film vanishes.
If the stiffness inhomogeneity is in the substrate, it also changes
the film-substrate modulus ratio and results in the coexistence
of a different wrinkle wavelength λe

i /2πh = (Ēf /3Ē(i)
s )1/3,

therefore, a similar result in Eq. (2) is still valid after α

is replaced by Ē(2)
s /Ē(1)

s (Ē(2)
s � Ē(1)

s ) and C is replaced
by

√
β/B(3Ē(2)

s /Ēf )2/3/(2πh)2. Apparently, small values of
α corresponding to strong stiffness inhomogeneity and a large

031604-2



SPONTANEOUS WRINKLE BRANCHING BY GRADIENT . . . PHYSICAL REVIEW E 86, 031604 (2012)

0.1 0.2 0.3 0.4 0.5 0.6

200

400

600

800

Uniform wrinkling

α=E (1)

f
/E (2)

f

 ( )21/330 / 1 α−L/
h

 Simulated results
 Fitted formula 

Hierarchical wrinkling

FIG. 3. The calculated phase diagram for the wrinkle-branching
morphology of the film-substrate system with the stiffness gradient
constructed in the space with L and α as the coordinates.

value of L facilitate the wrinkle-branching instability. There
is a phase diagram shown in Fig. 3 constructed in the space
with L and α as the coordinates for the morphology of the
film-substrate system under the given uniaxial compression
εpre > εc either in a uniform straight wrinkle state or in
a wrinkle-branching state. By using a continuum model
and simulation developed in the following section without
imposing any ad hoc constraints on the possible buckling
geometry, the transition from the uniform straight wrinkle state
to the wrinkle-branching state can be identified by tracking
the configuration instability of the film-substrate system for
various cases with different values of these L’s and α’s. The
plots of Lc/h with respect to α in Fig. 3 show that the numerical
solution can be well fitted by the formula in Eq. (2). The
consistency indicates that the simple model captures the main
feature of the wrinkle branching induced by stiffness gradient.
The result in Fig. 3 can further be applied to design the hierar-
chical wrinkling pattern by regulating the values of L and α.

III. NUMERICAL SIMULATIONS OF HIERARCHICAL
WRINKLES

In this section, we performed numerical simulations for
nonlinear wrinkles based on the modified continuum model
with the consideration of stiffness inhomogeneities in the
film or substrate [24,26,27]. Two film-substrate systems are
investigated, respectively. One is a film with stiffness inhomo-
geneity on a homogeneous compliant substrate. The other is an

elastically homogeneous film on a viscoelastic substrate with
stiffness inhomogeneity induced by the interplay between the
substrate viscoelasticity and the diffusion process in the film.
In the continuum model, the film with an eigenstrain ε0

αβ is
taken as the FvK plate [28], the elastic strain in the film can
be expressed by the middle-plane displacement uf = (uα,ζ ),

εe
αβ = 1

2 (uα,β + uβ,α) + 1
2ζ,αζ,β − ε0

αβ − x3ζ,αβ . (3)

The total elastic strain energy in the film is obtained by
integrating through its volume,

Efilm =
∫ h/2

−h/2

∫ ∞

−∞

∫ ∞

−∞

1

2
Cαβδγ εe

αβεe
δγ dx1dx2dx3. (4)

Substituting Eq. (3) into Eq. (4) and integrating with respect
to x3 leads to

Efilm = Efilm
s + Efilm

b , (5)

where

Efilm
s = 1

2

∫ ∞

−∞

∫ ∞

−∞
Nαβeαβdx1dx2, (6)

Efilm
b = 1

2

∫ ∞

−∞

∫ ∞

−∞
D

[
(�ζ )2 − 2(1 − vf )

(
ζ,11ζ,22 − ζ 2

,12

)]
× dx1dx2, (7)

eαβ = 1

2
(uα,β + uβ,α) + 1

2
ζ,αζ,β − ε0

αβ, (8)

Nαβ = 2hμf

1 − vf

[(1 − vf )eαβ + vf eγ γ δαβ], (9)

where D = μf h3

6(1−vf ) , � = ∇ · ∇, and μf and vf are the shear
modulus and Poisson’s ratio of the film, respectively. In the
former system, the substrate is elastic, and the film is perfectly
bonded to the substrate with a zero displacement jump across
the interface between them (uf = us). Given the substrate
surface displacement us

i , the traction induced at the substrate
surface is obtained using a Green’s function method [24],

T s
i = 1

(2π )2

∫
Mij ũ

s
j e

iξαxαdξ1dξ2. (10)

The elastic energy in the substrate Esub =
1
2

∫ ∞
−∞

∫ ∞
−∞ T s

i us
i dx1dx2 finally has the form

Esub = 1

8π2

∫
Mij ũ

f

i ũ
f ∗
j dξ1dξ2, (11)

where the symbol ∗ denotes the complex conjugate and Mij is
a matrix function of nα . Therefore,

Mij = μsξ

3 − 4vs

⎡
⎢⎣

4(1 − vs) − n2
2 n1n2 2i(1 − 2vs)n1

n1n2 4(1 − vs) − n2
1 2i(1 − 2vs)n2

−2i(1 − 2vs)n1 −2i(1 − 2vs)n2 4(1 − vs)

⎤
⎥⎦ , (12)

with μs and vs as the shear modulus and Poisson’s ratio of the
substrate, respectively, and ξ = (ξ 2

1 + ξ 2
2 )1/2,n1 = ξ1/ξ,n2 =

ξ2/ξ. The total elastic energy of the film-substrate system

Etot = Efilm + Esub can be expressed as a functional of the
middle-plane displacement in the film. The stationary variation
in the total elastic energy with respect to the middle-plane
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FIG. 4. (Color online) Comparison between (a) the observed
hiearchical wrinkling pattern in Ref. [15] and (b) our simulated
pattern.

displacement leads to the elastic equilibrium in the substrate,
in-plane, and out-of-plane equilibrium equations in the film.
δEtot/δuα = 0 leads to the in-plane equilibrium equation
of the film Nαβ,β = T s

α . When the stiffness inhomogeneity
of the film is described by a positionally dependent shear
modulus μf (x1,x2), solving the in-plane equilibrium equation
reduces to the problem of the two-dimensional elastically
heterogeneous solid of μf (x1,x2) containing arbitrary effective
eigenstrain ε0

αβ − 1
2ζ,αζ,β . The solution can be obtained using

the phase field microelasticity theory [29]. The out-of-plane
equilibrium process is described using the time-dependent
Ginzburg-Landau kinetic equation,

∂ζ

∂t
= −�

δEtot

δζ
, (13)

where � is a kinetic coefficient which characterizes the
relaxation rate of the buckling process in the overdamped
dynamics. The steady-state solution of Eq. (13) δEtot/δζ = 0
recovers the out-of-plane equilibrium equation of the film
D(x1,x2)�2ζ − (Nαβζ,α),β + T s

3 = 0 and provides the equi-
librium distributions of ζ . Throughout the paper Greek indices
are used to indicate 1 or 2, and Latin indices indicate 1,2 or 3.
The usual summation convention applies for repeated indices,
and a comma stands for differentiation with respect to the
suffix index. A similar semi-implicit spectrum method [26] is
adopted to solve Eq. (13) after Eqs. (6)–(12) are substituted
into Eq. (13), the dimensional quantities are scaled by the film
thickness (r ′ = r/h), and the time t is scaled by τ = h/�ζμs

(i.e., t ′ = t/τ ). A square computational domain of size 1024
× 1024 is used with periodical boundary conditions and the
time step �t ′ = 1 (unless otherwise noted).

A simulated result in Fig. 4 shows that there is a hierarchical
wrinkling pattern when the film of thickness h with a
prescribed gradient stiffness, Ēf (x2) = Ē

(2)
f [1 + (α − 1) x2

N2
],

α = 0.1, N2 = 1024, λe
2 = 20πh, and εc = (3Ēs/Ē

(2)
f )2/3/4

is under a uniaxial compression ε0
11 = εpre = 3εc along the x1

axis. This hierarchical wrinkle pattern may be viewed as a
result of the cascade instability of the wrinkle branching. The
result in Fig. 4 is in striking agreement with the experimental
observation of the hierarchical wrinkling pattern in the solvent-
induced wrinkling of the multilayer system, wherein it is

believed that solvent diffusion changes the glass transition
temperature of the polymer film and results in a stiffness
gradient in the film [15]. It is seen that the closer the diffusion
front, the smaller the film stiffness and the smaller the wrinkle
wavelength. This agreement confirms that the spontaneous
wrinkle branching by the stiffness gradient in the film can
produce a hierarchical wrinkling pattern. Therefore, we expect
that the patterning stiffness gradient in the film could be
an effective strategy to realize a controllable hierarchical
wrinkling pattern. We can control the stiffness gradient of
the film by regulation of binary composition modulation [30],
gradient cross-linking density in a polymer film [31], or a
hybrid nanocomposite [32,33].

When the stiffness gradient is from the substrate, its
stiffness can be quantitatively controlled by the cross-linking
density if the substrate is a cross-linked polymer [31]. We
found that the stiffness gradient of the substrate can also be
induced by the interplay between the substrate viscoelasticity
and the diffusion process if the substrate is viscoelastic. It is
known that the wrinkle in a compressively stressed film on a
viscoelastic substrate undergoes a coarsening process [26,34].
The increase in the wrinkle wavelength during coarsening is
corresponding to the decrease in the substrate stiffness due
to stress-driven viscoelastic relaxation. When the compressive
membrane stress in the film is caused by solvent diffusion
mediated inhomogeneous swelling [27], the time- and spatial-
dependent stresses transmitted into the substrate facilitate
a nonuniform viscoelastic relaxation and, thus, lead to a
dynamic stiffness gradient of the substrate. In this situation,
the amplitude of the stiffness inhomogeneity in the substrate
is characterized by the difference in the modulus at the
glassy and rubbery states [34], whereas, the characteristic
length of the stiffness inhomogeneity zone is dependent on
the processes of viscous flow in the substrate and solvent
diffusion in the film. To explore how and when a hierarchical
wrinkling pattern in the film-substrate system can form due to
such a stiffness gradient of the substrate, we modified the
model [26] for kinetic wrinkling of a homogenous elastic
film on a viscoelastic substrate by including the effect of
solvent diffusion [27]. In the model, the elastic energy in
the film is still given by Eqs. (5)–(9) after the eigenstrain
is replaced by ε0

ij = ε0δαβc(x1,x2,t) with ε0 as a constant
characterizing solvent-induced expansion and c(x1,x2,t) as
the solvent concentration. A thin-layer approximation of the
linear viscoelastic response gives a relationship between the
surface velocity and the traction of the viscoelastic layer with
thickness H . The total energy dissipative process involves
solvent diffusion, wrinkling in the film, and viscoelastic
flow in the substrate. The process is described by a set of
nonlinear evolution equations with respect to the middle-plane
displacement of the film [26] and the solvent concentration
[27],

∂ζ

∂t
= 1 − 2νs

2(1 − νs)

H

η

[
−D

∂4ζ

∂xα∂xα∂xβ∂xβ

+ ∂Nαβ

∂xβ

∂ζ

∂xα

+ Nαβ

∂2ζ

∂xα∂xβ

]
− μR

η
ζ, (14)

∂uα

∂t
= H

η

∂Nαβ

∂xβ

− μR

η
uα, (15)
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FIG. 5. (Color online) Simulated evolving wrinkling morphologies in the film-substrate system involve the viscous flow of the substrate
and the unidirectional growth of the diffusion front (a)–(d) t/τ = 500, 5000, 9500, and 14 000.

∂c

∂t
= −�c

(
∂f

∂c
− 2βc∇2c

)
, (16)

where η and μR are the viscosity and the rub-
bery modulus of the viscoelastic substrate. f (c,a) =
A[ 1

4c4 − ( 1
2 − 1

3χ )c3 + ( 1
4 − 1

2χ)c2] is a chemical potential
describing solvent diffusion controlled domain growth with
A as a constant and χ > 0 for the growth of the diffusion
front. �c is the related diffusion mobility coefficient, and
βc is the gradient coefficient. We followed the numerical
procedure [26,27] to solve Eqs. (14)–(16).

Figure 5 shows the simulated sequential wrinkling
morphologies during the film-substrate system, which involves
the viscous flow of the substrate and the unidirectional growth
of the diffusion front. The chosen parameters are h = 1,
H = 10, νf = 0.3, νs = 0.45, μf = 1, μR = 0, ε0 = 0.003,
χ = 0.1, ρ = A/μf = 6, and ξ = 2βc

μf h2
f

= 1. Figure 5(a)

demonstrates that parallel wrinkles tend to form behind the
area of the diffusion front with the alignment perpendicular to

the direction of maximum compression [27]. After the char-
acteristic length of the substrate inhomogeneity zone becomes
larger than a critical value, the wrinkle-branching instability
occurs as shown in Fig. 5(b). With the further propagation
of the diffusion front, the cascade branching of the wrinkle
develops, and finally, a hierarchical wrinkling pattern forms.
Figure 6 shows that the simulated wrinkling morphological
evolution during the film-substrate system involves the
viscous flow of the substrate and the radial growth of the
diffusion front with the same input parameters as in Fig. 5. The
wrinkling pattern tends to arrange into a radial hierarchical
stripe pattern. The wrinkling pattern has a smaller wavelength
at the circular diffusion front and a larger wavelength away
from the diffusion front with multiple wrinkle branchings
bridging them. The wrinkling pattern obtained in the current
simulation is significantly different from other solvent-induced
wrinkling of multilayer systems [35], wherein few wrinkle
branchings are observed due to the lack of the stiffness
gradient.
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FIG. 6. (Color online) Simulated evolving wrinkling morphologies in the film-substrate system involve the viscous flow of the substrate
and the radial growth of the diffusion front (a)–(d) t/τ = 500, 3500, 5500, and 8000.

We can estimate that the characteristic length of the stiffness
inhomogeneity zone is on the order of L/h ∼ �cη in the film-
substrate system involving the viscous flow in the substrate and
solvent diffusion in the film. The wrinkle-branching instability
that results in the hierarchical wrinkling pattern occurs as
the critical condition �cη > Lc/h is satisfied. Obviously,
large values of the diffusion mobility �c and the substrate
viscosity η are found to facilitate formation of the hierarchical
wrinkling pattern. We found that a phase diagram for the
morphology of such a film-substrate system under supercritical
compression can be constructed in the space with �′

c = �cμf τ

and 1/η′ = τσ 2
0 /μf η as the coordinates as shown in Fig. 7,

wherein the boundary curve �′
c = F/η′ with F as a constant

separating the buckling morphology of the film in a uniform
straight wrinkle state or in a wrinkle-branching state. By
using a set of numerical simulations, the transition from the
uniform straight wrinkle state to the wrinkle-branching state
can be identified by tracking the configuration instability of the
film-substrate system for various cases with different values of
these �′

c’s and η′’s. The result in Fig. 7 shows that the simulated
transition points are collapsed into the curve �′

c = F/η′ in

good agreement with our analysis. The obtained phase diagram
here may be used to guide formation of the hierarchical

1000 2000 3000 4000 5000
0.000
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Hiearchical wrinkling

Γ′ c

1/η′

 Simulation results
  Linear fitting Γ′

c
=F/η′

Uniform wrinkling

FIG. 7. The calculated phase diagram for the wrinkle branching
coupled to diffusion of the film on a viscoelastic substrate constructed
in the space with �′

c and 1/η′ as the coordinates.
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wrinkling pattern for a film on the viscoelastic substrate by
tuning the properties of viscous flow in the substrate and
solvent diffusion in the film.

IV. CONCLUSIONS

To summarize, the mechanism of the wrinkle-branching
instability, leading to formation of the hierarchical wrinkling
pattern in compressed film-substrate systems, was revealed.
The critical conditions for the spontaneous wrinkle-branching
instability by the stiffness gradient were identified. The
wrinkle-branching instability, as the coherency loss of do-
mains, occurred when the characteristic length of the stiffness
inhomogeneity zone was larger than the coherency persistent
length. The numerical simulations confirmed the theoretic

analysis and revealed formation of the hierarchical wrinkle
pattern in two film-substrate systems. The results obtained in
the paper may be of interest in engineering complex wrinkling
patterns in the film-substrate system by regulation of the
stiffness gradient.
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