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Perturbation theory of solid-liquid interfacial free energies of bcc metals
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A perturbation theory is used to calculate bcc solid-liquid interfacial free energies of metallic systems with
embedded-atom model potentials. As a reference system for bcc crystals we used a single-occupancy cell,
hard-sphere bcc system. Good agreements between the perturbation theory results and the corresponding results
from simulations are found. The strategy to extract hard-sphere bcc solid-liquid interfacial free energies may
have broader applications for other crystal lattices.
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I. INTRODUCTION

In our previous study [1] we developed a perturbative ap-
proach to calculate solid-liquid interfacial (SLI) free energies
and applied it to model systems with inverse power potentials,
Lennard-Jones potential and embedded-atom models (EAMs)
of metallic systems. In all the considered cases involving
fcc crystals we have found reasonable agreements with the
corresponding results from molecular simulations. In the
present paper we apply the method of Ref. [1] to calculate bcc
solid-liquid interfacial free energies of EAM metallic systems.

Essential inputs to the perturbation theory are the ther-
modynamical and structural properties of a reference system.
When an fcc crystal system is studied, the hard-sphere (HS) fcc
crystal is commonly chosen as a reference system. These prop-
erties of a HS fcc crystal were extensively investigated using
molecular simulations [2], density functional theories (DFTs)
[3], cell and free volume theories [4,5]. Reliable information
is available for free energies [6,7], density distributions [8,9],
equations of state [10], and correlation functions [11] in a wide
range of densities, from metastable states to close-packing
ones.

Unlike the HS fcc crystal, it is problematic to obtain the
thermodynamical and structural properties of a HS bcc crystal
by conventional molecular simulations due to the mechanical
instability of a HS bcc crystal. At the same time, studies of
a HS bcc crystal also failed using other theoretical methods.
For instance, many DFT studies [12–15] provide unphysical
behaviors for a HS bcc crystal, and the free volume method
does not provide reliable free energies for a HS bcc solid [16]
either.

So far the only way to stabilize a HS bcc crystal in
simulations is to enforce some constraints on the center of hard
spheres, for example, the location of a HS center is restricted by
the bcc Wigner-Seitz cell [17], namely, the single-occupancy
cell (SOC) model [6]. It is known that the SOC model
provides essentially the same results as the unconstrained
simulations for several fcc crystal model systems such as HS,
Lennard-Jones potential, and inverse power potentials [18–21].
Therefore it will be interesting to study whether the SOC model
of a HS bcc crystal can provide a reliable reference system
given the failure of other theoretical methods. In addition,
molecular simulations for the SOC HS bcc system are available
in literature. For example, in Refs. [16,21] the dependence
of pressure on the bulk density is calculated using molecular
dynamics simulations (MDSs), and in Ref. [12] the free energy

and Gaussian parameters of density distributions are found for
two bulk densities using Monte Carlo simulations (MCSs).

Since crystal-orientation-dependent HS bcc solid-liquid
interfacial free energies γ

(HS)
bcc are crucial input parameters to

our perturbation theory for interfacial free energies of other
systems, a strategy to obtain these inputs is essential. Unlike the
case for HS fcc solid-liquid γ

(HS)
fcc , which is well documented

in literature (see, for instance, Refs. [22,23]) using various
simulation methods, only a few indirect estimations of γ

(HS)
bcc

are available [24,25] using different theoretical methods which
involved various approximations. In our study we extract the
γ

(HS)
bcc from the bcc solid-liquid interfacial free energies γ

(SS)
bcc

of soft-sphere systems, which were obtained from molecular
simulations in Ref. [22]. The success of this strategy may open
a door for the extraction of solid-liquid free energies involving
different crystal lattices.

The rest of the paper is organized as follows: The per-
turbation theory for the solid-liquid interfacial free energies
is briefly reviewed and the input information used in the
perturbation theory are presented in Sec. II. The main results of
this report are presented in Sec. III. Some concluding remarks
are given in Sec. IV.

II. THEORETICAL DEVELOPMENT

In this section we briefly review the perturbation theory
for bulk solid and liquid Helmholtz free energy [26,27] and
for solid-liquid interfacial free energies [1] so that the input
information to the perturbation theory can be presented in
a self-contained fashion. Consider a molecular system with
interaction potential ψ(r). Let the potential ψ(r) be separated
into a short-ranged, purely repulsive reference part ψref(r) and
a perturbative part ψpert(r). For a system with an interaction
potential which is purely repulsive ψ(r) ∼ 1/rn, the parameter
of separation λ is chosen simply as λ = R1 [13,28], where R1

is a nearest-neighbor distance (for bcc lattice R1 = 31/3

22/3ρ1/3 and
ρ the bulk density). The reference system is then mapped
onto an effective HS system with a temperature-dependent
HS diameter d(T ) prescribed by Weeks-Chandler-Anderson
(WCA) criterion [26,27,29]. The resulting expression for the
total Helmholtz free energy is

F = Fhs + Fpert, (1)
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where Fhs is the HS free energy, Fpert the perturbative part of
the free energy [30,31]:

Fpert = 1

2
ρ

∫
d�rghs(r/d)ψpert(r). (2)

In the above equations ghs is the averaged correlation function
of the HS reference system [31–33].

Recently we have developed a perturbation approach to
calculate the solid-liquid interfacial free energies [1], thus
extending the perturbation approach to interfacial properties.
In the framework of this approach the interfacial free energy
γ is expressed as

γ = γhs + γpert, (3)

where γhs is the interfacial free energy of a reference HS
system. The perturbative part γpert can be written as

γpert =
3∑

i=1

{
F i

α

A
− 1

2

(
f s

αρs + f l
αρl

)
�zhs

}
, (4)

where

F
(i)
1 = 1

2

∫∫
d�r1d�r2ρ(�r1)ρ(�r2)ghs(�r1,�r2)ψpert(�r1,�r2), (5)

F
(i)
2 = kBT

∫
d�rρ(�r) log[ρ(�r)/ρhs(�r)], (6)

F
(i)
3 = −kBT

2

∫
d �r1d �r2c

(2)
hs ( �r1, �r2)[ρ( �r1) − ρhs( �r1)]

× [ρ( �r2) − ρhs( �r2)]. (7)

In the above expression, ρ(�r) is the density profile of the
interfacial region, ghs( �r1, �r2) the correlation function, chs( �r1, �r2)
the direct correlation function, and ρhs(�r) the density profile
of the HS interfacial region. ρs and ρl are the coexisting bulk
solid and liquid densities, f s and f l the Helmholtz free energy
per particle in coexisting solid and liquid phases, �zhs the
width of the HS reference interfacial region, A the area of the
interface, kB the Boltzmann constant, and T the temperature.
For the embedded-atom model (EAM) of metals, suitable
generalizations of Eqs. (1) and (3) can be made for the case of
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FIG. 1. Dimensionless parameters of Gaussian distribution αd2

vs density ρd3 for the SOC HS bcc system. Results are obtained
from Monte Carlo simulations (MCSs). The circles are from our
simulations and the diamonds are from Ref. [12]. The line is only a
guide to the eye.
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FIG. 2. A representative correlation function g(r) of the SOC HS
bcc system for ρd3 = 1.0. The bold line is the result obtained from
the theory of Rascon et al. [32] (Theory) and the dotted line is the
result from our Monte Carlo simulations (MCSs).

many-body EAM potentials [1,34,35], and more details of the
calculations can be found in Ref. [1].

For a HS SOC bcc crystal, the dependence of pressure
on density could be found in Ref. [21]. The Helmholtz free
energy can be calculated, using a thermodynamic integration,
from the data of Ref. [21]. For the Gaussian parameter α

of a one-body density distribution in this reference system,
Monte Carlo simulations of the SOC model are performed and
the result is shown in Fig. 1. Our simulations yield the same
equation of state as in Ref. [21], and the Gaussian parameter
is close to the ones in Ref. [12] at the same reduced densities.

If free energies of a HS SOC bcc system f s and the
Gaussian parameters α are known, the method of Rascon
et al. [32] can be implemented to calculate the correlation
functions gs

hs(r/d). In Fig. 2 a typical correlation function
gs

hs(r/d) obtained from the theory of Ref. [32] as well the
one from our Monte Carlo simulations at density ρd3 = 1.0
is shown to agree with each other. Hence the theory of
Ref. [32] for correlation functions can be used not only for
the constrained HS crystals, but also for SOC HS systems.

III. RESULTS

To test the validity of the SOC HS bcc reference system, we
have calculated the bcc solid-liquid coexistence conditions for
soft-sphere systems with the inverse power potential ψ(r) =
ε(σ/r)n, where n = 6, 7, and 8. The coexistence conditions
are obtained from the double-tangent Maxwell construction

TABLE I. Bcc solid-liquid coexistence conditions (n is a param-
eter of the inverse power potential, ρ∗

s , ρ∗
l , and P ∗ the dimensionless

solid and liquid densities and pressure). Results of the perturbation
theory (PT) are compared with the ones from molecular dynamics
simulations (MDSs) [22].

PT MDS

n ρ∗
s ρ∗

l P ∗ ρ∗
s ρ∗

l P ∗

6 2.370 2.281 97.70 2.326 2.299 100.0
7 1.890 1.812 61.09 1.861 1.834 63.88
8 1.621 1.549 43.85 1.607 1.578 47.1
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TABLE II. Crystal-orientation-dependent HS bcc solid-liquid
interfacial free energies γ

(HS)
100 , γ

(HS)
110 , γ

(HS)
111 for n = 6,7,8 of inverse

power potentials (see explanation in text). Units of γ are βγ d2.

n γ
(HS)
100 γ

(HS)
110 γ

(HS)
111

6 0.416 0.399 0.406
7 0.411 0.390 0.401
8 0.407 0.388 0.397
av 0.411 0.392 0.402

using the liquid and solid free energies βf (β = 1/kBT ) as a
function of 1/ρ. Table I shows the calculated coexisting bcc
solid ρ∗

s = ρsσ
′3 and liquid ρ∗

l = ρlσ
′3 densities and pressure

P ∗ = βPσ ′3, where σ ′ = (βε)1/nσ , and the corresponding
results from molecular simulations [22]. Good agreements
between the results of the perturbation theory and simulations
demonstrated the validity of the SOC HS bcc crystal as a
reference system.

To apply our perturbation theory to interfacial free energies
γ involving a bcc crystal with various interaction potentials,
the reference HS bcc interfacial free energies γ

(HS)
bcc are

essential. As a direct simulation between a HS bcc crystal and
liquid interface is not possible, we adopt an indirect strategy
to extract the HS interfacial free energies involving a SOC
bcc crystal. In our previous work we have demonstrated that
the perturbation theory for interfacial free energies is accurate
for various fcc systems [1] and accurate bcc-liquid interfacial
free energies of inverse-power potentials are known from
simulations [22]. A combination of our perturbation theory
and the bcc-liquid interfacial free energies of the inverse power
potentials from simulations can be used to calculate the SOC
HS bcc-liquid interfacial free energies, namely,

γ (HS) = γ (SS) − γpert, (8)

where γ (SS) is the interfacial free energies from MD simula-
tions [22], and γpert can be calculated from our perturbation
theory [Eq. (4)].

The results for γ (HS) are listed in Table II. It is seen that for
a given crystal orientation for n = 6,7,8 of the inverse power
potential γ (HS) values are slightly different, which may reflect
inherent errors of the perturbation theory (for n > 8 the bcc

HS crystal becomes metastable and hence simulation results
are not available [22]). The averaged values represent our best
estimate for γ (HS) and are shown in the last row of Table II. Our
results are γ

(HS)
100 = 0.411, γ

(HS)
110 = 0.392, and γ

(HS)
111 = 0.402.

Previously, HS bcc solid-liquid interfacial free energies have
been estimated in Ref. [25] (γbcc = 0.43) and Ref. [24] (γbcc =
0.47) using different theoretical methodologies. Our result
represents the first reliable estimate for HS bcc solid-liquid
interfacial free energies at different crystal orientations and can
be used to predict the bcc solid-liquid interfacial free energies
of any interaction potentials.

As an example, we have calculated the bcc solid-liquid
interfacial free energies of several EAM metallic systems
where simulation or experimental results exist. Two different
EAM potentials for Fe, the ABCH [36] and the MH(SA)2

model [37], and the EAM potential for Zr [38], are studied
in the present report. As the perturbation calculations are
done under zero pressure, the melting temperature Tm can
be determined by the crossing point of solid and liquid
free energy curves as a function of temperature T for each
EAM system [34]. The potential separation parameter λ was
chosen to be λ = (R1 + R2)/2, where R2 is the next-to-nearest
neighbors distance [for bcc lattice R2 = (2/ρ)1/3]. The results
for coexisting solid ρs and liquid ρl densities as well as for
melting temperature Tm, enthalpy of fusion lm = hl − hs , and
Turnbull’s constant cT = γ0/(lmρ

2/3
s ) are presented in Table III

and are compared with the ones from simulations [38,39].
Agreements between the results of present perturbation theory
and simulations are found to be similar to other systems
involving different crystal lattices [35]. For example, the
difference in Tm for Fe(ABCH) is 3.0%, for Fe[MH(SA)2] is
−9.2%, for Zr is 4.5%. The enthalpy per particle h is calculated
using a thermodynamic formula

h = F

N
− T

∂
(

F
N

)
∂T

− P

ρ
. (9)

[If the dependence of FEAM and Fpert on temperature T is weak,
then the following equation is valid: h = 3

2kBT + FEAM
N

+
Fpert

N
+ P

ρ
. For the metal systems under consideration, we have

found that the enthalpy h obtained from this equation is not
very accurate as compared to the one obtained from Eq. (9).]

TABLE III. Calculated melting temperature Tm, coexisting solid ρs and liquid ρl densities, enthalpy of fusion lm, Turnbull’s coefficient cT ,
average SLI free energies γ0, and the anisotropy parameters ε1 and ε2 for various EAM potentials. Results of the perturbation theory (PT) are
compared with the ones from MDS (Ref. [39] for Fe models, Ref. [38] for Zr coexistence) and experiments (EXPT) (Ref. [40] for Zr SLI free
energies).

PT MDS/EXPT

Fe(ABCH) Fe[MH(SA)2] Zr Fe(ABCH) Fe[MH(SA)2] Zr

Tm (K) 2430.5 1608.3 2203.4 2358.7 1772.0 2109

ρs (Å
−3

) 0.0770 0.0799 0.0410 0.0784 0.0801 0.0411
ρl (Å−3) 0.0746 0.0763 0.0407 0.0737 0.0763 0.0408
lm (eV/atom) 0.111 0.074 0.084 0.218 0.162 0.179
cT 0.55 0.69 0.77 0.32 0.36 –
γ0 (mJ/m2) 176.2 152.1 123.2 206 175 115
ε1 (%) 9.05 5.08 6.37 1.6 3.3 –
ε2 (%) 2.32 1.77 2.01 − 0.04 0.24 –
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Finally, we computed bcc solid-liquid interfacial free
energies of the EAM metallic systems using the perturbation
theory. The calculated average interfacial free energy γ0

and anisotropy parameters ε1 and ε2 at zero pressure are
given in Table III (for definitions of γ0, ε1, and ε2, see, for
instance, Ref. [1]). The results are compared to the ones
from simulations [39] for Fe models and to experimental
measurements for Zr of Ref. [40]. (There is no simulation data
for bcc solid-liquid interfacial free energies with the EAM Zr
potential [38] available in literature.) Again, results for the
obtained average bcc SLI free energies γ0 are in satisfactory
agreement with results from simulations or experiments. For
example, for Fe(ABCH) the error is 14.5%, Fe(MHSA2)
13.0%, and Zr 7.0%.

IV. CONCLUDING REMARKS

In Ref. [1] we have developed a perturbative method for
theoretical calculations of fcc crystal and melt interfacial free
energies. Good agreements between the theoretical results and
the results from simulations are found for all the considered
EAM metal systems. In addition, we have demonstrated the
possibility to extract liquid-crystal interfacial free energies for
fcc hard-sphere systems. In the present study we extended this
method to bcc solid-liquid systems of EAM metals. As it is
well known that the HS bcc crystal is unstable with respect
to shear deformations and conventional simulation methods
cannot be used to calculate the thermodynamic properties
of the HS bcc system, at the same time various theoretical
approaches to the HS bcc system also failed [12–15]. In this
report we demonstrated that a single-occupancy cell model
of the HS bcc system can be used as a reference system. In
combination with the thermodynamic properties of the HS
bcc system from literature [21] and Gaussian parameters α

of the one-body density distribution as a function of density
from our Monte Carlo simulations, we were able to extend
the perturbation theory to various systems involving bcc
crystals. More importantly, such a strategy can be used for any
crystal lattices of HS systems. The obtained bcc solid-liquid
coexistence conditions for inverse power potentials are in
good agreement with the results from molecular simulations

(Table I). The HS bcc solid-liquid interfacial free energies
γ

(HS)
bcc are extracted from a combination of simulation results

[22] and our perturbation theory, and hence provide the first
reliable estimates for these quantities. The obtained γ

(HS)
bcc is

in good agreement with a previous estimation of Ref. [25].
Since our calculations are based upon a perturbation approach,
our coexistence conditions agree with the simulation results
reasonably well; hence we will expect that the relative
stabilities between the bcc and fcc phases are similar to the
simulation results, which is well documented for inverse power
potentials [41].

As further applications of our methodology, Fe and Zr solid-
liquid coexistence conditions and interfacial free energies
with EAM potentials are studied. The results for melting
temperatures as well as for bcc interfacial free energies are
again in reasonable agreement with the ones from simulations
and experiments (Table III).

We have used the fundamental measure density functional
theory (FM DFT) [42,43] to calculate thermodynamic and
structural properties of the SOC HS bcc system and found
similar unphysical results as in Ref. [14]. Therefore, the
current fundamental measure functionals are not suitable for
the calculations of a SOC HS bcc reference system. The reason
for the excises is that FM DFT can be directly generalized to
multicomponent mixtures, thus providing the thermodynamic
and structural information of binary or ternary SOC HS bcc
systems much more efficiently than simulations. The latter can
be used as reference systems for a perturbation theory to study
bcc binary alloys, just as the perturbation theory for fcc binary
alloys which was previously developed in Ref. [35]. So far,
discovery of a useful functional for a HS bcc crystal remains
a challenge.
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