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We consider a model fluid with long-range r−6 (dispersion) interparticle potentials confined between competing
parallel walls. One wall is solvophilic and would be completely wet at bulk liquid-gas coexistence μ−

co, whereas
the other is solvophobic and would be completely dry at μ = μ+

co. When the wall separation L is large and the
system is below the bulk critical temperature TC and close to bulk liquid-gas coexistence, a delocalized interface
or soft-mode phase forms with a liquid-gas interface near the center of the slit; this interacts with the walls
via the power-law tails of the interparticle potentials. We use a coarse-grained effective Hamiltonian approach
to derive explicit scaling expressions for the Gibbs adsorption �, the surface tension γ , the solvation force fs ,
and the total susceptibility χ . These quantities depend on the dimensionless scaling variable (L/σ )3βδμ, where
β = (kBT )−1, σ is the diameter of the fluid particles and δμ = μ − μco is the chemical potential deviation from
bulk coexistence. Using a nonlocal density functional theory, we calculate density profiles for the asymmetrically
confined fluid at different chemical potentials and for sufficiently large L confirm the scaling predictions for
the four thermodynamic quantities. Since the upper critical dimension for complete wetting with power-law
potentials is less than 3, we argue that our (mean-field) scaling predictions should remain valid in treatments that
incorporate the effects of interfacial fluctuations. As the wall separation L is decreased at μco, we predict a capillary
evaporation transition from the delocalized interface phase to a dilute gas state with just a thin adsorbed film of
liquidlike density next to the solvophilic wall. This transition is closely connected to the first-order prewetting
transition that occurs at the solvophilic wall in the semi-infinite system. We compare the phase diagram for the
competing walls system with the phase diagrams for the fluid confined between identical solvophilic and identical
solvophobic walls. Comparisons are also made with earlier studies of asymmetric confinement for systems with
short-range forces.
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I. INTRODUCTION

Understanding the phase behavior and equilibrium structure
of confined fluids is a subject of intrinsic interest to the
statistical mechanics communities and is also a key ingredient
in elucidating the microscopic dynamics and flow properties
of fluids in microfluidic or nanofluidic devices. When a simple
(atomic or molecular) fluid is confined in narrow pores,
or channels or capillaries, where the size of the confining
dimension is of the order of nanometers, the effects of both
finite pore size and substrate fluid interactions (adsorption)
can have a profound influence on phase behavior giving rise
to phenomena that have no direct counterpart in bulk [1,2].
For a real fluid confined by a real structured substrate or in
a real porous solid, details of the substrate (wall) potentials
matter. The nature of the wall-fluid potentials, the roughness
of the walls, the atomic corrugations, and the geometry of
pores or grooves all play a role in determining the microscopic
structure of the confined fluid. However, when it comes to
phase behavior, one might hope that certain generic features
would be captured by simple models of confinement. This is
the motivation behind the majority of theoretical and computer
simulation efforts to ascertain the nature of phase transitions of
fluids confined in idealized geometries; these are often planar
(slitlike) or cylindrical model pores with structureless walls
representing the substrate [1,2]. Indeed, much of the progress
in the field has resulted from detailed studies of even simpler
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models, namely, a lattice gas or a nearest-neighbor Ising film
of finite thickness D where the spins at opposite walls are
subject to (local) surface fields H1 and HD in addition to the
external bulk magnetic field H . Phenomena such as capillary
condensation and evaporation, prewetting, and the interface
delocalization transition have been investigated and elucidated
in Ising model studies [3] following the work of Fisher and
Nakanishi in the early 1980s [4,5]. In recent years some focus
has shifted to soft matter systems, e.g., colloids and polymers,
where the mesoscopic length scales of the particles are such
that the details of the atomistic structure and roughness of the
confining walls should not be relevant. Moreover, the large
size of the colloidal particles means that these can often be
tracked in real space and in time using confocal and video
microscopy, thereby revealing information about structure. Of
course, theoretical techniques developed for atomic fluids are
easily adaptable to colloidal systems, the latter having the
advantage that by applying suitable chemistry the effective
fluid-fluid and wall-fluid interactions can be tailored. For an
informative overview of models of soft matter, in particular
colloid-polymer mixtures, confined in thin film geometry, i.e.,
between two parallel walls, see Ref. [6]. The phase behavior of
symmetrical polymer blends in the same confining geometry
is reviewed in Ref. [7].

In the present paper we consider confinement of a simple
fluid between competing planar walls, one of which is
solvophobic—it is completely wet by the gas phase—whereas
the other wall is solvophilic and is completely wet by the liquid
phase. The phase behavior in such a system is very different
from that when the two walls are identical [8,9].
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Parry and Evans [8,9] drew attention to the novel phase
equilibria that may arise when a fluid (or Ising magnet)
is confined between two perfectly antisymmetric walls. For
temperatures below the bulk critical temperature (T < TC)
they identified a single soft-mode phase characterized by a
liquid-gas (+− spins in the Ising case) interface that lies
parallel to and at the midpoint between the walls when the
fluid in the reservoir is at bulk liquid-gas coexistence. In
the Landau theory studied by Parry and Evans [8,9] the
forces are short ranged and the liquid-gas interface fluctuates
freely about the center of the slit with an exponentially
diverging transverse correlation length ξ|| ∼ eκL/4 and the total
susceptibility diverges as eκL/2, where L is the wall separation.
In the original mean-field Landau analysis [9] the length scale
κ−1 is the bulk correlation length: κ−1 = ξb. Subsequently
Parry and co-workers [10–12] used a generalized effective
Hamiltonian approach to argue that κ−1 = ξb(1 + ω/2), where
the wetting parameter ω is defined as ω = kBT /4πξ 2

b γl-g ,
γl-g being the interfacial tension for the free liquid-gas
interface or the interfacial stiffness for the Ising case and
ξb is the true bulk correlation length. This soft-mode phase
persists until a critical temperature TcL, where TcL < TW ,
the critical wetting transition temperature at a single wall
(for perfectly antisymmetric walls the single wall drying
transition temperature TD is equal to TW ). Below TcL symmetry
breaking occurs and there is two-phase coexistence between
states where the liquid-gas interface is bound to either one
of the walls. The transition at TcL is sometimes termed an
interface localization-delocalization transition and can be first
or second order depending on the single wall wetting and
drying transitions.

This unusual behavior for a system subjected to anti-
symmetric surface fields has been studied in several papers
by Binder et al. [13–15] using Monte Carlo simulations
of a nearest-neighbor lattice gas model (equivalent to an
Ising model in magnetic terminology). On decreasing the
temperature T below the bulk critical temperature TC the layer
magnetization mn (or density ρn = [(1 − mn)/2]) profiles (see,
e.g., Fig. 1 in Ref. [14]) show the gradual formation of a
+− interface between the two bulk phases. The presence
of this interface is also evident in the layer susceptibility
profile χn = ∂mn/∂H , where H is the external magnetic
field equivalent to the reservoir chemical potential deviation
δμ ≡ μ − μco in the lattice gas model. In the center of the
film, χn develops a pronounced peak. Note that in the Ising
simulations the wall separation is denoted by D rather than L

and the surface fields, acting only on layers 1 and D, satisfy
HD = −H1. For large L the susceptibility is large at H = 0
because the interface is almost freely floating—the free-energy
cost for shifting the whole interface is exponentially small. The
simulations of Binder et al. confirmed the Parry and Evans
prediction [9] of a susceptibility that diverges exponentially
with L. Binder et al. [13–15] also studied the phase transition at
TcL, where the symmetry is broken and the interface becomes
bound to one of the walls rather than delocalized in the
center of the slit. For critical wetting, in agreement with
Parry and Evans [8,9], they found that TcL lies close to but
below the single wall wetting transition temperature TW . As
expected, this interface localization-delocalization transition
has two-dimensional Ising character. Monte Carlo simulation

results for the Ising model are reviewed in Ref. [3], where they
are compared to mean-field predictions.

Following these developments in the early and mid 1990s,
the phase behavior of other types of fluid confined between
competitive walls was investigated. Müller et al. studied binary
(symmetric) polymer blends subject to asymmetric surface
fields using Monte Carlo and self-consistent field approaches
(see, e.g., Ref. [16]). A summary of such studies is given in
Ref. [7]. It is well known that sterically stabilized colloidal
suspensions with added nonadsorbing polymer exhibit fluid-
fluid phase separation into phases that are rich or poor
in colloid. The bulk properties of such mixtures are often
described by the Asakura-Oosawa-Vrij (AOV) model. De
Virgiliis and co-workers have investigated the phase behavior
of the AOV model fluid between asymmetric confining walls
where one wall is completely wet by the colloid-rich phase
and the other by the polymer-rich phase [6,17,18].

For completeness we also mention recent studies of the
(confined) Ising strip in two dimensions subject to various
surface fields [19–23], including the antisymmetric HD =
−H1 case. These reveal pseudotransitions in the reduced
dimensionality that are analogous to the real transitions
occurring in three dimensions. There are also recent Monte
Carlo studies of Ising films subject to general asymmetric
(local) surface fields [24]. Note that in Ref. [22] simulations
were performed for the nearest-neighbor Ising strip subject to
long-range n−3 antisymmetric surface fields, whereas Ref. [19]
performed density matrix renormalization group calculations
for the same strip subject to various power-law antisymmetric
surface fields. Reference [22] presents results for the soft-
mode phase, discussing in detail the effects of capillary-wave
fluctuations. These effects are much more pronounced in
spatial dimension d = 2 than in d = 3.

Here we study the behavior of a simple fluid subject
to competing walls at a single temperature T in the de-
localized interface or soft-mode phase, i.e., TcL < T < TC .
In contrast to previous studies of fluids [6,17,18], where
the interaction potentials were short ranged, we include
the full tail −r−6 of the Lennard-Jones 12-6 pair poten-
tial in the fluid-fluid and wall-fluid interactions. As a re-
sult, the centrally located liquid-gas interface interacts with
the two walls via the power-law tails of the interparticle
potentials. The overall phase behavior is expected to be
similar to that described above for short-range forces, but
with quantities such as the susceptibility χ and transverse
correlation length ξ|| diverging algebraically rather than
exponentially [9].

In Sec. II we employ an effective potential approach in
which the excess grand potential is written as a function of
the thickness of the drying film l (this is equivalent to the slab
approximation of Parry and Evans; see Sec. 2.3 in Ref. [9]).
Our findings apply to the general case of competing walls,
where one is drying and the other wetting but the walls are not
necessarily perfectly antisymmetric. We consider state points
both on and away from bulk coexistence μco. In Sec. II B
expressions are derived for various thermodynamic quantities
including the Gibbs adsorption �, surface tension γ , solvation
force fs , and the total susceptibility χ . For large L these
are given by scaling functions of the dimensionless product
(L/σ )3βδμ, where σ is the hard-sphere diameter of the fluid
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particles, δμ is the chemical potential deviation from bulk
liquid-gas coexistence, and β = (kBT )−1. At bulk coexistence
δμ = 0, the total susceptibility is predicted to diverge as
χ ∝ L4. The solvation force, i.e., the excess pressure due to
confining the fluid, is predicted to be repulsive: fs decreases
with wall separation as L−3, for large L.

Capillary condensation (or evaporation) is a well-known
phenomenon for a fluid confined between two identical parallel
walls. In Sec. II C we display phase diagrams (at constant
temperature T = 0.8TC) for different systems obtained using
the effective potential approach. First we consider two identical
parallel solvophobic walls and determine the line of evapora-
tion transitions as a function of δμ and inverse wall separation
L−1. In the second system the walls are both solvophilic. A
single wall (L = ∞) undergoes a first-order wetting transition
at TW < 0.8TC and the accompanying prewetting transition
can also occur in the confined fluid where it competes
with capillary condensation. We show that both capillary
condensation and evaporation are possible in a competing
walls system. For the particular system that we study in Sec. IV
using density functional theory (DFT), the effective potential
approach predicts a capillary evaporation transition that occurs
for increasing δμ as the wall separation L is decreased. The line
of evaporation transitions crosses bulk coexistence μ = μco at
L = Lco

evap.
In Sec. III we describe sum rules that relate the solvation

force to the contact densities at the walls. These are used in
checking the accuracy of the DFT calculations.

Section IV describes numerical results obtained using a
nonlocal DFT. The wall-fluid potentials have been chosen so
that at T = 0.8TC the two walls are antisymmetric, i.e., the
Hamaker constant [defined in Eq. (B6)] for wetting at the
solvophilic wall [b2 in Eq. (4)] is equal to that for drying at
the solvophobic wall [b1 in Eq. (3)]. Results are given for
four different wall separations L/σ = 50, 100, 250, and 500
at temperature T = 0.8TC . We find good agreement with the
effective potential predictions of Sec. II, i.e., scaling is obeyed
for all the thermodynamic quantities we consider provided
L is sufficiently large. Density profiles of the two coexisting
states at Lco

evap = 11.4σ , obtained from DFT, are also presented.
At L = 100σ capillary evaporation occurs on the gas side of
bulk coexistence at βδμ = −4.13 × 10−3 and we display the
coexisting density profiles at this transition. These are almost
identical to the profiles at the prewetting transition.

Our results are discussed in Sec. V, where we also speculate
on the phase diagram as temperature is varied. We relate our
findings to simulation and theoretical studies of other model
fluids and comment on their relevance for experimental results
for confined water.

II. EFFECTIVE INTERFACIAL POTENTIAL
DESCRIPTION AND ITS PREDICTIONS

Following from the pioneering work of Frumkin and
Derjaguin in the 1930s (insightfully reviewed in recent articles
by Henderson [25,26]), theories of wetting and condensation
phenomena often express the excess grand potential of a
confined fluid as a function of a single variational parameter l,
the thickness of a wetting film. Here we extend and quantify
this effective interfacial potential approach, introduced in

z = 0 z = L

ρw1

σ

l

L

ρg ρl

σ

ρw2

σσ

FIG. 1. Diagram to show the sharp-kink approximation for the
density profile ρ(z) of the fluid in an asymmetric slit. The walls
are comprised of uniform-density blocks of particles, separated by a
distance L. The wall particles interact with the fluid particles with
the same potential as the fluid-fluid interactions. A fluid particle is
shown at the plane of contact of the fluid with wall 1, i.e., at z = 0. A
wall particle (shaded) is shown at the furthest extent of wall 1 towards
the fluid. There are excluded volumes, of width dw = σ , in which
the density is zero between the fluid and the regions of constant wall
density ρw1 and ρw2 . In the sharp-kink approximation there is a film
of gas, of width l, with the coexisting bulk gas density ρg next to
(drying) wall 1; ρw1 < ρg . The remainder of the slit is filled with a
film of liquid, of width L − l, with the coexisting liquid density ρl .
wall 2 is wetting; ρw2 > ρl . The density profile is discontinuous at
the gas-liquid interface at z = l.

Ref. [9] for asymmetric confinement, specializing to the case
of power-law attractive potentials.

A. Model

The specific model fluid we consider here has a pair
potential consisting of a hard core of diameter σ plus an
attractive tail, taken to be the attractive part of the full (12-6)
Lennard-Jones (LJ) potential:

φatt(r) =
⎧⎨
⎩4ε

[(σ

r

)12
−

(σ

r

)6
]

, r > rmin

−ε, r < rmin,

(1)

where rmin = 21/6σ and ε is the LJ well depth. We shall
describe this fluid in the context of a DFT (see Sec. IV) that
treats the hard-core repulsion within fundamental measures
theory and the attractive interactions (1) in mean-field fashion.
In this DFT approach the bulk critical temperature is kBTC/ε =
1.415. The fluid is confined between parallel walls separated
by a distance L (see Fig. 1). The wall-fluid potentials are full
Lennard-Jones (9-3) potentials, obtained by integrating the
individual Lennard-Jones (12-6) wall particle–fluid particle
interactions with the same form as Eq. (1) over the volume of
the wall [see Eqs. (A1) and (A2)]. There is hard-core repulsion
at the contact surface of the wall with the fluid. The strength of
the potential exerted by a wall is varied by changing the density
of wall particles ρw. The wall potential is made repulsive by
choosing a negative value for ρw. For simplicity the range of
the wall-fluid interparticle potential has been chosen to be the
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same as that of the fluid-fluid potential, i.e., σw-f = σ . There
is an excluded volume of width dw (in this case dw = σ ),
measured between the centers of the particles in the surface
of the wall and the centers of the fluid particles at the contact
surface of the fluid density profile [27], as illustrated in Fig. 1.
The total planar external potential on a fluid particle confined
between the two parallel walls is V (z) = Vw1 (z) + Vw2 (L − z),
where Vw1 (z) is the potential exerted on a fluid particle at z

by a single wall 1, with the wall 1-fluid contact surface at
z = 0, and Vw2 (L − z) is the potential due to the second wall
(wall 2), which has its contact surface with the fluid at z = L.
The wall density ρw1 can be chosen so that in the semi-infinite
system consisting of wall 1 in contact with the liquid the wall
is completely dry (wet by the gas) at liquid-gas coexistence
and conversely the density of wall 2, ρw2 , can be chosen to
ensure complete wetting by liquid. The fluid between the two
walls is in contact with a reservoir with a chemical potential
μ and temperature T , i.e., the system is in the grand canonical
ensemble.

B. One wall wet and the other dry

We focus first on the asymmetric confinement where wall
1 is completely dry and wall 2 is completely wet in the limit
L → ∞. In the sharp-kink approximation the fluid density is
constant on both sides of a step function situated at a distance
l from wall 1, as shown in Fig. 1. Using this approximation,
we can write down the excess grand potential per unit area A

for the system at bulk liquid-gas coexistence μ = μco:

�ex(l; L,μco)

A
≡ � + pV

A

= γw1-g(μco) + γw2-l(μco) + γl-g

+ww1-g/g-l(l) + ww2-l/ l-g(L − l)

+ww1-g/w2-l(L), (2)

where p = p(μ,T ) is the pressure in the reservoir, V is the
accessible volume, and l is the thickness of the gas film.
The first three terms correspond to the individual surface
tensions of the three interfaces: the wall 1–gas, wall 2–liquid,
and gas-liquid interfaces. The next terms give the interaction
potentials between pairs of interfaces. Using the sharp-kink
approximation (see Appendix B) we find

ww1-g/g-l(l) = b1

l2
+ c1

l3
, (3)

ww2-l/ l-g(L − l) = b2

(L − l)2
+ c2

(L − l)3
, (4)

ww1-g/w2-l(L) = b3

L2
+ c3

L3
, (5)

where the temperature-dependent (Hamaker) coefficients are

b1 = (ρg − ρw1 )(ρl − ρg)πεσ 6/3, (6)

b2 = (ρl − ρw2 )(ρg − ρl)πεσ 6/3, (7)

b3 = (ρw1ρl + ρw2ρg)πεσ 6/3, (8)

c1 = 2σρw1 (ρl − ρg)πεσ 6/3, (9)

c2 = 2σρw2 (ρg − ρl)πεσ 6/3, (10)

c3 = −2σ (ρw1ρl + ρw2ρg)πεσ 6/3, (11)

where ρg and ρl are the densities of the coexisting gas and
liquid at temperature T . For simplicity we have set the wall-
fluid parameters εw1-f = εw2-f = ε in the above equations, but
since it is the products ρw1εw1-f and ρw2εw2-f that determine
the strength of the wall potentials, the expressions are still
completely general. The lowest-order coefficients b1, b2,
and b3 are expected to be correct beyond the sharp-kink
approximation, but we anticipate that c1, c2, and c3 will be
affected by the microscopic details of the density profile.
The direct interaction between the two walls (not due to the
presence of the fluid) is not included in the excess grand
potential (2). As already implied, in the analysis that follows
the temperature and wall densities are chosen such that b1 and
b2 are both positive, i.e., in the semi-infinite systems consisting
of a wall in contact with the liquid at bulk coexistence, wall
1 would be completely dry and conversely wall 2 would be
completely wet.

If the system is not precisely at bulk liquid-gas coexistence
then there is an additional term in the excess grand potential
because one of the (bulk) phases present is metastable:

�ex(l; L,μ) = �ex(l; L,μco) + (p − pm)Vm, (12)

where pm and Vm are the pressure and volume of the metastable
phase at the same chemical potential. On the liquid side of
coexistence, i.e., μ − μco ≡ δμ > 0, and for small δμ the
pressure difference is (p − pm) = δμ(ρl − ρg) and the volume
of the metastable gas is Vm = lA. If δμ is negative then
it is the liquid phase that is metastable and (p − pm)Vm =
|δμ|(ρl − ρg)(L − l)A.

1. Film thickness and adsorption

Substituting Eqs. (2)–(8) into Eq. (12) we obtain the excess
grand potential for the system on the liquid side of coexistence,

�ex(l; L,μ)

A
= γw1-g(μco) + γw2-l(μco) + γl-g

+ b1

l2
+ b2

(L − l)2
+ b3

L2
+ δμ(ρl − ρg)l

+ c1

l3
+ c2

(L − l)3
+ c3

L3

+O(l−3,(L − l)−3,L−3). (13)

The smoothness of the actual profile is responsible for the
leading-order corrections l−3, etc., to this effective potential;
recall that c1, c2, and c3 are the sharp-kink values for the
coefficients. The corresponding equation for the gas side of
coexistence is obtained by replacing the term δμ(ρl − ρg)l
with δμ(ρl − ρg)(l − L). The equilibrium gas film thickness
leq is found by minimizing Eq. (13) with respect to l,

− 2b1

l3
eq

+ 2b2

(L − leq)3
− 3c1

l4
eq

+ 3c2

(L − leq)4
+ δμ(ρl − ρg) = 0.

(14)

Higher-order terms are not displayed.
In the limit L → ∞, leq → ∞ we can neglect terms

of order l−4
eq and higher. Then the equilibrium gas film

thickness can be expressed in terms of a dimensionless scaling
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function �,

leq(L,μ)

L
= �(βδμ(L/σ )3), (15)

where � satisfies

2b1

�3
− 2b2

(1 − �)3
= δμL3(ρl − ρg), δμ > 0. (16)

With δμ replaced by |δμ|, the same scaling function applies
on the gas side of coexistence, i.e., for δμ < 0. Note that in
the perfectly antisymmetric case, where leq = L/2 for δμ =
0, �[0] = 1/2, which requires b1 = b2 at the temperature of
interest.

We define the (dimensionless) Gibbs excess adsorption �

in terms of the equilibrium density profile ρ(z):

�(L,μ)

A
≡

∫ L−

0+
dz[ρ(z) − ρ], (17)

where ρ ≡ ρ(μ,T ) is the reservoir density. On the liquid side
of bulk coexistence � is negative and the gas film thickness in
the sharp-kink approximation is given by

leq = −�

A(ρl − ρg)
, δμ > 0. (18)

On the gas side of bulk coexistence � is positive and the excess
adsorption is proportional to the thickness of the liquid film
L − leq,

L − leq = �

A(ρl − ρg)
, δμ < 0. (19)

Although the excess adsorption as defined in Eq. (17) is
discontinuous at δμ = 0, this is because of the jump in the
reservoir density. In the sharp-kink approximation we set
ρ = ρg for δμ < 0 and ρ = ρl for δμ > 0. The profile and
the thickness of the drying film leq are continuous at δμ = 0.
That the adsorption, as well as other thermodynamic quantities
to be described below, should be a function of the scaling
variable βδμ(L/σ )3 is consistent with the heuristic scaling
ansatz introduced by Parry and Evans (see Sec. 4 in Ref. [9])
in the particular case of dispersion forces.

2. Surface tension

Substituting the equilibrium gas film thickness into the
excess grand potential (13), we find that the equilibrium
surface excess free energy per unit area, i.e., the surface
tension, depends on a scaling function �:

γ (L,μ) ≡ �ex(leq; L,μ)

A
(20)

= γw1-g(μco) + γw2-l(μco) + γl-g

+ 1

L2
�(βδμ(L/σ )3), (21)

where

�(βδμ(L/σ )3) = b1

�2
+ b2

(1 − �)2
+ b3

+ δμ(ρl − ρg)�L3 (22)

when δμ > 0 and

�(βδμ(L/σ )3) = b1

�2
+ b2

(1 − �)2
+ b3

+ |δμ|(ρl − ρg)(1 − �)L3 (23)

when δμ < 0. The scaling function � has dimensions of
energy. It is straightforward to show that Eqs. (21) and (18)
satisfy the Gibbs adsorption sum rule

�

A
= −

(
∂γ (L,μ)

∂μ

)
T

. (24)

3. Susceptibility

The total susceptibility χ (L,μ) measures the response of
the confined fluid to changes in the chemical potential μ. It is
defined as

χ (L,μ) ≡ − 1

A

(
∂�

∂μ

)
L,T

. (25)

Within the sharp-kink approximation

χ (L,μ) = (ρl − ρg)

(
∂leq

∂μ

)
L,T

, (26)

which is continuous at δμ = 0. From Eqs. (15), (18), and (19)
we find to leading order

χ (L,μ) = −(ρl − ρg)2L4

(
6b1

�4
+ 6b2

(1 − �)4

)−1

= L4 C(βδμ(L/σ )3), (27)

where C(βδμ(L/σ )3) is a scaling function with dimension
(length)−6 × (energy)−1. The susceptibility at bulk coexis-
tence δμ = 0 is

χ (L,μco) = −L4(ρl − ρg)2

6
(
b

1/3
1 + b

1/3
2

)4(
b

−1/3
1 + b

−1/3
2

) . (28)

In the perfectly antisymmetric situation b1 = b2,

χ (L,μco) = −L4(ρl − ρg)2

192b1
. (29)

The local susceptibility measures the change in the fluid
density at each point in the density profile ρ(z) as the chemical
potential μ is varied:

χ (z; L,μ) ≡ −
(

∂ρ(z)

∂μ

)
T

. (30)

The local susceptibility in the region of the liquid-gas interface
is expected to be large in magnitude as the liquid-gas interface
shifts with δμ while maintaining its shape. An increase in
the chemical potential μ causes a decrease in the gas film
thickness leq → leq + δleq and the density profile near the
liquid-gas interface is translated by a (negative) amount δleq in
the z direction. The local susceptibility near to the liquid-gas
interface is therefore

χ (z; L,μ) ≈
(

∂leq

∂μ

)
L,T

(
∂ρ(z)

∂z

)
, z ∼ leq, (31)

which also diverges as L4. Away from the region near the
liquid-gas interface the density profile is expected to be
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largely unaffected by small changes in the chemical potential.
Correspondingly, the local susceptibility is expected to be
smaller in these regions than for z ∼ leq.

4. Solvation force

An important quantity in the theory of confined fluids is
the solvation force fs(L,μ), defined as the force per unit area,
arising from the presence of the fluid, that must be exerted on
the walls to maintain them at separation L. The force fs does
not include any direct interaction between the walls. Although
fs is referred to as a force it has dimensions of pressure and
thermodynamically should be thought of as the excess pressure
in the fluid due to confinement, i.e.,

fs(L,μ) ≡ − 1

A

[
∂�(leq; L,μ)

∂L

]
μ,T ,A

− p. (32)

It can be calculated from the change in surface tension γ (L,μ)
with wall separation L,

fs(L,μ) = −
[
∂γ (L,μ)

∂L

]
μ,T ,A

. (33)

The solvation force between our asymmetric walls is found
from Eqs. (13) and (15); to leading order

fs(L,μ) = 1

L3
Fs(βδμ(L/σ )3), (34)

where Fs is another scaling function given by

Fs(βδμ(L/σ )3) = 2b2

(1 − �)3
+ 2b3 (35)

and Fs has the dimensions of energy.

C. Capillary condensation, evaporation, and prewetting

Before we examine possible phase transitions in the fluid
confined between asymmetric walls it is helpful to recall the
transitions that can occur when the two walls are identical.
First we consider the capillary evaporation transition that may
take place in a fluid confined between two solvophobic walls.
For a fluid with δμ > 0 confined between two planar drying
walls we equate the excess grand potential of the evaporated
state filled by gas, �

g
ex(L,μ), with that of the state in which

the slit is filled mainly with liquid apart from a layer of gas, of
thickness leq at each wall, �l

ex(leq; L,μ). Within the sharp-kink
approximation the excess grand potentials of these two states
are given by

�
g
ex(L,μ)

A
= 2γw1-g(μ) + δμ(ρl − ρg)L + O(L−2) (36)

and

�l
ex(l; L,μ)

A
= 2γw1-g(μ) + 2γl-g + 2b1

l2
+ 2δμ(ρl − ρg)l

+O((L − 2l)−2) + O(L−2). (37)

Again the equilibrium thickness leq is obtained by minimizing
with respect to l. Here γw1-g(μ) is the surface tension of the
wall-gas interface and b1 is the Hamaker constant for drying at
a single wall, given by Eq. (6). The corrections of order L−2 in
Eqs. (36) and (37) refer to the interaction potential between the
two wall-gas interfaces; those of order (L − 2l)−2 in Eq. (37)

0 0.001 0.002 0.003 0.004 0.005
βδμ

0

0.001

0.002

0.003

0.004

0.005

σ/
L

Evaporated state

Drying films at both walls

FIG. 2. Phase diagram for a fluid confined between two identical
solvophobic walls at T = 0.8TC . The wall-fluid interparticle poten-
tials are given by Eq. (A2) with ρw1εw1-f = −1.108εσ−3. This choice
of parameters ensures that b1 > 0 and therefore complete drying
would occur at an isolated wall 1. Equation (38) is used to calculate
the coexistence line between the two phases. The sharp-kink value
was assumed for the coefficient b1 and the liquid-gas surface tension
γl-g was calculated using DFT.

arise from the interaction potential between the two gas-liquid
interfaces. Capillary evaporation occurs when the two excess
grand potentials are equal:

(ρl − ρg)δμ = 2γl-g

Levap − 3leq(δμ)
, (38)

where Levap is the wall separation at evaporation. The factor of
3 in the denominator reflects directly the effects of power-law
(dispersion) forces (see Ref. [28]). For short-range fluid-
fluid and wall-fluid potentials (ρl − ρg)δμ = 2γl-g/[Levap −
2leq(δμ)]. Figure 2 displays the phase diagram, calculated
using Eq. (38), for the fluid between identical, parallel solvo-
phobic walls as the wall separation L and chemical potential
deviation from coexistence δμ are varied. As δμ increases
the wall separation at evaporation decreases, reflecting the
increased free-energy cost (proportional to δμ) of a volume of
fluid at the gas density.

More complex phase behavior is predicted for our fluid
confined between two identical solvophilic walls with the same
wall-fluid potential as wall 2 in the asymmetric system. In order
to understand the transitions that occur in the confined fluid it
is instructive to first consider the wetting transition that would
take place in the semi-infinite system L = ∞ at wall 2 on
increasing the temperature along the bulk coexistence curve
on the gas side μ = μ−

co(T ). In contrast to the solvophobic wall
1, which is dry at all temperatures, at wall 2 there is a first-order
wetting transition at a temperature TW , i.e., the thickness of
the adsorbed liquid film jumps from being finite below TW to
infinite (macroscopic) above TW . Above TW the first-order
thin-thick transition occurs off coexistence at a chemical
potential deviation from coexistence δμpw(T ) ≡ μpw(T ) −
μco < 0. In this prewetting transition the film thickness jumps
from a thin to a thick but finite value. Prewetting persists up
to the prewetting critical temperature T

pw
C . The temperature

at which we perform our DFT investigations, T = 0.8TC ,
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is above the wetting temperature but below the prewetting
critical temperature, i.e., TW < 0.8TC < T

pw
C . Consequently,

we observe a thin-thick film transition in the semi-infinite
system. This prewetting transition may also take place in
the symmetrically confined fluid, at a very similar value of
chemical potential to that of the transition at a single wall,
when L is large. The excess grand potential of the thin film
state is

�thin
ex (L,μ)

A
= 2γw2-g(μ) + O(L−2), (39)

where γw2-g(μ) is the surface tension of the wall 2–gas interface
(the thin liquid film state) for the semi-infinite fluid at a
single wall. The excess grand potential of the thick liquid film
state is

�thick
ex (lliq; L,μ)

A
= 2γw2-l(μ) + 2γl-g + 2b2

l2
liq

+ 2|δμ|(ρl − ρg)lliq + O((L − 2lliq)−2),

(40)

where γw2-l(μ) is the surface tension of the wall-liquid
interface, lliq is the thickness of the wetting (liquid) film,
and b2 is the Hamaker constant for wetting at a single wall,
given by Eq. (7). The thin-thick film transition occurs when
�thin

ex (L,μ) = �thick
ex (lliq; L,μ). However, the thin-thick film

transition is now in competition with capillary condensation.
The excess grand potential of the condensed liquid state is

�cond
ex (L,μ)

A
= 2γw2-l(μ) + |δμ|(ρl − ρg)L + O(L−2). (41)

The equilibrium state at any given wall separation L and
chemical potential μ is the state with the lowest excess grand
potential. The phase diagram, calculated using Eqs. (39)–(41),
is shown in Fig. 3. At constant (large) L, increasing the
chemical potential results in two first-order transitions on the
approach to bulk coexistence: first a thin-thick film prewetting
transition at δμ ≈ δμpw, independent of L in the present
approximation, and then a transition from a state with thick
wetting films at both walls and gas in the center to a condensed
state in which the slit is completely filled with liquid. For
L/σ � 330 there is a single (equilibrium) transition from a
state with thin liquid films at both walls to the condensed
state. There is a triple point where the prewetting transition
intersects the condensation transition line. The genesis of such
a triple point was described in earlier papers based on a simple
DFT [29] and a lattice gas model [30].

Now we return to the asymmetrically confined fluid. We
have already seen that for T above the wetting and drying
temperatures of the two walls, when L is large and the chemical
potential is close to bulk coexistence, the slit contains a region
of gas phase next to the drying wall and a region of liquid phase
next to the wetting wall with a liquid-gas interface somewhere
near the center. We shall refer to this phase as the delocalized
interface state i. Let us consider the prewetting transition that
occurs at the solvophilic wall in the semi-infinite system. For
δμ < δμpw, apart from a thin liquid film at the solvophilic
wall, the system contains mainly fluid at the bulk gas density.
The situation in the finite L system at δμ < δμpw is expected
to be quite similar: The presence of the solvophobic wall will

-0.005 -0.004 -0.003 -0.002 -0.001 0.000βδμpw

βδμ
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σ/
L Thin films of liquid

Condensed state

at both walls

at both walls
Thick wetting films

FIG. 3. Phase diagram for a fluid confined between two identical
solvophilic walls at T = 0.8TC . The wall-fluid interparticle potentials
are given by Eq. (A2) with ρw2εw2-f = 1.723εσ−3. This choice of
parameters ensures that b2 > 0 and therefore complete wetting would
occur at an isolated wall 2. The coexistence lines between the different
states were calculated using Eqs. (39)–(41), assuming the sharp-kink
value for the coefficient b2. Density functional theory was used to
calculate the surface tensions for the liquid-gas γl-g , wall 2–liquid
γw2-l(μco), and wall 2–gas γ ∗

w2-g(μco) interfaces. Note that the wall
2–gas surface tension γ ∗

w2-g(μco) is the excess grand potential per unit
area of the thin film state and refers to a metastable state at bulk
coexistence μco. The coexistence values for the wall 2–fluid surface
tensions were used in the calculations; we approximated γw2-l(μ) ≈
γw2-l(μco) and γ ∗

w2-g(μ) ≈ γ ∗
w2-g(μco). Here μpw denotes the chemical

potential at prewetting for L = ∞. In this approximation the thin-
thick transition is independent of L.

not alter the fluid density near the solvophilic wall. The excess
grand potential of this phase, which we shall refer to as the
evaporated state g, is given by

�
g
ex(L,μ)

A
= γw1-g(μ) + γw2-g(μ) + bg

L2
+ O(L−3) (42)

when δμ < 0 and

�
g
ex(L,μ)

A
= γw1-g(μ) + γw2-g(μ)

+ bg

L2
+ δμ(ρl − ρg)L + O(L−3) (43)

when δμ > 0, where γw2-g(μ) is the surface tension of the
thin film state in the semi-infinite fluid at wall 2. (Note that
when δμ > δμpw this wall 2–thin film state is metastable.) The
bg/L

2 terms in Eqs. (42) and (43) arise from the interaction
between the two wall-gas interfaces; the coefficient for this
term is given by bg = (ρw1 + ρw2 − ρg)ρgπεσ 6/3. There is
an extra term δμ(ρl − ρg)L in the excess grand potential of
the evaporated state (43) for δμ > 0 because the bulk gas phase
is metastable. At the prewetting transition in the semi-infinite
system the wetting film thickness increases discontinuously so
that the density profile has separate wall 2–liquid and liquid-
gas interfaces. In the asymmetric system the corresponding
state has a thick film of liquid at wall 2 separated from the
gaseous region next to wall 1 by a liquid-gas interface. This is
what we term the delocalized interface state i. The excess grand
potential of this state (see Sec. II B2) is what we calculated
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FIG. 4. Phase diagram for a fluid confined between asymmetric
walls at T = 0.8TC . The wall-fluid interparticle potentials are
given by Eq. (A2) with ρw1εw1-f = −1.108εσ−3 and ρw2εw2-f =
1.723εσ−3. These parameters were chosen to ensure complete drying
at isolated wall 1 and complete wetting at wall 2 at a temperature
of T = 0.8TC . They ensure b1 = b2 at this temperature. Equation
(45) was used to calculate the coexistence line between the two
phases. The sharp-kink values were assumed for the coefficients b1,
b2, b3, and bg . Density functional theory was used to calculate the
surface tensions for the liquid-gas γl-g , wall 2–liquid γw2-l(μco), and
wall 2–gas γ ∗

w2-g(μco) interfaces. Note that the wall 2–gas surface
tension γ ∗

w2-g(μco) is the excess grand potential per unit area of the
thin film state and refers to a metastable state at bulk coexistence
μco. Again, we used the approximations γw2-l(μ) ≈ γw2-l(μco) and
γ ∗

w2-g(μ) ≈ γ ∗
w2-g(μco). Here μpw denotes the chemical potential for

prewetting at a single solvophilic wall 2.

already:

�i
ex(leq; L,μ)

A
= γw1-g(μ) + γw2-l(μ) + γl-g

+ 1

L2
�(βδμ(L/σ )3) + O(L−3), (44)

where �(βδμ(L/σ )3) is a scaling function, given by Eqs. (22)
and (23). Coexistence between the evaporated state and the
delocalized interface state occurs when

�g
ex(L,μevap) = �i

ex(leq; L,μevap), (45)

where μevap is the chemical potential at evaporation. The phase
diagram as a function of δμ, the chemical potential deviation
from bulk coexistence, and inverse wall separation L−1 is
displayed in Fig. 4. At large L evaporation occurs close to the
chemical potential for prewetting at the isolated solvophilic
wall, i.e., as L → ∞, δμevap → δμpw, and in Sec. IV we shall
find that the coexisting density profiles near the solvophilic
wall at the evaporation transition are very similar to the thin
and thick film density profiles for the semi-infinite fluid at
the solvophilic wall. One observes in Fig. 4 that as L is
decreased this transition moves to higher chemical potential,
i.e., is closer to bulk coexistence, as the interaction of the
liquid-gas interface with the solvophobic wall becomes more
significant. Evaporation occurs at bulk liquid-gas coexistence

(δμ = 0) for a wall separation of

Lco
evap =

[ (
b

1/3
1 + b

1/3
2

)3 + b3 − bg

γ ∗
w2-g(μco) − γw2-l(μco) − γl-g

]1/2

. (46)

For L < Lco
evap the evaporation transition occurs on the liquid

side of bulk coexistence, as for the evaporation transition in
the slit with identical solvophobic walls (see Fig. 2). However,
for a given L evaporation occurs at a much lower value of δμ

in the asymmetric case.
In the asymmetric system that we have studied using

DFT (see Sec. IV below) the solvophilic wall exhibits a
first-order wetting transition and therefore prewetting below
the temperature of our investigations (T = 0.8TC), whereas the
solvophobic wall is purely repulsive and is therefore dry at all
temperatures. However, if the solvophobic wall potential was
constructed such that there was a first-order drying transition at
some temperature TD , then a condensation transition, similar
to the evaporation transition described above and connected
to the predrying transition in the semi-infinite fluid at a single
solvophobic wall, would be possible for temperatures TD <

T < T
pd
C (where T

pd
C is the predrying critical temperature).

III. SUM RULES FOR THE CONFINED FLUID

Recall that the total external potential acting on the fluid
due to the two walls is

V (z; L) = Vw1 (z) + Vw2 (L − z) (47)

and consider

1

A

(
∂�

∂L

)
T

=
∫

dz

(
δ�

δ(μ−V (z; L))

)
T

(
∂(μ − V (z; L))

∂L

)
T

= −
∫

dz ρL(z)

(
∂(μ − V (z; L))

∂L

)
T

=
∫

dz ρL(z)V ′
w2

(L − z), (48)

where we have used the following result for the functional
derivative of the grand potential with respect to an external
potential Vex(z):(

δ�

δ(μ − Vex(z))

)
T

= −ρ(z). (49)

In Eq. (48) ρL(z) is the density profile of the fluid between
the two walls at separation L. Let Vw2 (z) = VH (z) + Vatt2(z),
where the first term is the potential due to a hard wall at z = 0
and the second term is the attractive Lennard-Jones part of the
wall potential. Then one can easily show that

1

A

(
∂�

∂L

)
T

= −β−1ρw2,L +
∫ L−

0+
dz ρL(z)V ′

att2(L − z),

(50)

where ρw2,L is the contact density of the confined fluid at wall
2 for wall separation L. Exchanging the two walls does not
make any difference to the grand potential, so we also have

1

A

(
∂�

∂L

)
T

= −β−1ρw1,L +
∫ L−

0+
dz ρL(z)V ′

att1(z). (51)
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At an isolated single hard wall we have the well-known result
relating the pressure p of the fluid in the reservoir, far from
the walls, to the density profile:

p = β−1ρw,∞ −
∫ ∞

0+
dz ρ∞(z)V ′

att(z), (52)

where ρw,∞ is the contact density at the single wall and ρ∞(z)
is the semi-infinite density profile at that wall. Substituting
Eq. (52) and either Eq. (50) or (51) into the definition for the
solvation force [Eq. (32)], we obtain

βfs(L) = ρw1,L − ρw1,∞ − β

[∫
dz ρL(z)V ′

att1(z)

−
∫

dz ρ∞(z)V ′
att1(z)

]
(53)

= ρw2,L − ρw2,∞ − β

[∫
dz ρL(z)V ′

att2(L − z)

−
∫

dz ρ∞(z)V ′
att2(z)

]
. (54)

These results for the solvation force can be regarded as sum
rules. In an exact treatment computing fs(L) from Eq. (53)
or (54) must give identical results to those obtained from
evaluating the derivative of the excess grand potential, i.e.,
Eq. (32) or (33). Nonlocal DFT treatments satisfy these sum
rules. Thus, within the context of DFT, the sum rules provide
a stringent test of the accuracy of calculations. Provided we
know the density profile of the fluid at one of the single walls,
then Eq. (53) or (54) allows us to calculate the solvation force
using the density profile for the confined fluid at just one value
of the wall separation L rather than performing the derivative
in Eq. (32) numerically. Comparing results from both Eqs. (53)
and (54) provides a consistency check for our DFT calculations
below (Sec. IV). Such checks are important given the small
free-energy differences and therefore the resulting sensitivity
of the phase transitions and scaling functions to the numerics.

IV. DENSITY FUNCTIONAL THEORY RESULTS

In this section we present numerical results, obtained
using a fully microscopic DFT approach, for a fluid confined
between planar opposing walls. The fluid-fluid and wall-fluid
interaction potentials were described earlier in Sec. II A. The
excess hard-sphere part of the free-energy functional FHS

ex
was treated by means of Rosenfeld’s fundamental measures
theory [31] and the attractive part of the fluid-fluid interaction
potential was treated in mean-field fashion. The functional
used was the same as in Refs. [32,33], where it was used to
describe drying at the surface of a sphere. The grand potential
functional is

�V [ρ] = Fid[ρ] + FHS
ex [ρ]

+ 1

2

∫ ∫
dr1dr2ρ(r1)ρ(r2)φatt(|r1 − r2|)

+
∫

ρ(r)[V (r) − μ]dr, (55)

where the density profile ρ(r) = ρ(z) and the external potential
is given by Eq. (47): V (r) ≡ V (z) = V (z; L). The term Fid[ρ]
is the Helmholtz free-energy functional for the ideal gas and
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FIG. 5. Density profiles ρ(z) at various chemical potentials for the
asymmetric slit with a wall separation of L = 100σ and temperature
T = 0.8TC . The solid line shows the profile at bulk liquid-gas
coexistence δμ = 0. Because b1 = b2 the gas-liquid interface is
located at the midpoint between the walls for δμ = 0. Profiles a–d
correspond to chemical potentials on the liquid side of coexistence for
βδμ = 10−6, 10−5, 10−4, and 10−3, respectively. Profiles e–h occur
on the gas side of coexistence for βδμ = −10−6, −10−5, −10−4, and
−10−3.

φatt is given in Eq. (1). The equilibrium density profile was
found by minimizing the grand potential functional �V [ρ]
and the corresponding equilibrium excess grand potential �ex

was calculated. The numerical methods employed to obtain the
equilibrium density profile are described in detail in Chap. 3
of Ref. [34].

The bulk coexistence curve calculated from the functional
(55) has the standard mean-field form with the critical temper-
ature kBTc/ε = 1.415 and the critical density ρcσ

3 = 0.2457.
All our results were obtained at the same temperature T =
0.8TC . Our choice of parameters ρw1εw1-f = −1.108εσ−3 and
ρw2εw2-f = 1.723εσ−3 ensures complete drying at an isolated
wall 1 and complete wetting at wall 2 and also results in equal
coefficients b1 = b2 in the effective interfacial potential [see
Eqs. (2), (6), and (7)] at this temperature.

Figure 5 shows density profiles of the confined fluid, with
wall separation L = 100σ , at liquid-gas coexistence and also
for the fluid on both sides of coexistence. The walls are chosen
to be antisymmetric in that the leading-order term in the
interaction potentials between each wall-fluid interface and the
liquid-gas interface is the same (i.e., b1 = b2). Consequently,
the liquid-gas interface lies in the center of the slit at bulk
coexistence δμ = 0. If we increase the reservoir chemical
potential away from coexistence into the liquid region of
the phase diagram so that δμ is positive, then the gas-liquid
interface moves away from the center and towards the drying
wall, decreasing the volume of the now metastable gas phase.
If δμ is negative so that the reservoir is in the stable gas phase,
then the volume of liquid phase shrinks and the gas-liquid
interface is closer to the wetting wall. The shape of the
density profiles near the walls is largely unaffected by these
changes in the chemical potential. Packing effects in the liquid
adsorbed at the wetting wall result in oscillations in the density
profile in the close vicinity of the wall. The density profile
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FIG. 6. Plot to illustrate adsorption scaling in the asymmetric slit
on the liquid side of bulk coexistence, i.e., δμ > 0, where the adsorp-
tion is related to the thickness of the gas film by leq = −�/A(ρl − ρg).
The solid line is the scaling function −�(βδμ(L/σ )3) valid as
L → ∞, calculated from Eq. (16). The symbols are DFT results
for various wall separations.

is monotonically decreasing on approaching the drying wall,
with a contact density slightly below the bulk gas value [32].

In order to test the effective potential prediction for the film
thickness scaling function �(βδμ(L/σ )3) [Eqs. (15) and (16)],
we calculated the excess adsorption per unit area (17) at various
chemical potentials and for four different sized systems L/σ =
500, 250, 100, and 50. The thickness of the gas film leq is related
to the excess adsorption � by Eq. (18) or (19) depending on
whether the chemical potential of the reservoir is on the liquid
or the gas side of bulk coexistence. The coefficients b1 and b2

appearing in the excess grand potential for the system (13) and
adsorption scaling function (16) are independent of the precise
definition for leq [35], but the next-to-leading-order terms with
coefficients c1 and c2 are affected by this choice. Figure 6
displays the DFT results and the effective potential prediction
[Eqs. (15) and (16)] for the adsorption scaling function on
the liquid side of bulk coexistence. There is good agreement
between the DFT results and the scaling prediction over a very
large range of values of (L/σ )3βδμ and we found equally good
agreement on the gas side of bulk coexistence (not shown).
Near bulk coexistence, i.e., for small values of |δμ|, the liquid-
gas interface is close to the midpoint between the two walls
so that |�|/A(ρl − ρg)L ≈ 0.5. The interface begins to move
away from the center towards one of the walls as |δμ| is
increased and the term δμ(ρl − ρg)l in the grand potential (13)
becomes significant at around (L/σ )3βδμ = 10. Eventually,
for large chemical potential difference |δμ|, the liquid-gas
interface is close to one of the walls and the terms in either l−3

or (L − l)−3 in the grand potential (13) become important and
the approximation that led to our scaling prediction [Eqs. (15)
and (16)] breaks down. This can be gleaned from our DFT
results for L/σ = 50 and 100, which deviate slightly from the
effective potential prediction at some of the larger values of
(L/σ )3β|δμ|.

In Sec. II B2 we showed that the surface tension of the sys-
tem can be expressed as the sum of the surface tensions of the
three individual interfaces (the wall 1–gas, gas-liquid, and wall
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FIG. 7. Plot to illustrate surface tension scaling in the asymmetric
slit on the liquid side of bulk coexistence δμ > 0. Symbols denote
DFT results for various wall separations. The independently calcu-
lated wall 1–gas and wall 2–liquid surface tensions at coexistence
and the gas-liquid surface tension have been subtracted from the total
surface tension of the system. When multiplied by L2 and plotted
against δμL3 the data for various different L and δμ collapse onto a
single curve. The solid line is the scaling function β�(βδμ(L/σ )3),
valid for L → ∞, calculated from Eqs. (21) and (22).

2–liquid interfaces) plus a term proportional to L−2 multiplied
by a scaling function �(βδμ(L/σ )3) [see Eq. (21)]. In Fig. 7
we compare the predicted scaling function (22) with DFT
results obtained on the liquid side of bulk coexistence. For this
case and on the gas side of bulk coexistence (not shown), there
is good agreement. The very small discrepancy between the
DFT results and the prediction from Eq. (22) at small values of
(L/σ )3β|δμ| probably arises because the difference between
the surface tensions, γ (L,μ) − γw1-g(μco) − γw2-l(μco) − γl-g ,
is very small compared to the values of the surface tensions
themselves. When L is large any error is magnified when
multiplied by L2, which explains why the greatest deviation
from the theory is for the DFT results at L = 500σ .

There are three different ways that we can extract the
solvation force fs(L) from our numerical data. It can be
calculated, using Eq. (33), from the change in surface tension
δγ when the distance between the walls is increased by a small
increment δL, i.e., fs(L) = −(δγ /δL)μ,T ,A. Alternatively, it
can be found from the density profile by applying a sum rule
at either of the walls, as described in Sec. III. In Fig. 8 we plot
the solvation force, obtained via these three methods using
wall separations of L = 100σ and 101σ , as a function of the
chemical potential deviation from bulk coexistence. There is
very good agreement between the values for the solvation
force obtained using sum rules at the two different walls for
each value of L. The values calculated from the difference
in the surface tension between the systems with L = 100σ

and those with L = 101σ lie in between the sum rule results
from the two separate systems. Having confirmed that the three
numerical methods for obtaining fs are consistent, we chose
the most convenient to test the scaling behavior predicted
by Eqs. (34) and (35). For systems on the liquid side of
coexistence the solvation force was obtained most easily using
the sum rule at the wet wall (54). Density functional theory
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FIG. 8. Density functional theory results for the solvation force
in the asymmetric slit as a function of the deviation from coexistence
δμ, for δμ > 0. The solid circles (•) are data obtained by directly
measuring the change in the surface tension between L = 100σ and
101σ . The other symbols are results acquired using the contact density
sum rules at the two walls for L = 100σ and 101σ [see Eqs. (53)
and (54)].

results for fs at L = 500σ are close to the predicted scaling
function, but there is more discrepancy as L is decreased
and for L = 50σ there is a significant deviation (see Fig. 9).
This can be explained by the presence of higher-order terms
(proportional to L−3) in the excess grand potential, which we
neglected in our derivation of Eqs. (34) and (35). If these
terms are included then it is no longer possible to express the
solvation force in terms of a scaling function in the manner
of Eq. (34). In Fig. 9 we have plotted the effective potential
prediction for the solvation force for L = 100σ including
the next-to-leading-order contributions with their sharp-kink
coefficients. The agreement with the DFT results for L =
100σ is surprisingly good as we expected the coefficients c1,

0.01 0.1 1 10 100 1000 10000
(L/σ)3 βδμ

0

2

4

6

8

L3
βf

s

L = 500σ
L = 250σ
L = 100σ
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FIG. 9. Density functional theory results for the solvation force
in the asymmetric slit multiplied by L3, obtained using the sum rule
(54) at the wet wall (wall 2) for δμ > 0. The solid line is the predicted
scaling function βFs(βδμ(L/σ )3), valid as L → ∞ [Eq. (35)]. The
dashed line is the prediction for L = 100σ , which includes sharp-kink
terms of order L−3 in the effective potential.
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FIG. 10. Plot to illustrate susceptibility scaling in the asymmetric
slit for δμ > 0. The symbols give DFT results for various L and δμ,
obtained by finding the difference in the adsorption �� between re-
sults at chemical potentials differing by β�μ = 1 × 10−9. The solid
line gives the predicted scaling function β−1σ 6C(βδμ(L/σ )3)from
Eq. (27), valid as L → ∞, and the dashed line is a prediction that
includes next-order terms (L−3) in the effective potential approach
for L = 100σ .

c2, and c3 [Eqs. (9)–(11)] to be affected by the details of the
density profile.

The effective potential approach predicts a susceptibility
that diverges as L4 at bulk liquid-gas coexistence (28). Results
for the total susceptibility χ are shown in Fig. 10 for δμ >

0. The magnitude of the susceptibility is greatest at bulk
coexistence δμ = 0 when the liquid-gas interface lies at the
midpoint between the two walls; in this position the external
potential exerted on the fluid by the two walls is very weak
and the free-energy cost incurred by shifting the interface
is smallest. As |δμ| increases the magnitude of χ begins to
fall sharply as the liquid-gas interface moves away from the
center of the slit, at around (L/σ )3βδμ = 10. The DFT results
are in agreement with the predicted scaling function (27) for
L = 500σ but begin to deviate for smaller L. Including higher-
order terms [those proportional to l−3, (L − l)−3, and L−3

in the effective potential (13), with sharp-kink coefficients]
does account for some of the disparity, as illustrated by the
prediction for L = 100σ (dashed line in Fig. 10), which is
much closer to the corresponding DFT results. The remaining
discrepancy is probably due to the coefficients of these terms
being modified because the DFT density profiles are smooth
rather than sharp-kink-like.

Figure 11 shows the local susceptibility χ (z; L,μ) defined
by Eq. (30), i.e., the change in the density profile ρ(z) with
chemical potential, for a wall separation of 250σ , evaluated at
bulk liquid-gas coexistence μco. The peak in the magnitude of
the susceptibility coincides with the position of the liquid-gas
interface lying at the center of the slit, confirming that
the most significant change in the density profile as the
chemical potential is varied involves the displacement of this
interface. This conclusion is backed up by the similarity
between the local susceptibility −[∂ρ(z)/∂μ]L,T and the
product (∂leq/∂μ)L,T [∂ρ(z)/∂z] [see Eq. (31)], which is also
plotted in Fig. 11. (The quantity

(
∂leq/∂μ

)
L,T

was calculated
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FIG. 11. Magnitude of the local susceptibility −χ (z) ≡
−χ (z; L,μ) = [∂ρ(z)/∂μ]L,T near the midpoint between the two
walls obtained by subtracting profiles at βμ = βμco and βμco +
1 × 10−10 for a wall separation of L = 250σ (�). The line gives the
product −(∂leq/∂μ)L,T [∂ρ(z)/∂z].

from the change in the adsorption using
(
∂leq/∂μ

)
L,T

=
−(∂�/∂μ)L,T [A(ρl − ρg)]−1.)

In Sec. II C we predicted that a first-order capillary evapora-
tion transition could occur in our asymmetric slit and used the
effective potential approach to calculate the chemical potential
at this transition as a function of wall separation (Fig. 4).
The line of evaporation transitions crosses bulk liquid-gas
coexistence at a predicted value of Lco

evap = 13σ , obtained from
Eq. (46) using sharp-kink values for the coefficients b1, b2, b3,
and bg and DFT results for the surface tensions γ ∗

w2-g(μco),
γw2-l(μco), and γl-g . [Note once again that γ ∗

w2-g(μco) is the
excess grand potential of the wall 2–thin film state that is
metastable at μ = μco.] Comparing the excess grand potential
(calculated from DFT density profiles in the asymmetric slit)
for the evaporated state with that of the delocalized interface
state as a function of L gave the slightly smaller value of
Lco

evap = 11.4σ . It is not surprising that the effective potential
prediction for Lco

evap is not particularly accurate at such small
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FIG. 12. Coexisting density profiles of the delocalized interface
state (solid line) and the evaporated state (dashed line) for Lco

evap =
11.4σ and δμ = 0.
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FIG. 13. Coexisting density profiles of the delocalized interface
state (solid line) and the evaporated state (dashed line) for L = 100σ

and βδμevap = −4.1344 × 10−3. The profiles are almost identical
to those corresponding to the coexisting thick and thin films at the
prewetting transition for a single solvophilic wall 2.

wall separations. Figure 12 shows the density profiles of the
two coexisting states at Lco

evap and it is clear that the density
profile for the delocalized interface state is far from the
sharp-kink approximation for the profile that forms the basis
of the effective potential treatment in Sec. II.

At larger wall separations L > Lco
evap, capillary evaporation

occurs when the system is on the gas side of bulk coexistence,
i.e., δμevap < 0 (see Fig. 4). This is in contrast to the situation
for a system with identical drying walls where capillary
evaporation may occur only as bulk coexistence is approached
from the liquid side (see Fig. 2). For wall separations L �
50, evaporation is predicted to occur at chemical potentials
very close to δμpw, the chemical potential at the prewetting
transition at the isolated solvophilic wall. Using DFT we found
that βδμpw = −4.1368 × 10−3 for prewetting at (single) wall
2 (cf. the value of −3.4 × 10−3 from the effective potential
approach used in Fig. 2). The chemical potential at the
evaporation transition for a wall separation of L = 100σ was
found to be βδμevap = −4.1344 × 10−3, which is indeed very
close to δμpw. Figure 13 displays the coexisting density profiles
at capillary evaporation for L = 100σ . Unlike the profiles
shown in Fig. 5 for smaller values of |δμ|, at this chemical
potential the gas-liquid interface in the delocalized interface
state has moved away from the center of the slit and closer to
the solvophilic wall 2. The evaporated state is filled with gas
apart from a thin film (of thickness approximately equal to 1σ )
of higher density fluid next to the solvophilic wall. The two
density profiles in Fig. 13 are, apart from the region very close
to the solvophobic wall, almost identical to those of the coex-
isting thick and thin films at the prewetting transition at wall 2.

V. DISCUSSION

In this paper we made a detailed investigation of the
delocalized interface phase or soft-mode phase, identified
originally by Parry and Evans [9] for a model fluid described
by long-range (−r−6) dispersion potentials that is confined
between competing planar substrates. We summarize our main
results as follows.
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(i) Using an effective potential approximation (Sec. II)
we derived scaling forms for the Gibbs adsorption �(L,μ),
the surface tension γ (L,μ), the total susceptibility χ (L,μ),
and the solvation force fs that depend on the dimensionless
product (L/σ )3βδμ, where the power of 3 reflects directly
the power of −6 in the interparticle potentials. The scaling
forms were confirmed by numerical results from calculations
based on a nonlocal DFT (Figs. 6, 7, 9, and 10). Provided the
wall separation L is sufficiently large, typically L � 100σ ,
there is good agreement with the explicit scaling predictions.
Perhaps most striking is the prediction that χ (L,μco) ∼
L4 [see Eq. (29)]. This result corresponds to a transverse
correlation length that diverges as ξ|| ∼ L2 for L → ∞ [9].
Both these results imply that the central liquid-gas interface
undergoes extremely large interfacial fluctuations, correlated
over very long distances parallel to the walls. These interfacial
fluctuations reflect the smallness of the free-energy cost of
shifting the whole liquid-gas interface and are characteristic
of the soft-mode phase. Recall that for δμ = 0 the liquid-gas
interface is constrained by only the tails of the interfacial
potentials that decay as a power law (l−2 for dispersion forces).
By contrast, for short-range forces the decay is exponential,
which leads to the result quoted in Sec. I: χ (L,μco) ∼ eκL/2

for L → ∞ [9].
(ii) The central liquid-gas interface is subject to an effective

repulsive force from each wall as wall 1 endeavors to
become dry and wall 2 to wet. The resulting solvation force
is repulsive. For dispersion forces we find fs ∼ +L−3 for
δμ = 0. Specifically, in the perfectly antisymmetric case with
b1 = b2, the liquid-gas interface lies in the center of the slit
and from Eq. (35)

fs(L,μco) = 1

L3
(16b2 + 2b3). (56)

This result should be contrasted with that for short-range
forces in the soft-mode phase where fs ∼ +e−κL/2 for L → ∞
[9]. Employing the sum rules of Sec. III, we calculated
the solvation forces from DFT using three different routes,
demonstrating their consistency and the accuracy of our
numerics (see Fig. 8).

It is interesting to compare our results for fs with those
obtained using an equivalent DFT approach for a different
model fluid confined between two identical walls [36]. In this
study the wall-fluid potentials decayed as z−3 and the fluid-
fluid pair potentials were short ranged, i.e., truncated Lennard-
Jones potentials. Away from any phase transitions and bulk
criticality, the solvation force was found to decay as fs ∼
+L−3. However, including the full −r−6 tails of the fluid-
fluid pair potential results in an additional attractive −L−3

contribution to fs [36]. The asymptotic decay of the solvation
force for a system with identical walls can be either attractive
or repulsive depending on the choice of parameters in the
(power-law) wall-fluid and fluid-fluid potentials and on the
thermodynamic state point.

(iii) In Sec. II C we used the effective interfacial potential
approximation to investigate possible phase behavior for our
model fluid confined between asymmetric walls. Figure 4
shows the predicted phase diagram for the single temperature
T = 0.8Tc that we studied using DFT in Sec. IV. Depending
on the wall separation L, capillary evaporation, i.e., a transition

to a dilute gas state with only a thin adsorbed film of
liquidlike density at wall 2, can occur not only for δμ > 0
(the situation that pertains for capillary evaporation in the
case of identical walls) but also for δμ < 0. Figure 12 shows
the coexisting density profiles calculated from DFT when
capillary evaporation occurs at δμ = 0, i.e., for the wall
separation Lco

evap = 11.4σ . Evaporation occurs because for
smaller wall separations L < Lco

evap, the free-energy cost from
the interface interactions plus the surface tension of the central
liquid-gas interface is so great that it is more favorable for the
slit to be filled by the evaporated gas, despite the fact that
the surface tension γ ∗

w2-g(μ) between gas and (solvophilic)
wall 2 is large. For L > Lco

evap capillary evaporation occurs
on the gas side of bulk coexistence, i.e., δμ < 0. However,
in this regime for large L, the evaporation we observe is
closely connected to the prewetting transition that occurs at
an isolated (L = ∞) solvophilic wall. Thus, for L = 100σ

DFT yields β(δμevap − δμpw) = 2 × 10−6 and Fig. 13 displays
the coexisting density profiles at this evaporation transition.
These profiles are almost identical to those at the prewetting
transition. Our present study describes evaporation, rather
than condensation, because the solvophilic wall 2 undergoes
a first-order wetting transition at TW < 0.8TC , whereas the
purely repulsive solvophobic wall 1 is dry at all temperatures
between the bulk triple and critical temperatures; there is no
predrying transition. In a perfectly antisymmetric system, such
as an Ising model subject to equal but opposite surface fields
(HD = −H1) for which wall 1 undergoes a first-order drying
transition at the same temperature as wall D undergoes the
equivalent wetting transition, the evaporated state with a thin
film of liquid at wall D would coexist with the condensed
state with a thin film of gas at wall 1 and with the delocalized
interface state at bulk coexistence δμ = 0, resulting in a triple
point at L = Lco

cond = Lco
evap. The admirable review by Binder

et al. [3] provides an illuminating summary of the genesis
of such triple points in Ising models, focusing mainly on
temperature dependence at fixed L rather than fixing T and
varying L as we do here.

Müller et al. (see Ref. [7] for a summary) also found triple
points in their self-consistent field treatments of symmetric
AB binary polymer blends confined between perfectly anti-
symmetric walls, i.e., one wall attracts the A component with
exactly the same strength that the other wall attracts component
B and there is a first-order wetting transition. Although the
interparticle potentials in these studies are short ranged, it is
probable than many of the gross features of the phase diagram
found by Müller et al. will also apply to our system.

Our results pertain to nonretarded (London) dispersion
forces: We deliberately chose to consider interparticle po-
tentials that decay as −r−6 since these describe the models
that are conventionally used in the physics of liquids. In the
physics of wetting it is well known that phase transitions at
a single wall (L = ∞) depend profoundly on whether the
interparticle potentials are short ranged or long ranged (power
law) [27]. Indeed, the critical exponents describing continuous
wetting transitions depend on the specific power. Relevant
to the present study is the observation that for fluids subject to
wall-fluid potentials decaying as −z−(n+1), corresponding to
a wall particle–fluid particle potential decaying as −r−(n+4),
the leading term in the excess grand potential (2) goes
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as l−n, where n = 2 for nonretarded dispersion forces. For
the complete wetting transition (from off bulk coexistence,
with δμ → 0) the upper critical dimension for systems with
power-law potentials is given by [9,27]

d∗ = 3 − 4(n + 2)−1. (57)

Thus, for complete wetting in the presence of nonretarded
dispersion forces, d∗ = 2 and mean-field predictions for the
critical exponents will remain valid for all dimensions d > 2.
We recall now the heuristic scaling ansatz in Sec. 4 of
Ref. [9]. This argues that the only relevant scaling argument
in the soft-mode phase must be the ratio L/2leq, where the
equilibrium thickness of the (drying) film is given by the
complete wetting result leq ∼ |δμ|−βco

s , with βco
s = (n + 1)−1

for power-law potentials. The idea is that the maximum
thickness of the film at equilibrium is L/2, at δμ = 0, and
that the film thins according to the complete wetting behavior.
Note that there is no temperature scaling variable: It is assumed
that the temperature is sufficiently far below TC and sufficiently
far above the interface delocalization temperature that it is
irrelevant. Only the chemical potential deviation δμ is relevant
for scaling. The resulting scaling predictions [9] for a general
power-law potential are χ (L,μco) ∼ Ln+2 and ξ|| ∼ L(n+2)/2

for δμ = 0 and L → ∞. The solvation force is predicted to
decay as L−(n+1) in this soft-mode regime.

Our present results, based on the effective interfacial
potential treatment of Sec. II and the DFT calculations of
Sec. IV, are evidently consistent with the scaling ansatz for the
particular case n = 2. Clearly, both are mean-field treatments;
they both fail to capture all of the effects of capillary-wave
fluctuations. Nevertheless, if the heuristic scaling ansatz of
Ref. [9] is correct, and there seems no reason to doubt its
validity, and given Eq. (57) for the upper critical dimension for
complete wetting, it follows that for all power-law potentials
(n finite) d∗ < 3. Thus the mean-field predictions should be
valid as regards the dependence of thermodynamic quantities
and the correlation length on the wall separation L for
L → ∞. This observation is important since it implies that
the leading-order scaling functions that we derived from the
(mean-field) effective interfacial potential with n = 2, and
checked using the microscopic DFT approach, should remain
valid in the presence of fluctuations. Moreover, so should the
corresponding analysis for any finite n. Of course, in an exact
treatment the coexisting bulk densities ρl and ρg entering the
Hamaker constants b1, b2, and b3 [see Eqs. (6)–(8)] should be
replaced by their exact counterparts for the model fluid under
consideration.

What is omitted in our mean-field DFT approach?
Capillary-wave fluctuations must broaden the central liquid-
gas interfacial density profile in the soft-mode phase. This
effect is not captured within the simple DFT employed here,
i.e., the results shown in Fig. 5 showing rather sharp interfaces
do not encompass such broadening. Computer simulations
for the same model would exhibit broader interfacial density
profiles. In spatial dimension d = 3 the extent of the capillary-
wave broadening is given by ξ⊥ ∼ (ln ξ||)1/2. For the large
wall separations that we consider this broadening is not
insubstantial and is certainly on the scale of the intrinsic
width that emerges from our DFT calculations. Once again
we contrast this result with the case of short-range forces

where ξ|| ∼ eκL/4 [9] and thus ξ⊥ ∼ L1/2 for δμ = 0 and
L → ∞. This last result was confirmed (for relatively small
L) by measurements of the width of the magnetization profile
in Ising model simulations, e.g., the summary in Sec. 3.4 of
Ref. [3].

We emphasize that the analysis in the present paper is
for a single temperature that lies in the delocalized interface
phase. Unlike earlier studies that focused on systems with
short-range forces [3,7–9,13–15], we have not attempted to
investigate the localization-delocalization transition that is
intimately linked to the wetting transition at an (isolated)
confining wall. In the original studies [8,9] the wetting
transition was continuous (critical) and there were detailed
predictions for the location of the critical point and the
nature of the criticality in the confined system with perfectly
antisymmetric walls. Subsequently, these were confirmed
by results from Ising simulations [3,13–15]. For perfectly
antisymmetric walls the critical temperature TCL (of the
interface delocalization-localization transition) lies below the
single wall critical wetting temperature TW for any finite L

and in the limit L → ∞, TCL → TW . In the present analysis
we deliberately chose the wall-fluid interaction parameters
in order that the walls were antisymmetric to leading order
in the excess grand potential (2). Specifically, we set b1,
the Hamaker constant for drying at wall 1, to be equal to
b2, the Hamaker constant for wetting at wall 2. Of course,
the Hamaker constants depend on temperature through their
dependence on the bulk coexisting densities [see Eqs. (6)
and (7)]. The Hamaker constants b1 and b2 are equal at
only one temperature. At a lower temperature these quantities
are not identical and the system is not antisymmetric. This
makes locating the localization-delocalization transition rather
demanding.

We have also deliberately avoided the bulk critical regime,
near Tc, where the bulk correlation length ξb ∼ L. For com-
peting walls we expect a universal critical Casimir solvation
force that decays as fs ∼ +L−d exactly at criticality. Thus,
for d = 3 the power-law decay of the critical Casimir force
is the same as that found for nonretarded dispersion forces in
the soft-mode phase below Tc. The amplitudes are of course
different. Ascertaining the precise nature of crossover as T

approaches Tc from below is challenging.
We should comment on studies of other model fluids

in asymmetrical confinement. As we mentioned in Sec. I,
colloid-polymer mixtures are a particularly attractive system
to study from both an experimental and a theory or simulation
perspective, especially if one adopts the simplest AOV model
for these binary mixtures [6]. Within the context of this fluid
model, a hard wall will favor wetting by the colloid-rich
phase, as a result of depletion interactions, while a suitably
tailored wall, with appropriate coating, can be made to favor
the polymer-rich phase [6]. Since depletion interactions arise
from excluded volume considerations they are short ranged.
Indeed, they are strictly finite ranged in the case of the AOV
model. (Experimentally, it is assumed that there are no residual
dispersion forces, i.e., refractive index matching is perfect.)
Nevertheless, several of the results obtained by De Virgiliis
et al. [17,18] in simulations of the AOV model are close
to those that we find for our atomic model. For example,
the density profiles for the colloid species in the delocalized
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interface phase [see Figs. 2(b) and 15(d) of Ref. [18], where
L = 10 colloid diameters] are very similar to what we find in
the corresponding delocalized interface state (see Fig. 12 of
the present paper). It is expected that several features of the
phase behavior ascertained for the AOV model in asymmetric
confinement will pertain to the present fluid model. Of course,
the details of the decay (or divergence) of thermodynamic
functions will be different.

Returning to the present one-component model, one might
argue that the choice of a purely repulsive substrate (wall 1)
is inappropriate for any real fluid. In reality there is always
some residual attractive dispersion interaction between the
fluid and the substrate and Young’s contact angle is always
less than π ; one does not have complete drying. However, one
can easily circumvent this objection by considering a binary
mixture with dispersion forces. Similar to the case of polymer
blends, one can envisage a binary molecular mixture confined
by asymmetric walls that favor one species or the other so that
in a certain temperature range one wall can be completely wet
by the phase rich in species A and the other completely wet by
the phase rich in species B. It is straightforward to extend the
present effective interfacial potential approach to the binary
case [35] and evaluate the appropriate Hamaker constants
that determine the scaling functions. The phenomenology is
somewhat richer because we deal with a mixture, but the
basic scaling predictions in the soft-mode phase remain the
same.

It is important to review the length scales that we considered
in this study. In order to confirm the scaling predictions it was
necessary to perform DFT calculations for extremely large
wall separations, in some cases up to 250σ . Clearly this range
is far beyond the current realms of molecular simulation. Since
the 1930s it has been recognized that dispersion forces play a
key role in the physics of wetting and in many other aspects
of confinement. It is clear that a full understanding of several
subtle aspects of wetting phenomena requires a microscopic
approach that incorporates these long-range forces and treats
short-range correlations, arising from packing of the particles,
in a realistic fashion. Our present study and our earlier one on
wetting or drying at a curved substrate [32] demonstrate that
classical DFT provides a successful approach, albeit one that
treats the attractive interactions at mean-field level. One should
also note that retardation becomes relevant in real fluids and for
real substrates. For sufficiently large internuclear separation r

the atom-atom pair potential crosses over from −r−6 to −r−7

decay. This implies crossover to ultimate −z−4 decay of the
wall-fluid potential and to a leading contribution of l−3 in
the excess grand potential (2). Were we to attempt a more
realistic treatment of interactions for large separations, where
retarded forces are relevant, the ultimate power laws would
be different from those obtained for nonretarded dispersion
forces. For example, the solvation force decays ultimately as
fs ∼ L−4, rather than as L−3. This observation is important
since we showed in our microscopic calculations for the
nonretarded case (see Fig. 9) that agreement with the scaling
limit is achieved accurately only for very large L, say, greater
than 100σ . In real systems retardation will kick in at similar
separations.

Can the results of our present study be related to ex-
periment? By measuring the force between the tip and a

substrate in an atomic force microscope or between the
crossed cylinders in a surface force apparatus (SFA), one can
obtain information about the solvation force. In particular, by
using the Derjaquin approximation, one can relate the force
measured in the SFA to fs(L,μ), the quantity we calculated
that pertains to two (infinite area) parallel walls [37]. Our
present study was motivated in part by an experimental study
[38] that used a SFA to investigate both the normal force
and the response to shear deformation of water, in contact
with a reservoir at normal temperature and pressure, confined
between hydrophobic and hydrophilic surfaces. The title of
Ref. [38] refers to a Janus interface. In the experiments the
hydrophobic surface was either a cylinder of mica coated
with a self-assembled monolayer of octadecyltriethoxysilane
(OTE) or mica with a thin film of silver then coated with a
self-assembled octadecanethiol layer. The hydrophilic surface
was untreated mica, which the authors assumed to be wet
completely by water. It was observed that the shear response
was extraordinarily noisy and indicated a distribution of
relaxation processes. The authors mention giant fluctuations
(of the dynamical shear responses) and allude to the work of
Parry and Evans [8]. Without being explicit they appear to
infer that their experimental configuration corresponds to that
of the soft-mode phase in Refs. [8,9] and they write about
a flickering, fluctuating complex in which the capillary-wave
fluctuations are somehow thwarted.

Two observations are relevant in the light of our present
analysis of the soft-mode phase.

(i) The measured static force-distance profile (see the inset
to Fig. 1 in Ref. [38]) is attractive over a wide range of surface
separations, from 1000 down to about 10 molecular (water)
diameters. This contrasts sharply with what we calculate for
fluid confinement between competing solvophobic (complete
drying) and solvophilic (complete wetting) walls. For this
case we find that the solvation force is repulsive at large
separations throughout the region of the soft-mode phase. At
small separations L, where the confined fluid is a dense liquid,
the solvation force can oscillate as a function of L due to
packing effects.

(ii) The hydrophobic surfaces prepared in Ref. [38] are of
course not completely dry. The contact angle measured for
the OTE surface is 110 ± 2◦ and that for the thiol surface is
120 ± 2◦. Thus the situation realized in the experiment [38]
does not match that described in Refs. [8,9] and which is
considered in detail in this paper. It is difficult to see why the
particular choice of wet and partially dry surfaces studied in the
SFA experiments [38] could give rise to a wildly fluctuating
liquid-gas interface (see also the comments of Pertsin and
Grunze [39]). Nevertheless, the experimental observations
remain intriguing and worthy of further investigation.
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APPENDIX A: WALL-FLUID POTENTIAL

We model the substrate as a block of (wall) particles of
constant, uniform density ρw. The wall cannot be penetrated
by the fluid particles, i.e., the wall-particle interaction potential
is infinitely repulsive at the plane of contact. This hard-core
repulsion between the particles results in an excluded volume,
of width dw, where the density vanishes, at the boundary
between the wall and the fluid, as illustrated in Fig. 1. The
wall is structureless, i.e., parallel to the interface the density is
taken to be uniform. The attractive potential exerted by the wall
on the fluid particles can be calculated by first considering the
interaction potential between individual wall particles with
fluid particles. This is chosen to be of the same form as
the fluid-fluid inter-particle potential. The attractive part is
given by

φ
w-f
att (r12) =

{
4εw-f

[( σw-f

r12

)12 − ( σw-f

r12

)6]
, r12 > rmin,w-f

−εw-f , r12 < rmin,w-f

(A1)

[cf. Eq. (1)], where r12 is the distance between the wall
particle and the fluid particle and εw-f and σw-f are the
strength and range of the wall-fluid potential, respectively, and
rmin,w-f = 21/6σw-f . The total potential, exerted by the entire
wall, on a single fluid particle at a perpendicular distance z

from the contact plane (see Fig. 1) is found by integrating
the interparticle potential over the semi-infinite volume of the

wall:

Vw(z) =
{

∞, z < 0
ρw

∫ ∞
z+dw

dz′ ∫ ∞
0 2πrφ

w-f
att (

√
r2 + z′2)dr, z > 0.

We obtain

Vw(z) =
{∞, z < 0
ρwvw-f (z + dw), z > 0,

(A2)

where the function vw-f (z′) is found by replacing ε, rmin, and
σ by εw-f , rmin,w-f , and σw-f in Eq. (B3) below.

APPENDIX B: INTERACTION BETWEEN
TWO INTERFACES

For long-range interparticle forces the dominant contribu-
tion to the interaction between two interfaces separated by
distance l is from the tails of the interparticle potentials,
which decay as inverse powers of distance. Below we calculate
the interaction potential ω(l) between the wall 1–gas and
gas-liquid interfaces, that is, the extra free energy per unit
area of interface for a layer of gas thickness l, compared
to the free energy for the two separate interfaces (l → ∞).
An equivalent procedure may be followed to calculate the
interactions between the other pairs of interfaces. Using the
sharp-kink approximation, in which the fluid densities are
taken to be uniform and equal to the bulk densities ρg and
ρl , respectively, on each side of the sharp gas-liquid interface,
we find

ω(l) = (ρl − ρg)

(
ρw1

∫ ∞

l+dw

vw-f (z′)dz′ − ρg

∫ ∞

l

v(z′)dz′
)

, (B1)

where ρgv(z′) is the potential due to a semi-infinite slab of the gas a distance z′ away:

ρgv(z′) = ρg

∫ ∞

z′
dz

∫ ∞

0
2πrφatt(

√
r2 + z2)dr. (B2)

Performing the integration we obtain

v(z′) =
⎧⎨
⎩

4πε
(

σ 12

45z′9 − σ 6

6z′3
)
, z′ > rmin

4πε
( r2

minz
′

4 − z′3
12 − r3

min
6 + 2σ 12

9r9
min

− 2σ 6

3r3
min

− [
σ 12

5r10
min

− σ 6

2r4
min

]
z′), z′ < rmin.

(B3)

Similarly, ρw1vw-f (z′) is the potential due to a semi-infinite slab of the wall a distance z′ away where vw-f (z′) is found by replacing
ε, rmin, and σ by εw-f , rmin,w-f , and σw-f in Eq. (B3). Integration of Eq. (B1) gives

ω(l) = (
ρgεσ

6 − ρw1εw-f σ 6
w-f

)b0

l2
+ 2dwρw1εw-f σ 6

w-f
b0

l3
+ O

(
dw2

l4

)
(B4)

= b(T )

l2
+ c(T )

l3
+ O

(
1

l4

)
, (B5)

where the temperature-dependent coefficients b(T ) and c(T ) are given by

b(T ) = (
ρgεσ

6 − ρw1εwf σ 6
w-f

)
b0 (B6)

and

c(T ) = 2dwρw1εw-f σ 6
w-f b0, (B7)

where b0 = (ρl − ρg)π
3 .
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