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Spatial inhomogeneities in ionic liquids, charged proteins, and charge stabilized colloids
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Effects of size and charge asymmetry between oppositely charged ions or particles on spatial inhomogeneities
are studied for a large range of charge and size ratios. We perform a stability analysis of the primitive model of ionic
systems with respect to periodic ordering using the collective variables–based theory. We extend previous studies
[Ciach et al., Phys. Rev. E 75, 051505 (2007)] in several ways. First, we employ a nonlocal approximation
for the reference hard-sphere fluid which leads to the Percus-Yevick pair direct correlation functions for the
uniform case. Second, we use the Weeks-Chandler-Anderson regularization scheme for the Coulomb potential
inside the hard core. We determine the relevant order parameter connected with the periodic ordering and analyze
the character of the dominant fluctuations along the λ lines. We show that the above-mentioned modifications
produce large quantitative and partly qualitative changes in the phase diagrams obtained previously. We discuss
possible scenarios of the periodic ordering for the whole range of size and charge ratios of the two ionic
species, covering electrolytes, ionic liquids, charged globular proteins or nanoparticles in aqueous solutions, and
charge-stabilized colloids.
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I. INTRODUCTION

The study of phase diagrams of ionic systems in which
the phase separation is mainly driven by electrostatic forces
is of great fundamental interest and practical importance.
Electrolyte solutions, molten salts, ionic liquids, and charge
stabilized colloidal suspensions are examples of systems
with dominant Coulomb interactions. The strong correlations
between ions and counterions are also known to play an
important role in determining structure and phase behavior
of micelles, polyelectrolytes, and proteins. Over the past few
decades, the phase behavior of ionic fluids has been the subject
of many experimental, theoretical, and simulation studies and
the reviews of the state of the art in this field are available in
Refs. [1–6]. A great deal of the research has been focused on
the fluid-fluid phase separation, whereas the fluid-solid phase
transition has received less attention so far.

On the other hand, recent experimental, simulation and
theoretical studies of room-temperature ionic liquids (RTILs)
[7], charged globular proteins [8,9], or colloidal particles
[8,10–14] reveal structural inhomogeneities of different types
and spatial extents, and it becomes evident that the ordering
in systems dominated by Coulomb interactions has a very
rich and complex nature and is far from being understood.
Consequently, ordering of ions or charged particles on different
length scales is attracting increasing attention.

The much-studied simple salts or electrolytes are quite
well understood. In these systems, the sizes of ions are
similar. Therefore, theoretical studies focused mainly on
the restricted primitive model (RPM) where ions of the
same valence are modeled by charged hard spheres of the same
diameter immersed in a structureless dielectric continuum
(either vacuum or solvent). At large-enough volume fractions,
transition to an ionic crystal occurs in molten salts when

temperature decreases [15–18]. In the ionic crystal the charge
is periodically ordered and this ordering is subjected to the
charge neutrality. On the other hand, charge-ordered, neutral
living clusters of various sizes and lifetimes were found in
simulation studies of the fluid phase [19–23].

A direct inspection of the structure in ionic systems is
complicated due to a small size of the ions. However, in
compliance with the law of corresponding states, one may
expect a similar behavior in oppositely charged colloidal
particles of similar sizes under appropriate rescaling of the
length and energy units. The natural length scale is the sum
of radii of the anion and the cation, σ±, while the energy
unit is the Coulomb potential between the oppositely charged
ions at contact, E0 = q+q−/(εσ±), where qα is the charge of
the α-type ion (α = +,−) and ε is the dielectric constant of
the solvent. If the non-Coulomb interactions are negligible,
the phase diagrams of systems consisting of spherical ions of
various sizes should have the same form in terms of the volume
fraction and a reduced temperature T ∗ = kBT /E0. Indeed,
simulations show that the phase diagram of charged particles
with similar sizes in deionized solvent (large Debye screening
length) resembles the phase diagram of the RPM [18,24,25].
In the above reduced units, the room temperature is very low
for simple salts, whereas for colloidal particles it is high.
Ordering of colloids at room temperature is directly accessible
to observations and vacancies in the crystal can be seen [26].
Formation of neutral aggregates in the RPM agrees with recent
experimental studies of oppositely charged proteins of similar
sizes [9,27]. The aggregation was entirely suppressed when
the electrostatic interactions had been screened by addition of
a sufficient amount of salt. Thus, the electrostatic interaction
is essential at least for the first step of the self-assembly of
oppositely charged globular proteins into aggregates. Large
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spherical aggregates presumably indicate nucleation of a
crystal.

RTILs differ from simple salts mainly because the sum of
radii of the ions is much larger. This reduces the strength of the
Coulomb interactions at ion contact and, in turn, increases the
room temperature in the reduced units. In addition, in many
RTILs the size and shape of the anion can differ substantially
from the size and shape of the cation. Moreover, non-Coulomb
interactions may play an important role here. In such a case, the
RPM is an oversimplification, and the above discussion does
not apply to the RTILs. Recent experimental and simulation
studies on a series of imidazolium-based RTILs indicate
spatial inhomogeneities on a length scale of ∼10 nm [7]. The
inhomogeneous structure of liquid resembles the structure of
the crystal [7]. The origin of such nanoheterogeneity has not
been convincingly explained yet, and new studies are required.

In a mixture of positively and negatively charged globular
proteins, the size difference between the positively and
negatively charged molecules can be similar to the size
difference between the anion and the cation in the RTILs.
Recent experimental studies show that the size difference plays
an important role for the assembly of proteins into aggregates.
According to Ref. [9], formation of spherical aggregates of
oppositely charged proteins with overall charge near zero
requires charge and size compensation.

The size difference between charged globular proteins and
counterions in a solution is much larger than in the previously
described cases. For example, the diameter of a lysozyme
molecule is of the order of 3 nm, i.e., it is 10 times larger
than the counterions in an aqueous solution. The charge of
small globular proteins is of the order of 10e, where e is
the elementary charge. Scattering experiments [8] suggest
clustering of protein molecules in water. Effective interactions
between the lysozyme molecules were shown to have a form
of short-range attraction and long-range repulsion—the latter
resulting from the charges on the molecules [28]. The effective
attraction between two molecules is caused by the interactions
between them and the counterions attracted to both molecules,
as well as by the non-Coulomb forces. Simulations carried out
in Ref. [29] for the potential derived in Ref. [28] show that
the fraction of clustered molecules and the shape of clusters
strongly depend on the lysozyme volume fraction.

Charged nanoparticles or colloidal particles with a diameter
of ∼10–1000 nm are several orders of magnitude larger than
the microscopic counterions in a solution, and their charge can
be orders of magnitude larger than the charge of the counterion.
In these systems, the experiments indicate the formation of
colloidal crystals with large interparticle distance for small
volume fractions and a re-entrant melting for larger volume
fractions [10,11,13].

From the above description of different experimental
systems it follows that spatial inhomogeneities are common,
but their extent and nature still need to be comprehended and
classified for different sizes and charges of the anion and the
cation. In the first step, it is essential to predict the structure
formation and phase diagram for various size and charge
ratios for a generic model where non-Coulomb interactions,
deviations from a spherical shape, and flexibility of molecules
are neglected. The above factors have been taken into account
in the recent theoretical and simulation studies focusing on the

structure and phase behavior of complex systems of charged
components, e.g., ionic liquid crystals [30–32]. In this work
we limit ourselves to nearly spherical, stiff ions or particles
with negligible non-Coulomb forces.

The generic model that allows one to predict the phase
separation driven exclusively by Coulomb forces is a primitive
model (PM). In this model, the ionic fluid is described as an
electroneutral mixture of charged hard spheres immersed in a
structureless dielectric continuum. The PM pair potential for
two ions α and β at distance r apart is

Uαβ(r) =
{∞, r < σαβ

qαqβ

εr
, r � σαβ

, (1)

where an ion of species α has a diameter σα , charge qα , σαβ =
1
2 (σα + σβ), and ε is the dielectric constant. The PM is the
simplest model for all the above-discussed systems. The two-
component PM can be characterized by the parameters of size
and charge asymmetry as follows:

λ = σ+
σ−

, Z = q+
|q−| . (2)

For λ = Z = 1 one arrives at the RPM.
In the PM with a large difference in the ion radii, the spatial

distribution of the ions is expected to differ markedly from the
RPM, because the tendency for minimizing the electrostatic
energy competes with the geometrical restriction on packing
of spheres with different sizes [26]. Packing of large and
small spheres that maximizes the entropy could lead to the
formation of mesoscopic charged regions, and, on the other
hand, when the electrostatic energy is minimized, periodic
pattern involving voids could be formed. As a result of the
competition between maximizing entropy and minimizing
energy, both the charge and the number density of ions can
oscillate in space.

The systematic studies of the effects of size and charge
asymmetry on the periodic ordering in PMs were initiated
in Ref. [33] within the framework of the field theoretical
description. Based on a mean-field stability analysis, the
authors found the boundaries of stability of the disordered
phase for the whole range of λ and Z. It was shown that,
besides a gas-liquid separation, in a certain portion of the
phase diagram, the uniform fluid became unstable with respect
to the order parameter oscillations of wavelengths 2π/kb

with kb �= 0. The line in the phase diagram corresponding
to the instability of the disordered phase with respect to
periodic ordering is called the λ line [34] to distinguish it
from the spinodal line for which kb = 0. The results obtained
in Ref. [33] show that (i) the periodic ordering mainly depends
on the size asymmetry and (ii) the qualitative dependence on
the charge asymmetry is found only for a sufficiently large size
asymmetry.

In this paper, we continue the systematic study of the
periodic ordering in asymmetric PMs. We extend the previous
study in several ways. The first modification concerns an
approximate description of the reference hard-sphere mixture.
In Ref. [33] a local-density approximation is employed for
a hard-sphere free-energy functional. Here, we consider a
nonlocal approximation for the reference hard-sphere fluid
which is shown to lead to the Percus-Yevick (PY) theory for the
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uniform case [35]. In our calculations we use the Lebowitz’s
solution of the generalized PY equation [36].

Another modification concerns the regularization of the
Coulomb potential inside the hard core. It is worth noting that
in the treatments of models with hard cores, the perturbation
potential is not defined uniquely inside the hard core. Here
we use the Weeks-Chandler-Andersen (WCA) regularization
scheme for the Coulomb potentials φC

αβ(r) [37]

φC
αβ(r) =

{ qαqβ

εσαβ
, r < σαβ

qαqβ

εr
, r � σαβ

(3)

instead of φC
αβ(r) = qαqβθ (r − σαβ)/(εr) adopted in Ref. [33].

As was shown in Ref. [38], the simple form for φC
αβ(r) given

in Eq. (3) produces rapid convergence of the series of the
perturbation theory for the free energy. On the other hand,
the best theoretical estimates for the gas-liquid critical point of
the RPM was obtained using the WCA regularization scheme
[39].

Finally, we extend the study of the relevant order param-
eter (OP) undertaken in Ref. [33]. Following the ideas of
Refs. [40,41], we determine the OP connected with the phase
transition to an ordered phase and analyze the character of the
dominant fluctuations along the λ lines associated with the
periodic ordering.

A theoretical background for this study is the statistical
field theory that exploits the method of collective variables
(CVs) [42–45]. The theory enables us to derive an exact
expression for the functional of grand partition function (GPF)
of the model and, on this basis, to develop the perturbation
theory [45–47]. As was shown in Ref. [47], the well-known
approximations for the free energy, in particular Debye-Hückel
limiting law and the mean spherical approximation, can be
reproduced within the framework of this theory. Links between
this approach and the field theoretical approach [33] were
established in Ref. [48] for the case of the RPM.

Our paper is organized as follows. In Sec. II we give some
brief background to the CVs-based theory for the PM. Based
on the Gaussian approximation of the functional of GPF we
obtain the pair direct correlation functions and determine the
OP characterizing the periodic ordering in PMs. In Sec. III we
study the effects of size and charge asymmetry on the periodic
ordering taking into account the above-listed modifications.
We discuss the results in Sec. IV and conclude in Sec. V.

II. THEORETICAL BACKGROUND

A. Functional representation

We start with the general case of a two-component PM
consisting of N+ cations carrying a charge q+ = Zq of
diameter σ+ and N− anions carrying a charge q− = −q

of diameter σ−. The ions are immersed in a structureless
dielectric continuum (either vacuum or solvent). The system
is electrically neutral:

∑
α=+,− qαρα = 0 and ρα = Nα/V is

the number density of the αth species.
The pair interaction potential is assumed to be of the

following form:

Uαβ(r) = φHS
αβ (r) + φC

αβ(r), (4)

where φHS
αβ (r) is the interaction potential between the two

additive hard spheres of diameters σα and σβ . We call
the two-component hard-sphere system a reference system.
Thermodynamic and structural properties of the reference
system are assumed to be known. φC

αβ(r) is the Coulomb
potential given in Eq. (3), and hereafter we put ε = 1.

Using the CV method, we get an exact functional
representation of GPF for the PM with size and charge
asymmetry [45],

�[να] =
∫

(dρ)(dω) exp

⎡
⎣− β

2V

∑
α,β

∑
k

φ̃C
αβ(k)ρk,αρ−k,β

+ i
∑

α

∑
k

ωk,αρk,α + ln �HS[ν̄α − iωα]

]
. (5)

In Eq. (5) ρk,α = ρc
k,α − iρs

k,α is the CV which describes the
value of the k-th fluctuation mode of the number density of the
αth species. Each of ρc

k,α (ρs
k,α) takes all the real values from

−∞ to +∞; ωk,α is conjugate to the CV ρk,α; (dρ) and (dω)
are volume elements of the CV phase space

(dρ) =
∏
α

dρ0,α

∏
k �=0

′
dρc

k,αdρs
k,α,

(dω) =
∏
α

dω0,α

∏
k �=0

′
dωc

k,αdωs
k,α

and the product over k is performed in the upper semispace
(ρ−k,α = ρ∗

k,α , ω−k,α = ω∗
k,α).

φ̃C
αβ(k) is the Fourier transform of the Coulomb potential.

In the case of the WCA regularization [see Eq. (3)] we obtain,
for βφ̃C

αβ(k) [46],

βφ̃C
++(k) = 4πZσ 3

±
T ∗(1 + δ)

sin[x(1 + δ)]

x3
, (6)

βφ̃C
−−(k) = 4πσ 3

±
T ∗Z(1 − δ)

sin[x(1 − δ)]

x3
, (7)

βφ̃C
+−(k) = −4πσ 3

±
T ∗

sin(x)

x3
, (8)

where the following notations are introduced:

T ∗ = kBT

E0
= kBT σ±

q2Z
(9)

is the dimensionless temperature, x = kσ±, σ± = (σ+ +
σ−)/2, and

δ = λ − 1

λ + 1
. (10)

Similarly, hereafter we introduce the parameter ν

ν = Z − 1

Z + 1
. (11)

The parameters δ and ν are more convenient than the
parameters λ and Z because they vary between −1 and 1.
Following Ref. [33], we choose the dimensionless temperature
T ∗ given in Eq. (9) and the volume fraction of all ions

ζ = π

6
(ρ+σ 3

+ + ρ−σ 3
−) (12)

as thermodynamic variables.
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�HS[ν̄α − iωα] is the GPF of a two-component hard-sphere
system with the renormalized chemical potential

ν̄α = να + β

2V

∑
k

φ̃C
αα(k) (13)

in the presence of the local field −iωα(r). In Eq. (13) να is the
dimensionless chemical potential, να = βμα − 3 ln �α , μα is
the chemical potential of the αth species, β is the reciprocal
temperature, and �−1

α = (2πmαβ−1/h2)1/2 is the inverse de
Broglie thermal wavelength.

In order to develop the perturbation theory we present
ln �HS[ν̄α − iωα] in the form of the cumulant expansion

ln �HS[. . .] =
∑
n�0

(−i)n

n!

∑
α1,...,αn

∑
k1,...,kn

Mα1...αn
(ν̄α; k1, . . . ,kn)

×ωk1,α1 . . . ωkn,αn
δk1+...+kn

, (14)

where δk1+...+kn
is the Kronecker symbol. In Eq. (14) the nth

cumulant Mα1...αn
coincides with the Fourier transform of the

n-particle connected correlation function of a two-component
hard-sphere system [45].

B. Gaussian approximation

Having set Mα1...αn
≡ 0 for n � 3, after integration in

Eq. (5) over ωk,α one arrives at the Gaussian approximation
for the functional of GPF [46]

�G[να] = �MF[ν̄α] �′
∫

(dρ)

× exp

⎧⎨
⎩− 1

2V

∑
α,β

∑
k

C̃αβ(k)ρk,αρ−k,β

⎫⎬
⎭ , (15)

where �MF is the GPF in the mean-field (MF) approximation
and �′ = ∏

k det[V 2M2]−1/2 with M2 being the matrix of
elements Mαβ(k)/V . C̃αβ(k) is the Fourier transform of the
pair direct (vertex) correlation function in the random-phase
approximation (RPA),

C̃αβ(k) = βφ̃C
αβ(k) + C̃HS

αβ (k). (16)

In Eq. (16), C̃HS
αβ (k) is the Fourier transform of the pair direct

correlation function of a two-component hard-sphere system.
It is connected with Mαβ(k) by the relation C̃HS

2 (k)M2(k) = 1,
where C̃HS

2 (k) denotes the matrix of elements C̃HS
αβ (k) and 1 is

the unit matrix. In the limit k = 0, the C̃HS
αβ coincides with the

coefficients aαβ which are obtained in Ref. [33] as a result of
the local-density approximation.

It is convenient to introduce CVs which describe the
fluctuation modes of the total number and charge density, ρk,N

and ρk,Q, by the relations

ρk,N = 1

1 + Z
(ρk,+ + ρk,−),

(17)

ρk,Q = 1

1 + Z
(Zρk,+ − ρk,−).

Then, Eq. (15) can be rewritten in terms of ρk,N and ρk,Q as
follows:

�G[να] = �MF[ν̄α] �′
∫

(dρN )(dρQ)

× exp

{
− 1

2V

∑
A,B

∑
k

C̃AB(k)ρk,Aρ−k,B

}
, (18)

where A(B) = N,Q and

C̃NN (k) = 1

(1 + Z)2
[C̃++(k) + Z2C̃−−(k) + 2ZC̃+−(k)],

C̃QQ(k) = 1

(1 + Z)2
[C̃++(k) + C̃−−(k) − 2C̃+−(k)], (19)

C̃QN (k) = 1

(1 + Z)2
[C̃++(k) − ZC̃−−(k) + (Z − 1)C̃+−(k)]

are the density-density, charge-charge, and charge-density
direct correlation functions, respectively.

In general, an equation for the boundary of stability of the
uniform phase with respect to fluctuations is given by

det C̃2|k=kb
= 0, (20)

where C̃2 denotes the matrix of elements C̃AB(k) [or C̃αβ(k)].
The corresponding wave vector kb is determined from the
equation [34]

∂ det C̃2/∂k = 0. (21)

The case k = kb = 0 corresponds to the gas-liquid-like sep-
aration [33,46]. Here we are interested in the λ line, the
boundary of stability associated with fluctuations of the OP
with k = kb �= 0. On the λ line, the fluid becomes unstable
with respect to the periodic ordering, indicating that there can
be a phase transition to an ordered phase.

The first-order transitions between the disordered and
ordered phases can be determined beyond the Gaussian
approximation discussed in this section. In the case of colloid
particles the transitions between different crystal phases were
obtained in MF for short-range attraction long-range repulsion
effective interactions that are supposed to include counterion-
mediated contribution. The transition between the disordered
and periodic phases was found to be located close to the λ

line [49,50]. In the case of the RPM, we have shown, using
field-theoretic methods, that beyond MF a first-order transition
to ionic crystal occurs for volume fractions much higher than
at the λ line [16]. In both studies the local density approxi-
mation for the reference system was assumed in an approach
analogous to a simplified version of the present theory (like in
Ref. [33]). The present nonlocal approximation (with included
cumulants up to the fourth order) should yield a more accurate
description of phase coexistence especially for the RPM,
since for a small distance between the ions in a crystal the
local density approximation is an oversimplification. Studies
beyond the Gaussian approximation go beyond the scope of
this work, however.

C. Order parameter

The determination of the OP is the important issue in the
phase transition theory of mixtures. This problem has got a
consistent and clear solution within the given approach.
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In order to determine the OP associated with the periodic
ordering, we follow the ideas of Refs. [40,41]. First, we
diagonalize the square form in Eq. (18) by means of an
orthogonal transformation

ξk,1 = tNNρk,N + tNQρk,Q, (22)

ξk,2 = tQNρk,N + tQQρk,Q. (23)

The explicit expression for coefficients tAB are given in the
appendix. The corresponding eigenvalues ε1(k) and ε2(k) are
found to be

ε1,2(k) = 1
2

(
C̃NN (k) + C̃QQ(k) ± {

[C̃NN (k) − C̃QQ(k)]2

+ 4C̃2
NQ(k)

}1/2)
. (24)

Based on the solutions of Eqs. (20) and (21), we find the
eigenvalue which becomes equal to zero along the calculated λ

lines for the fixed values of parameters δ and ν. We suggest that
the corresponding eigenmode is connected with the relevant
OP.

Our analysis shows that only one of the eigenvalues, i.e.,
ε2(k), becomes zero along the λ line of both the symmetric
and asymmetric PMs. The same result was obtained earlier
for a mixture of neutral particles [40,41]. In Figs. 1 and 2 we
show typical behavior of ε1(k) and ε2(k) under thermodynamic
conditions corresponding to the points located on the λ lines
associated with kb �= 0.

We assume that CV ξk,2 is connected to the relevant OP.
Based on Eqs. (22) and (23), we can determine the direction
of strong fluctuations along the λ line by the relation

tan θ = tNQ

tNN

= − tQN

tQQ

, (25)

where θ is the rotation angle of axes ξkb,1 and ξkb,2 in the
plane (ρkb,N ,ρkb,Q). The case θ = 0 corresponds to the pure
charge density fluctuations (axes ξkb,2 and ρkb,Q coincide)
and the case θ = ∓π/2 corresponds to the pure total number
density fluctuations (axis ξkb,2 coincides with axes ±ρkb,N ,
respectively). Taking into account the formulas from the

FIG. 1. PM with a small size asymmetry (δ = 0.2): the depen-
dence of eigenvalues ε1 and ε2 on the wave numbers (x = kσ±). Solid
and dashed lines correspond to ν = 0.33 (ζ = 0.1, T ∗ 	 0.033) and
ν = 0.9 (ζ = 0.1, T ∗ 	 0.068), respectively.

FIG. 2. PM with a moderate size asymmetry (δ = 0.5, ν = 0.33):
the dependence of eigenvalues ε1 and ε2 on the wave numbers (x =
kσ±). The solid and dashed lines correspond to ζ = 0.1, T ∗ 	 0.033
and ζ = 0.3, T ∗ 	 0.037, respectively.

appendix [Eqs. (A1)–(A4)], we have

tan θ = − 1

α2
= α1. (26)

It is worth noting that, in the long-wavelength limit, α2(k =
0) = 0, and one gets θ = −π/2, in agreement with the
expected separation into homogeneous charge neutral dilute
and dense phases.

In Ref. [33] the analysis was similar, except that the
eigenvalues denoted by C̃φφ(k) and C̃ηη(k) were defined
directly in terms of C̃αβ in such a way that ε2(k) = C̃φφ(k)
when C̃+−(k) > 0 and ε2(k) = C̃ηη(k) when C̃+−(k) < 0.
C̃φφ(k) and C̃ηη(k), defined in Ref. [33], reduce to the direct
correlation functions for the charge and for the number
density, respectively, for Z = 1 (i.e., for the RPM), and the
corresponding eigenmodes reduce, for Z = 1, to the charge
and the number density waves. The advantage of the present
approach is that the critical mode is associated with the same
eigenvalue ε2(k) independently of k, ζ , and T . It is also more
convenient to present the nature of the eigenmode in terms of
the angle θ rather than in terms of the parameter R introduced
in Ref. [33] in a way analogous to tan θ in Eq. (25).

III. BOUNDARY OF STABILITY ASSOCIATED WITH
PERIODIC ORDERING: RANDOM-PHASE

APPROXIMATION

In this section we study the effects of size and charge
asymmetry on the boundary of stability against the fluctuations
with k = kb �= 0. To this end, we use Eqs. (20) and (21) taking
into account Eqs. (6)–(8). In order to determine the character
of the dominant fluctuations we use Eq. (25).

We take into account the k dependence of the direct
correlation functions of the reference system using an exact
solution of the generalized PY equation obtained by Lebowitz
[36]. The explicit expressions for the Fourier transforms of
the OZ partial direct correlation functions of a two-component
hard sphere system are given in Refs. [51,52]. They are too
cumbersome to be reproduced here.
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FIG. 3. The λ line for the transition to the ordered phase for δ = 0.
Temperature T ∗ and the volume fraction of ions ζ are in dimensional
reduced units defined in Eqs. (9) and (12), respectively.

As in Ref. [33], we distinguish the three regimes in size
asymmetry: small size asymmetry, moderate and large size
asymmetry, and very large size and charge asymmetry. Each
regime is characterized by a typical behavior of the λ lines.
As we will see below, the δ ranges of these regimes slightly
differ when compared to Ref. [33]. We also dwell briefly on
the size-symmetric case.

A. Size-symmetric PM

We start with a size-symmetric PM corresponding to δ = 0
(or λ = 1). In Fig. 3 the λ line associated with the wave vector
kb �= 0 is displayed. As is seen, it is a straight line identical
to that obtained for the RPM [53,54]: T ∗(k = kb) = Sλζ . For
the WCA regularization, Sλ 	 0.285 and xb = kbσ± = kbσ 	
4.078 [54].

For the size-symmetric PM, the angle θ indicating the
direction of the strong fluctuations is equal to zero. Therefore,
the λ line shown in Fig. 3 is the boundary of stability of the
uniform phase against the charge density fluctuations.

The charge asymmetry has no effect on the λ line of the
size-symmetric PM. This property does not persist if the
higher-order terms are taken into account in Eq. (14) (see
Refs. [47,55,56]). The effects of charge-density fluctuations
on a phase behavior of RPM (δ = 0, ν = 0) were studied in
Ref. [16] using the field theoretical description. It was found
that in the presence of fluctuations, the λ line disappears.
Instead, a fluctuation-induced first-order transition to an ionic
crystal appears. Interestingly, the wavelength of the charge
wave is independent of the density along the liquid-crystal
coexistence line [16], which was interpreted as the formation
of vacancies in the crystal of a fixed unit cell when the density
of ions decreases. We expect the similar situation to take place
for the PM with the small size asymmetry.

B. Small size asymmetry

Now we consider the asymmetric PMs with a small size
asymmetry (δ < 0.3 or λ < 2). This case corresponds to
molten salts, electrolytes, some RTILs, and oppositely charged
globular protein or nanoparticle mixtures in the limit of infinite
screening length. The λ lines associated with the wave vectors
kb �= 0 are shown in Fig. 4 for δ = 0.1. It should be noted that

FIG. 4. The λ lines for the transition to the ordered phase for
δ = 0.1 (ν � 0 and ν < 0). Lines from the top to the bottom: ν =
0.9, ν = 0.67, ν = 0.33, ν = 0, ν = −0.33, ν = −0.67, ν = −0.9.
Temperature T ∗ and the volume fraction of ions ζ are in dimensional
reduced units defined in Eqs. (9) and (12), respectively.

the λ lines are located at the temperatures that are an order
of magnitude lower than those in Ref. [33]. In addition, the
monotonously increasing behavior of the λ-line temperature,
T ∗ versus ζ , is found for a sufficiently large charge asymmetry
(|ν| > 0.33). For |ν| � 0.33, T ∗ has a maximum in the range
ζ 	 0.42–0.48. The effect comes into prominence with an
increase of δ. This differs from the previous results [33]
demonstrating a monotonous increase of T ∗ with ζ along the
λ lines (ζ = 0–0.7) for all ν. The difference is directly related
to the nonlocal approximation for the reference hard-sphere
system adopted in the present work. As is seen from Fig. 4,
the λ-line temperature increases when ν increases from −0.9
to 0.9, which qualitatively agrees with Ref. [33].

For a small size asymmetry, the wave numbers character-
izing the period of the OP oscillations in a nonuniform phase
are xb = kbσ± > π and their magnitudes depend very slightly
on ζ (see Fig. 5). The comparison with Ref. [33] implies that
the magnitude of xb is mainly determined by the regularization
method of the Coulomb potential inside the hard core. In Fig. 5
we also demonstrate the effect of charge asymmetry on xb. As

FIG. 5. The wave number xb = kbσ± corresponding to the order-
ing of ions along the λ lines shown in Fig. 4 for δ = 0.1 (ν � 0
and ν < 0). Lines from the bottom to the top: ν = 0.9, ν = 0.67,
ν = 0.33, ν = 0, ν = −0.33, ν = −0.67, ν = −0.9. ζ is the volume
fraction of ions.
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FIG. 6. The variation of the angle θ along the λ lines presented
in Fig. 4 (ν � 0 and ν < 0). θ is measured in degrees.

is seen, xb increases with the variation of ν from 0.9 to −0.9 for
the fixed ζ , which agrees with the results obtained in Ref. [33].

We have calculated the angle θ showing the direction of
strong fluctuations along the λ line. The results for δ = 0.1
are presented in Fig. 6. As is seen, θ changes around zero and
this change increases with an increase of size asymmetry. As
regards the charge asymmetry, the modulus of θ decreases with
the variation of the charge asymmetry parameter ν from 0.9
to −0.9 for the fixed δ, and |θ | approaches zero for ν = −0.9.
In particular, for δ = 0.1 the angle θ changes continuously in
the range from −14◦ to +16.5◦ for ν = 0.9 and from −0.3◦
to +0.75◦ for ν = −0.9 when ζ is varied from 0 to 0.5. For
δ = 0.2 we have −30◦ � θ � +44◦ (ν = 0.9) and −0.03◦ �
θ � +1.3◦ (ν = −0.9) in the same range of ζ . In general, the
charge density fluctuations are the dominant fluctuations for
δ < 0.3. It should be noted that for a small size asymmetry,
the λ lines associated with the periodic ordering are located at
much higher temperatures than the spinodals indicating phase
separation into two uniform phases.

Summarizing, in the PM with a small size asymmetry we
expect the phase transition to an ionic crystal with a compact
unit cell where nearest neighbors are oppositely charged, at
least when ζ is sufficiently large. In particular, the CsCl crystal
was observed experimentally for the system of oppositely
charged colloids of comparable sizes [26]. For low volume
fractions, compact charge-ordered clusters are expected, in
agreement with experiments for oppositely charged proteins
[9] and with simulations [27].

C. Moderate and large size asymmetry

Let us consider the case of moderate and large size
asymmetry corresponding to δ > 0.3 (λ > 2). In fact, PMs
with δ = 0.3 demonstrate a crossover-type behavior. The λ

lines and the corresponding wave numbers for δ = 0.3 are
shown in Figs. 7 and 8, respectively. It follows from our
calculations that PMs with δ = 0.3 and ν < −0.67 do not
undergo an instability with respect to fluctuations with kb �= 0.
This is contrary to the results obtained for PMs with a small size
asymmetry (see Fig. 4). Similar to the small size asymmetry
case, the λ-line temperature decreases when ν varies from 0.9
to −0.67. For ν = −0.67, the λ line associated with kb �= 0 is

FIG. 7. The λ lines for the transition to the ordered phase for
δ = 0.3 (ν � 0 and ν < 0). Temperature T ∗ and the volume fraction
of ions ζ are in dimensional reduced units defined in Eqs. (9) and
(12), respectively. The curve for ν = −0.67 is located at a very low
temperature and is indistinguishable in this plot.

located at T ∗ slightly lower than T ∗ at the spinodal indicating
the separation in two uniform phases for the same ζ .

As is seen from Fig. 8, the dependence of the wave numbers
xb on the volume fraction ζ is more prominent than that
shown in Fig. 5. In particular, xb is an increasing function of ζ

for |ν| � 0.33. Such behavior is consistent with the decrease
of the interparticle separation for decreasing average volume
per particle for the same type of structure. For ν � 0.67, xb

first very slowly increases and then again slowly decreases
when volume fraction increases. For ν = −0.67, xb rapidly
decreases. For very small values of ζ , xb ≈ π (lb ≈ σ+ + σ−)
without regard to the charge asymmetry.

The variation of the direction of strong fluctuations along
the λ lines (angle θ ) is shown in Fig. 9. As is seen, the charge
density fluctuations still prevail over the total number density
fluctuations for −0.33 � ν � 0.9 except for a high-density
region (see the case ν = 0.9).

The fluid-solid phase coexistence in the PM with δ = 0.3
and ν = 0 was studied by computer simulations in Ref. [57].
In particular, it was found that there is a coexistence at T ∗ =
0.033 between a fluid at ζ = 0.38 and a (NaCl) solid phase at

FIG. 8. The wave number xb = kbσ± corresponding to the order-
ing of ions along the λ lines shown in Fig. 7 for δ = 0.3. ζ is the
volume fraction of ions.
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FIG. 9. The variation of angle θ along the λ lines presented in
Fig. 7. θ is measured in degrees.

0.51. Our calculations of the λ-line temperature corresponding
to ζ = 0.38 yield T ∗ = 0.037 (see Fig. 7). At this point, the
order parameter is connected to the charge density fluctuations
(θ ≈ 0◦) suggesting the phase transition to the ionic crystal.

For δ > 0.3 all the λ lines associated with kb �= 0 demon-
strate a single maximum for the volume fraction ζm (see
Figs. 10, 11, and 14). This implies that the periodic ordering
is less favorable at higher volume fractions. This behavior is
similar to that found in Ref. [33] but for the higher values
of δ, namely for δ > 0.4. It is worth noting that the λ lines
lie at temperatures lower than those found in Ref. [33]. This
tendency is kept for the whole region of the variation of δ.
On the other hand, the comparative analysis performed within
the same regularization scheme, i.e., the WCA regularization,
shows that the account of the k dependence of the reference
system correlation functions leads to a pronounced increase of
the λ-lines temperatures for moderate and large size asymme-
try (see Fig. 10). Such a strong impact of the above-mentioned
k dependence on the magnitude of the λ-lines temperatures is
contrary to the results found for a one-component fluid with
competing attractive and repulsive interactions [58].

FIG. 10. The λ lines for the transition to the ordered phase for
ν = 0.9 and for two values of the size asymmetry (δ = 0.5 and
δ = 0.6). Solid and dashed lines correspond to a nonlocal and local
approximations for the hard-sphere reference system, respectively.
Temperature T ∗ and the volume fraction of ions ζ are in dimensional
reduced units defined in Eqs. (9) and (12), respectively.

FIG. 11. The λ lines for the transition to the ordered phase for
δ = 0.5. Temperature T ∗ and the volume fraction of ions ζ are in
dimensional reduced units defined in Eqs. (9) and (12), respectively.

Unlike in Ref. [33], our results demonstrate the dependence
of ζm on the both parameters δ and ν. In general, ζm decreases
noticeably with an increase of δ and has a nonmonotonous
behavior with the variation of ν. By contrast, the maximal
value of the λ-lines temperature slightly depends on the size
asymmetry for δ > 0.3.

Let us describe in some detail the case where δ = 0.5
(λ = 3, volume ratio ∼30), characterizing moderate size
asymmetry. δ = 0.5 can be found in a solution of charged
molecules of diameter ∼1 nm in the presence of counterions
of diameter ∼0.3 nm, in some RTIL, or, finally, in a mixture
of oppositely charged globular proteins or nanoparticles in
deionized solvent.

For δ = 0.5, the wave number xb increases along the λ

line from xb < π for ζ � 0.2 to xb > π for ζ � 0.2 except
for the case of large charge asymmetry ν = 0.9 (see Fig. 12).
Such a behavior implies that different ordered structures can
be formed with the variation of ζ . For ν = 0.9, the wave
number xb < π along the λ line (0 � ζ � 0.5) and depends
only slightly on the volume fraction. For |ν| < 0.33, xb change
their trend sharply for the large values of ζ (ζ 	 0.4).

The dominant field is ρk,N at small ζ for all ν (see Fig. 13).
For ν � 0.33, the character of the dominant fluctuations

FIG. 12. The wave number xb = kbσ± corresponding to the
ordering of ions along the λ lines shown in Fig. 11 for δ = 0.5. ζ

is the volume fraction of ions.
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FIG. 13. The variation of angle θ along the λ lines presented in
Fig. 11 for δ = 0.5. θ is measured in degrees.

changes with an increase of ζ . In particular, θ varies from
−61◦ to +71◦ for ν = 0.9 and from −62◦ to +49◦ for ν = 0.8
when the volume fraction increases from 0 to 0.5. For
ν = 0.67, the dominant field is ρk,Q when ζ � 0.11. For
|ν| � 0.33, the angle θ takes a maximum value θm for ζ 	 0.4
and the modulus of θm increases when ν varies from 0.33 to
−0.33: mod θm 	 22◦ for ν = 0.33 and mod θm 	 38◦
for ν = −0.33. Thus, the charge density fluctuations prevail
over the total number density fluctuations along the λ lines for
this range of ν. In general, for the intermediate size asymmetry,
both the charge density and the total number density are
inhomogeneous in space.

Let us focus on the large size asymmetry, δ > 0.6 (λ > 4,
volume ratio > 60). For δ � 0.6, we obtain xb < π in the
region 0 � ζ � 0.5. The λ line and the dependence of xb on
the volume fraction for δ = 0.8 are shown in Figs.14 and 15.
As is seen, xb first increases, reaching its maximal value, and
then decreases with the increase of ζ . The maximum becomes
more pronounced with the decrease of charge asymmetry.
Such behavior of xb is typical of the systems with 0.6 �
δ � 0.9. The variation of the angle θ along the λ lines
for δ = 0.8 is shown in Fig. 16. For the charge asymmetry
range 0 � ν � 0.8, the total number density fluctuations are
the dominant fluctuations along the λ lines. Moreover, the

FIG. 14. The λ lines for the transition to the ordered phase for
δ = 0.8. Temperature T ∗ and the volume fraction of ions ζ are in
dimensional reduced units defined in Eqs. (9) and (12), respectively.

FIG. 15. The wave number xb = kbσ± corresponding to the
ordering of ions along the λ lines shown in Fig. 14 for δ = 0.8. ζ

is the volume fraction of ions.

contribution from this type of fluctuations increases when the
charge asymmetry decreases. For ν = 0.9, the character of the
dominant fluctuations changes continuously along the λ line
from the total number density fluctuations for 0 � ζ � 0.12
to the charge density fluctuations reaching a maximal value at
ξ 	 0.2. For ζ � 0.28, the dominant fluctuations are, again,
the total density fluctuations. It should be noted that, for
δ = 0.9, the total density fluctuations play the dominant role
along the whole λ line for 0 � ν � 0.9.

In the approximation considered, PMs with δ > 0.6 and
ν < 0 do not undergo instabilities against the fluctuations with
kb �= 0. Moreover, the λ lines tend to lower T ∗ with the
decrease of the charge asymmetry coming close to the
spinodals associated with the phase separation into uniform
phases. This implies that the phase transition to the periodic
ordering in the PMs with large size asymmetry becomes less
favorable when the charge asymmetry decreases.

In conclusion, for the PMs with moderate and large size
and charge asymmetry, we expect the phase transition to
the colloid crystals of different structure formed by a nearly
charge-neutral units for small and large volume fractions. The
size of these units depends on the charge ratio and is generally
larger than in the case of δ < 0.3. For volume fractions near
the maximum temperature at the λ line the number density
in positively charged regions is different from the number

FIG. 16. The variation of angle θ along the λ lines presented in
Fig. 14 for δ = 0.8. θ is measured in degrees.
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FIG. 17. The λ line for the transition to the ordered phase for
δ = ν = 0.99. Temperature T ∗ and the volume fraction of ions ζ are
in dimensional reduced units defined in Eqs. (9) and (12), respectively.

density in negatively charged regions in the fluctuation that
destabilizes the homogeneous phase (see Figs. 14 and 16).
Global stability, however, may correspond to another structure.
For a large size asymmetry case, the complex structures
discussed above may be preempted by the phase separation
in two uniform phases when the charge asymmetry decreases.

D. Very large asymmetry

Let us consider the system with a very large asymmetry
in size and charge: δ,ν → 1. For δ = 0.99 (λ = 200) and
ν = 0.99 (Z = 200), the λ line and the corresponding wave
vectors are shown in Figs. 17 and 18. As expected, the region
bounded by the λ line extends to higher temperatures in this
case. The λ line assumes a maximum with the coordinates
ζm 	 0.09, T ∗

m 	 1.4, and kb,mσ± 	 2. Remarkably, T ∗
m is five

times higher and ζm is two times lower than for δ = ν = 0.9
(λ = Z = 19). On the other hand, the above-mentioned value
of T ∗

m is by an order of magnitude smaller than that obtained
for the same model in Ref. [33]. Recall that ζm has no size and
charge dependence in the approximation used in the previous
work. The period of the OP oscillations lb = 2π/kb ∼ πσ+/2
persists in the region 0 < ζ < 0.25 and increases for a higher

FIG. 18. The wave number xb = kbσ± corresponding to the
ordering of ions along the λ line shown in Fig. 17. ζ is the volume
fraction of ions.

FIG. 19. The variation of the angle θ along the λ line shown in
Fig. 17. θ is measured in degrees.

value of the volume fraction. The behavior of the angle θ

indicating the direction of the dominant fluctuations is shown
in Fig. 19. As is seen, θ changes its trend sharply from ∼ −70◦
to ∼70◦ in the region 0 � ζ � 0.05. Then θ remains nearly
constant (θ ≈ 80◦) in a wide region of ζ (0.05 < ζ < 0.25)
and again changes sharply to ∼ −90◦, keeping this value for
ζ � 0.5. We suggest that such a behavior of the OP indicates
the re-entrant phase transition observed experimentally in the
colloidal systems [12,13].

IV. DISCUSSION

The present analysis has shown that the size and charge
asymmetry is expected to have a significant effect on the
periodic ordering in the systems with dominant Coulomb
interactions.

For the PM with a small size asymmetry (λ < 2), the
trend of the λ lines in a wide region of the volume fractions
is qualitatively similar to that found for the RPM. This is
consistent with the behavior of OP demonstrating only a small
deviation from the pure charge density oscillations. In this
case, we expect that the ordered phase corresponding to an
ionic crystal with a compact unit cell is formed at lower
temperatures and at higher volume fractions when compared
to the λ lines. In particular, such behavior was confirmed
experimentally for the system of oppositely charged colloidal
particles of comparable sizes (see Ref. [26]). On the other
hand, we expect that charge-ordered living clusters are formed
in the fluid phase with the period of the charge wave similar
to the one in the crystal. It is worth noting that in the case of
moderate and small charge asymmetry, the trends of the λ lines
deviate from the RPM-like behavior when the volume fraction
increases.

PMs with λ = 2 show a crossover-type behavior between
the regime of small size asymmetry and the regime of moderate
and large size asymmetry. In qualitative agreement with the
results of Ref. [57], our results predict the phase transition to
the ionic crystal for the system with λ = 2 and Z = 1.

For a moderate and large size asymmetry (2 < λ < 20),
the λ lines show a single maximum T ∗

m at volume fraction
ζm. While T ∗

m depends slightly on the size asymmetry, ζm

decreases noticeably when the size asymmetry increases. In
addition, T ∗

m decreases with the decrease of charge asymmetry.
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The nonmonotonic temperature at the λ line indicates that
some kind of a crystalline phases can be stable for interme-
diate volume fractions, and re-entrant melting occurs at the
high volume fractions (where the temperature at the λ line
decreases). It should be noted that both the charge density
and the total number density oscillate along the λ lines and
their contributions to the OP vary depending on the charge
asymmetry as well as on the volume fraction. Note that for
overall charge neutrality the number of negatively charged
species is Z times larger than the number of positively charged
species. For a large charge asymmetry the main contribution to
the number density comes from the negatively charged species.

The expected phase transition to the crystal phase of dif-
ferent structure is in qualitative agreement with the simulation
studies which predict different crystal structure in mixtures
of large and small oppositely charged spherical colloids with
λ 	 3 [18,26]. Remarkably, three of the predicted structures
were also observed experimentally [18,26]. Our results also
show that the large nearly neutral clusters may be formed
in the PMs with a moderate and large size asymmetry at
the small volume fractions. Such a behavior was observed
experimentally in water solutions of the charged globular
proteins [8]. On the other hand, the appearance of instabilities
in the fluid phase against the periodic ordering for a moderate
size and charge asymmetry may explain to some extent the
inhomogeneous structure observed in RTILs. In these cases
the role of non-Coulomb interactions should be clarified in
future studies. The trend of the λ lines found for the large
size asymmetry implies that the periodic ordering becomes
less favorable when the charge asymmetry decreases and the
fluid-solid phase transition may be preempted by the phase
separation in two uniform phases when the charge asymmetry
decreases.

For a very large size and charge asymmetry (λ = Z = 200)
the number density fluctuations dominate except for small
ranges of ζ (Fig. 19). The period of the OP oscillations depends
very slightly on ζ in the region 0 < ζ < 0.25 (Fig. 18).
In this case, the clusters with diameter ∼ πσ+/2 ≈ 1.5σ+
are formed. Each cluster is composed of a large positive
(negative) ion surrounded by a narrow layer of compensating
negative (positive) charges. Such clusters are associated with
pretransitional ordering—they are present in the solution when
the transition to the crystal is approached. Stability analysis
alone is not sufficient for determination of the crystalline
structure. We can expect formation of the colloidal crystal
with periodic distribution of particles surrounded by a cloud
of counterions for very small volume fractions. It should be
noted that at the point of the λ line corresponding to ζ = 0.05
the inverse screening length is κσ+ ≈ 0.7. The screening
increases with the increase of ζ , indicating the reduction of
the long-range repulsion along the λ line. For 0.1 < ζ < 0.2
we find θ > 80, and the OP consists of almost pure number
density wave with the wavelength ≈ 1.5σ+, with negligible
periodic ordering of the charge density (see Fig. 19). We thus
may conclude that nearly charge-neutral units composed of
the particle surrounded by a thin layer of the neutralizing
counterions are formed. Crystal formation of neutral (thus,
noninteracting) units is not expected if their volume fraction is
ζ ∼ 0.1. Thus, a re-entrant melting could be expected in this
region. For ζ > 0.25, we find decreasing θ and the OP consists

of both the number and the charge waves. The period of the OP
oscillations increases with the increase of the volume fraction.
Such a behavior may indicate the ion rearrangement leading
to the formation of larger clusters.

In experiments a fluid–bcc crystal–fluid phase coexistence
was found with an increase of the colloid volume fraction
[12,13]. The dilute fluid–dilute crystal–dense fluid–dense
crystal transitions, for increasing ζ , with the re-entrant melting
for ζ ∼ 0.1 were also seen [11]. In the latter experiment room
temperature in our reduced units is T ∗ ≈ 0.39. For 0.1 < ζ <

0.2, the reduced temperature at the λ line is much higher
than 0.39, and further studies are necessary for comparison
between our theory and experiment. Nevertheless, we can
make an observation that crystal phases were observed for the
volume fractions corresponding to the OP consisting of both
the number and the charge density waves, and the re-entrant
melting was observed when the OP consists only of the number
density wave, with no charge inhomogeneity.

V. CONCLUDING REMARKS

In this paper we have used the CVs-based theory to study the
periodic ordering in the PMs with size and charge asymmetry.
We consider the Gaussian approximation of the functional
of the grand partition function which, in turn, leads to the
free energy and the direct correlation functions in the RPA.
Using analytic expressions for direct correlation functions in
the RPA, we study the effects of the size and charge asymmetry
on the instabilities of the uniform phase with respect to the
periodic ordering.

We determine the CV associated with the OP. To this
end, we diagonalize the square form of the Hamiltonian and
analyze the behavior of the eigenvalues. This enables us to
identify the OP connected with the periodic ordering and
determine the character of the dominant fluctuations along the
λ lines.

We extend the study undertaken in Ref. [33] by introducing
several modifications. We take into account the dependence
of the reference hard-sphere correlation functions on the wave
vectors and adopt the WCA regularization of the Coulomb
potential inside the hard core. While the latter leads to a
significant decrease of the λ-line temperatures, the former
gives rise to their increase for the same regularization scheme.
The combination of the above-mentioned modifications gives
rise to λ-line temperatures much lower than those found in
Ref. [33]. A similar situation holds for the whole range of
diameter, λ, and charge, Z, ratios of the two ionic species.
Besides, the WCA regularization scheme leads to the higher
values of the wave vectors kb (smaller lb = 2π/kb) associated
with the λ line when compared to Ref. [33]. Precise values
of kb cannot be determined in a perturbative approach,
since the regularization of the Coulomb potential is not
unique.

According to a typical behavior of the λ lines, we dis-
tinguish three regimes: the regime of small size asymmetry
(λ < 2), the regime of moderate and large charge asymmetry
(2 < λ < 20) and the regime of very large size and charge
asymmetry (λ = ν = 200). As is seen, the first regime is
found to be narrower than that considered in the previous
work. Remarkably, the qualitative dependence on the charge
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asymmetry appears in the first regime: For a small charge
asymmetry, the λ lines T ∗ versus ζ demonstrate the departure
from the monotonously increasing behavior which becomes
more evident with an increase of λ. This change in the phase
diagram is directly related to the nonlocal approximation used
for the reference hard-sphere system. Unlike Ref. [33], our
results also show that the models with λ � 4 and Z < 1 (a
large charge at the smaller ion) do not undergo the instabilities
with respect to the periodic ordering in the whole region of
ζ . Thus, we can state that the modifications introduced in this
paper have led to quantitative and partly qualitative changes in
the phase diagram obtained in Ref. [33]

We conclude that both the size and charge asymmetry
affect the periodic ordering in the systems with dominant
Coulomb interactions, namely (1) for λ < 2, the charge density
oscillations dominate in the OP—the phase transition to an
ionic crystal with a compact unit cell is expected; (2) for
λ > 2, both the charge density and the total number density
oscillate along the structural line and their contributions
to the OP depend on λ and Z; (3) for a moderate and
large λ, a crystalline phase can be stable for intermediate
volume fractions and re-entrant melting occurs at high volume
fractions, the large nearly neutral clusters may be formed
at small volume fractions; (4) for a large λ and small Z,
the fluid-crystal phase transition can be preempted by the
gas-liquid-like phase separations; (5) for a very large λ and
Z, the colloidal crystal with periodic distribution of particles
surrounded by a cloud of counterions is expected for very
small volume fractions and a re-entrant melting for the higher
volume fractions.

The RPA predicts only the existence of a region in which a
model ionic fluid is unstable with respect to the OP oscillations
associated with the periodic ordering. In this context, our phase
diagrams indicate the pretransitional effects. The fluctuation
effects of the higher order than the second order should
be taken into account in order to get the information on
both the more precise location of the phase diagrams and
the pattern shapes which can be formed. This will be done
elsewhere.
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APPENDIX

1. Explicit expressions for the coefficients tI J

tNN = a22(k)

�
, tNQ = −a12(k)

�
,

(A1)

tQN = −a21(k)

�
, tQQ = a11(k)

�
,

where

a11(k) = 1√
1 + α2

1

, a12(k) = 1√
1 + α2

2

,

(A2)
a21(k) = α1√

1 + α2
1

, a22(k) = α2√
1 + α2

2

,

� = a11a22 − a12a21 = |C̃NQ(k)|
C̃NQ(k)

, (A3)

α1,2(k)

=
C̃QQ(k) − C̃NN (k) ±

√
[C̃NN (k) − C̃QQ(k)]2 + 4C̃NQ(k)2

2C̃NQ(k)
.
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