PHYSICAL REVIEW E 86, 031502 (2012)

Finite-size effects in the dynamics of glass-forming liquids

Ludovic Berthier,! Giulio Biroli,2 Daniele Coslovich,! Walter Kob,! and Cristina Toninelli’
'Laboratoire Charles Coulomb, UMR 5221, CNRS and Université Montpellier 2, Montpellier, France
2Institut de Physique Théorique (IPhT), CEA, and CNRS URA 2306, 91191 Gif-sur-Yvette, France

3Laboratoire de probabilités et modéles aléatoires, UMR CNRS 7599, Université Pierre et Marie Curie et Université Denis Diderot,

4 Place Jussieu, 75252 Paris Cedex 05, France
(Received 16 March 2012; published 10 September 2012)

We present a comprehensive theoretical study of finite-size effects in the relaxation dynamics of glass-
forming liquids. Our analysis is motivated by recent theoretical progress regarding the understanding of relevant
correlation length scales in liquids approaching the glass transition. We obtain predictions both from general
theoretical arguments and from a variety of specific perspectives: mode-coupling theory, kinetically constrained
and defect models, and random first-order transition theory. In the last approach, we predict in particular a
nonmonotonic evolution of finite-size effects across the mode-coupling crossover due to the competition between
mode-coupling and activated relaxation. We study the role of competing relaxation mechanisms in giving rise to
nonmonotonic finite-size effects by devising a kinetically constrained model where the proximity to the mode-
coupling singularity can be continuously tuned by changing the lattice topology. We use our theoretical findings
to interpret the results of extensive molecular dynamics studies of four model liquids with distinct structures and
kinetic fragilities. While the less fragile model only displays modest finite-size effects, we find a more significant
size dependence evolving with temperature for more fragile models, such as Lennard-Jones particles and soft
spheres. Finally, for a binary mixture of harmonic spheres we observe the predicted nonmonotonic temperature
evolution of finite-size effects near the fitted mode-coupling singularity, suggesting that the crossover from
mode-coupling to activated dynamics is more pronounced for this model. Finally, we discuss the close connection
between our results and the recent report of a nonmonotonic temperature evolution of a dynamic length scale
near the mode-coupling crossover in harmonic spheres.
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I. INTRODUCTION

Theoretical studies of the glass transition make heavy
use of computer simulations of both simple model systems
such as lattice glass models or kinetically constrained spin
models and more realistic models of liquids studied through
molecular dynamics simulations [1]. Usually, numerical
studies are performed with periodic boundary conditions
using system sizes that are “large enough” to provide results
that are representative of the thermodynamic limit [2]. From
this point of view the existence of finite-size effects is a
nuisance. However, as discovered in the context of standard
critical phenomena [3], a thorough study of finite-size effects
can be very informative: It allows one to measure the growing
correlation lengths, to ascertain the critical properties, to
obtain quantitative information about fluctuations of the
order parameter, and to provide crucial tests for theoretical
approaches. While a large amount of work has been devoted
to measuring the spatial extent of growing correlation length
scales [4] in supercooled liquids, only a few studies have paid
specific attention to finite-size effects [S—12], while an even
smaller number of studies have made explicit use of finite-size
scaling techniques to explore glass transitions [13—16]. The
aim of this paper is to fill this gap and to address from a theoret-
ical point of view the issue of finite-size scaling in supercooled
liquids.

For quite a long time, the glass transition was considered a
puzzling phenomenon, corresponding to an obvious change
between fluid and solid states, but without any of the
signs found near standard phase transitions, apart from a
dramatic but gradual viscosity increase when approaching the
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experimental glass temperature [17,18]. In apparent agreement
with this situation, early numerical simulations did not reveal
the strong system size dependencies that would for instance
smear out singular behaviors expected near ordinary phase
transitions [19,20]. In more recent years, important progress
has been made regarding the status of the glassy state and of
the relevant length scales characterizing systems approaching
the glass transition [21]. In particular, two decades of active re-
search on dynamic heterogeneity in amorphous materials have
established that the formation of rigid amorphous structures is
indeed accompanied by nontrivial spatiotemporal fluctuations,
which become more pronounced upon approaching the glassy
phase and are characterized by growing dynamic correlation
length scales [4].

A more recent line of research aims at demonstrating
also the existence of growing static correlation length scales,
using point-to-set correlation functions [22-27]. The idea
is to confine the system using carefully chosen amorphous
boundary conditions to detect the existence of multipoint static
correlations in viscous liquids. The point-to-set length scale
quantifies the spatial extent of these correlations. However, it
is still unclear whether such static length scales are equivalent
to [28], indirectly related to [29], or even decoupled from
[30-33] dynamic ones. Actually, the answer to this question
may also depend on the level of supercooling, thus revealing
the existence of physically distinct temperature regimes.

As is well known in computational studies of phase
transitions, the size of the system can be used as an additional
physical length scale in the problem. Thus, the interplay be-
tween the system size and the correlation lengths can be used to

©2012 American Physical Society


http://dx.doi.org/10.1103/PhysRevE.86.031502

BERTHIER, BIROLI, COSLOVICH, KOB, AND TONINELLI

probe the role played by dynamic and static correlation lengths
in determining the physical behavior of supercooled liquids. In
particular, an important motivation for the present work is the
recent numerical finding [31] that, for a system of harmonic
spheres, a surprising nonmonotonic temperature evolution of
dynamic correlation length scales near an amorphous wall has
been detected in the temperature regime corresponding to the
mode-coupling temperature [34], which was interpreted as
direct evidence that the physical mechanisms for relaxation
are different at moderate and low temperatures. If true, this
interpretation suggests that a similar change of behavior
could also occur in the bulk and could be revealed by
studying carefully finite-size effects in the same temperature
regime. We shall see below that our data indeed support
the hypothesis of Ref. [31], at least for the harmonic sphere
system.

As mentioned above, finite-size effects can also be used
to test and compare theoretical approaches. Indeed, these
provide different, and sometimes contrasting, predictions on
the nature and extent of correlation lengths and fluctuations
in viscous liquids [21]. For instance, kinetically constrained
models [35] and the dynamic facilitation approach [36] focus
on dynamic length scales that usually diverge at a zero-
temperature dynamic critical point [37], and random first-order
transition theory [38,39] predicts the occurrence of a narrowly
avoided mode-coupling dynamic singularity in the moderately
supercooled regime, with a crossover toward a second regime
controlled by a thermodynamic singularity and activated
dynamics at lower temperatures, each domain being associated
with its own diverging length scale [40]. As a consequence,
the interplay between correlation lengths and system size and,
hence, the resulting finite-size effects depend on the theoretical
approach. A central motivation for the present work is to
obtain, discuss, and compare to numerical simulations the
theoretical predictions concerning finite-size effects.

We emphasize that since our focus is on highly viscous
supercooled liquids, we do not discuss the literature about
finite-size effects in simple liquids, which is a different topic,
for which hydrodynamic effects, ignored here, play a more
central role [41,42].

In summary, this paper presents a comprehensive theoreti-
cal study of finite-size effects in supercooled liquids. Our aim
is to provide useful practical information about the relevance
of finite-size effects in computer studies of the glass formation,
test theoretical approaches, and also obtain new insights
about the nature of the fluctuations revealed by finite-size
studies, in particular in the region of the mode-coupling
CTOSSOVer.

The paper is organized as follows. In Sec. IT we provide
general theoretical arguments that are relevant for the descrip-
tion confined supercooled liquids. In Sec. III, we use specific
theoretical approaches to make predictions regarding finite-
size effects. In Sec. IV we introduce a new lattice glass model
with an avoided mode-coupling singularity whose strength can
be tuned by changing the lattice topology and use it to study
finite-size effects. In Sec. V we provide molecular dynamics
simulations of four model liquids with distinct structures
and kinetic fragilities. In Sec. VI we close the paper with a
discussion of the results. More details about the new lattice
glass model introduced in Sec. IV are given in the Appendix.
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II. EMERGENCE OF FINITE-SIZE EFFECTS
IN FRAGILE LIQUIDS

The relaxation time of glass-forming materials approaching
the glass transition can be described by the thermally activated
form

E(T
( )] ™

Ty A Tpexp [T

where the activation energy E(7) increases when temperature
decreases for fragile materials, whereas it is constant for strong
glass-formers [21]. Here and in the following we shall absorb
the Boltzmann constant kg in the definition of T. The tem-
perature dependence of E(T) in Eq. (1) means that the nature
of the relaxing “entities,” whatever they are, changes with
temperature. A growing activation energy actually suggests
an increasing cooperativity in the relaxation events, corre-
sponding to the correlated motion of an increasing number of
particles. Thus, by reducing the system size one expects, all
other things being equal, that the dynamics starts to differ from
bulk behavior when the linear size becomes comparable to the
size of these correlated regions. Thus, it is natural to expect the
emergence of a characteristic length scale, which we denote by
Lrs(T) in the following, characterizing finite-size effects such
that bulk relaxation is obtained when the system size is larger
than £gs(7"). In cases where the dynamics is characterized
by several length scales, the behavior of £gs(7) will be more
complicated, as we shall see. In any case, we believe that finite-
size studies should provide a new way to probe dynamical
correlations and cooperativity in glass-forming liquids [15].

By using a very general argument, one can show that £gg(7")
must grow for fragile liquids when temperature decreases. The
starting point of our argument is to recall that an upper bound
for the relaxation time scale for a system of linear size L can
be obtained by assuming the worst-case scenario, namely that
all particles have to move together in a cooperative way to
relax the structure. This leads to an upper bound for 7,(L,T)
that scales with L as

cL?
To(L,T) < 7,4(L,T) = 19 €Xp - ) 2)

where 1 is a microscopic time scale, ¢ is a numerical constant,
and d is the spatial dimension. Note that for systems evolving
with stochastic dynamics and with discrete degrees of freedom
this is a rigorous statement [43]. For other systems, this result
is expected on general grounds but a rigorous proof is probably
out of reach.

Now, consider an infinite system characterized by the relax-
ation time scale 7,(7T) = t,(L — 00,T), and then decrease its
size while simultaneously measuring 7,(L,T). By definition,
the structural relaxation time will not change until ¢gs(7) is
reached. A lower bound for this length can be obtained by
noticing that a constant t,(L,7T) as a function of L would
necessarily violate the bound in Eq. (2) at small L and large
enough 7, (7). Thus, dynamical finite-size effects must appear
when (or before) t,(co0,T) becomes equal to 7,,(Lps,T).
Therefore, we find

1/d
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To
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By using Eq. (1), this result implies that, up to a proportionality
constant, {gs(7) must increase with temperature at least as
E(T)"¢.Note that this result does not imply anything about the
precise dependence of t,, on L, in particular whether or not this
dependence is monotonic. However, it shows that for fragile
liquids the length obtained by dynamical finite-size effects
studies has to increase when temperature decreases. This
growth would be faster than (1/T)1/d or [T/(T — Tvrr)]Ve,
in the respective cases where 7,(7") follows a Bassler or a
Vogel-Fulcher temperature dependence.

At this point, three important remarks are in order.

(1) The lower bound on £gs(T) only becomes meaningful
when {T In[z,(T)/70]/c}'/¢ > a, where a is the typical inter-
particle distance. The temperature at which this takes place of
course depends on the values of the constant ¢ and of 7y and
may actually correspond to very deep supercooling, i.e., very
large values of 7,. It would be interesting to have an estimate
of ¢ and 7y for a given liquid to understand what is the highest
temperature at which our argument becomes useful.

(2) For a strong (i.e., Arrhenius) liquid, E(T) = E, one
finds that {T In[z(T)/70]/c}"/¢ does not depend on temper-
ature. This makes perfect sense within the physical picture
where strong liquids relax by localized and independent ther-
mally activated events. In this case {gg should be temperature
independent and roughly equal or at least proportional to the
microscopic length scale a.

(3) The lower bound we obtained for £gs(7) actually
coincides with the one obtained in Ref. [23] for the static
point-to-set length. This is reasonable because one expects the
dynamical length probed by finite-size effects to be larger than
(or equal to) the static point-to-set length.

III. SPECIFIC THEORETICAL PREDICTIONS

Having argued by general arguments that £gg(7') increases
when T decreases for fragile liquids and hence should be
related to cooperative relaxation of some sort, we now address
the precise form of 7,(L,T) as a function of L and the possible
physical mechanisms behind the increase of £gs(7"). Since this
partially depends on the particular theoretical description used,
we consider several different cases.

An important conclusion of the following sections is that
£rs(T) cannot be univocally related to one of the several cor-
relation lengths introduced recently. This relation depends on
the theory: £gs(7T") may coincide with a static correlation, like
the point-to-set one, or coincide with the dynamic correlation
length, or be only indirectly related to either one of them.

A. Cooperatively rearranging regions

There are several theories that explain the relaxation process
in supercooled liquids in terms of cooperative rearrangements
of regions involving a growing number of particles. Theories
falling in this category are the Adam-Gibbs theory [44],
the frustration-limited domain approach [45,46], and random
first-order transition (RFOT) theory [38,39,47]. For RFOT
theory, a different dynamical process described by mode-
coupling theory (MCT) [34] is responsible for relaxation for
temperatures higher than Tyict, and this regime is discussed
separately below in Sec. III C.
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In all these theories the relaxation time is derived by as-
suming activated dynamic scaling and using as a characteristic
length scale the linear size of the rearranging regions. Thus,
the logarithm of the relaxation time scale is proportional to the
length scale raised to some power, which for instance is equal
to d in the Adam-Gibbs case [44]. The physical mechanism
responsible for the growth of this length scale and the exponent
of the power law depend on the details of the theory.

By assuming that cooperative relaxation events are uncor-
related, as is usually done, the primary effect of decreasing
system size is to decrease the value of the activation energy
from its bulk value, because the number of particles involved
decreases, once the system size becomes smaller than the
typical size of a rearranging region. Thus, for all these theories,
one expects 7, (L, T) to be a monotonically increasing function
of L approaching the bulk value from below for L of the
order of the size of the rearranging regions. This is directly
reminiscent of finite-size effects near a second-order phase
transition [3], where divergences are smeared out by finite
system sizes. The only peculiarity of the glass transition would
be the occurrence of activated, rather than algebraic, forms of
dynamic scaling. It would be interesting to know whether some
kind of scaling formula holds for z,(L,T) [or log t,(L,T)].

This behavior of 7, (L,T) as a function of L is also similar to
the one expected within RFOT theory using amorphous bound-
ary conditions [21,28]. However, the physical mechanisms
conjectured to play a role for small L are different from the
periodic boundary conditions considered here. In the former,
the dynamics accelerates because the boundary condition
lowers the free energy of a single state. Therefore relaxation
occurs inside this state and is hence faster than in the activated
regime in which the other states should also be visited.
With periodic boundary conditions instead, the dynamics is
activated but the barrier decreases if L becomes smaller.

B. Defect models

Defect models [35], and in particular dynamical facilitation
models [36], have been widely used to study dynamical
heterogeneities and spatial correlations in viscous liquids,
but dynamical finite-size effects have not been specifically
discussed.

In defect models, whether cooperative or not [35], there are
at least two relevant length scales. One is the typical distance
between defects, &; o ¢~1/¢ (where c is the defect density),
and the other is related to the size of dynamical correlations.
The two are not necessarily equal, and the latter can possibly
be much larger than the former depending of the model
and the dimensionality [48]. Assuming that the equilibrium
concentration of defects is unaffected by confinement, we
expect &; to be the most relevant length scale for the finite-size
effects. In fact, for intermediate system sizes (i.e., for L
between &; and the dynamic correlation length), one might
expect that T(L,T) deviates only weakly from its bulk value,
as the nature of dynamical facilitation remains essentially
unaffected. This statement is straightforward for diffusing
defects and noncooperative constrained models, but it has to be
taken with some caution for cooperative models which have a
more complicated dynamics typically characterized by several
(and possibly a hierarchy of) dynamic length scales [6,35].
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By contrast, the nature of the dynamical processes must
change qualitatively when L competes with &;. Indeed, for
L ~ &, about half of the equilibrium configurations contain
strictly no defect. In this case, the system has to either use
a different channel for relaxation or create a new defect and
then relax by defect diffusion. (Note that this second scenario
is strictly forbidden in spin-facilitated models, which thus
become instead nonergodic in this limit [35].) In both cases
the corresponding relaxation time is expected to be larger than
the one for configurations having a defect from the beginning,
which instead relax on a time scale of the order of the bulk
relaxation time. Therefore, the average relaxation time is
expected to start to increase strongly when L ~ &; (and to
become infinite in constrained spin models). The behavior for
L < &, is less clear because in this case the system typically
does not have any defect in equilibrium configurations and,
hence, relaxes in a way different from the one used for L > &,,
and no alternative relaxation channel is described within the
defect approach. Since in this case the shape of t,(L,T) is
determined by the L dependence of this unknown relaxation
mechanism we cannot say much about it. However, using the
general argument developed above we know that for fragile
liquids 7,(L,T) has to decrease when the system size is re-
duced below {7 In[7,(T')/To]/c}'/¢. Thus, in the case of fragile
liquids and within the framework of defect diffusion theories
we expect 7,(L,T) to have a nonmonotonic behavior that
can be more or less pronounced depending on the underlying
model. Instead, in the case of Arrhenius liquids, it is possible
that 7,(L,T) increases with decreasing L until the linear
system size is almost of the order of the interparticle distance.

As final comments, we first stress that some form of
facilitation dynamics could additionally be introduced within
the theories of cooperative rearranging regions. Thus some
mild nonmonotonic behavior can be present even in that case.
Second, whatever is the correct theory, there could be actually
several length scales playing arole. Itis likely that larger length
scales are affected first by the confinement such that very
large domains disappear first when L is reduced, which should
somehow truncate the distribution of relaxation times, making
the average (e.g., the first moment of the distribution) smaller.
This suggests that finite-size effects could manifest themselves
at very long times only, which could correspondingly only
affect the tail of time correlation functions.

C. The mode-coupling theory crossover

In the framework of the mode-coupling theory of the
glass transition [34], a dynamical transition accompanied by a
diverging dynamic correlation length scale [49] takes place at
a finite temperature Tyicr. It is well known that the transition
predicted by the theory actually does not take place in finite-
dimensional models and in experiments. Instead, it is replaced
by a crossover occurring near the temperature extracted from
fitting the dynamical relaxation to scaling predictions of the
theory, although the precise nature of this crossover is not well
understood [39,50]. RFOT theory naturally includes mode-
coupling theory, but at present it cannot describe the nature of
the crossover from mode-coupling to activated relaxation in
much detail [39]. Decreasing L at constant temperature above
Twcr (and, of course, below the onset temperature), we again
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expect a nonmonotonic size dependence of t,(L,T") due to the
competition between two effects, which we now explain.

When considered from the point of view of random first-
order transitions [39], a physical interpretation of the dynamics
within the mode-coupling regime is that relaxation occurs
along unstable modes that become less and less unstable
and more collective upon approaching Tyicr, thus leading to
diverging dynamic correlations [49]. By reducing the system
size below the dynamic correlation length, these unstable
extended modes are the most easily affected, and confinement
should render some of these modes stable, thus closing some
relaxation channels. The effect would then be to slow down
relaxation, or equivalently to shift the apparent value of Tyicr
to larger temperature [40,51].

However, decreasing the system size has a second conse-
quence. The singularity predicted by the theory cannot occur
in a finite-size system, and therefore t,(L,T) cannot increase
indefinitely by decreasing L. In fact this growth is bounded
from above by the general argument detailed in Sec. II even
though this may happen on quite a small length scale. Within
RFOT theory, the increase of 7,(L,T) at small L should be cut
off for length scales such that relaxing via the mode-coupling
channel becomes slower than the activation channel. Then, for
even smaller L, relaxation will proceed by cooperative rear-
rangements (as it does in the bulk below Tyicr) and this should
lead, as in Sec. IIT A, to a decrease of 7,(L,T") by decreasing L.

Overall, we should then observe a nonmonotonic behavior
of the relaxation time in the mode-coupling regime, because
using systems with finite sizes has a qualitatively different
impact on mode-coupling dynamics (which slows down in
confinement) and activated dynamics (which accelerates in
confinement).

Although already quite complex, the picture depicted above
is certainly still too simplistic. As stated before, the mode-
coupling crossover is not well understood and it is thus likely
that dynamical finite-size effects will turn out to be quite subtle
and lead to a very complex behavior, as found in seemingly
simpler mean-field models [52-54]. In order to shed some
more light on this crossover, we consider in the following
a finite-dimensional model that displays an avoided mode-
coupling singularity.

IV. A LATTICE GLASS MODEL WITH AN AVOIDED
MODE-COUPLING TRANSITION

A. Kac-Fredrickson-Andersen model

We study a two-dimensional Kac version of the spin-
facilitated model extensively studied by Fredrickson and
Andersen (FA) [55-57], which we call the Kac-Fredrickson-
Andersen (KFA) model. This is defined by a noninteracting

Hamiltonian
H = Zl’l,’, (4)

where n; = 0,1 represents a binary mobility defect variable.
The average density of spins in the excited state is ¢(7T) =
[1 4+ exp(1/T)]~". For the dynamics, we choose the two-spin
facilitation rule, as in the original model [55]: To be able to
flip, a spin must possess at least two neighbors which are both
in the excited state n; = 1.
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A generalization to a Kac version of the model can be
obtained by introducing a new geometrical parameter, K,
which characterizes the range of the spin connectivity within
a regular two-dimensional square lattice. In the standard FA
model in two dimensions, the spin at position r has four
nearest neighbors that contribute to facilitating its dynamics.
They occupy the positions r + e, r — ey, r + €y, and r — ey,
where e, and ey are unit vectors along the horizontal and
vertical directions, respectively. In our Kac-version, the spin
at position r remains facilitated by four “neighbors,” which
are now located at positions r +iex, I — je, I + key, and
r — ley, where (i, j,k,!) are four random numbers chosen in the
set {1, ...,K} according to a procedure that will be detailed
below. Thus, the KFA model contains quenched disorder, and
spins can interact on the lattice over a range K that can be
tuned at will and be made arbitrarily large, while keeping the
spin connectivity constant and equal to that of the original
K = 1 model.

To generate an instance of the lattice, we start from the
leftmost site of a given line and connect it at random to one
of its K right neighbors. We then move to the right by one
lattice spacing and connect the new site at random to one of its
K right neighbors, excluding the one that has been connected
at the previous step. This procedure is then iterated up to the
(K — 1)-th site of the line always connecting the current site
at random to one of its K right neighbors excluding the ones
that have been previously connected. In order to guarantee
that at the end of the procedure each site has a right and a left
neighbor we proceed as follows for the remaining sites. When
choosing the right neighbor of site i we first check whether
i + 1 already has a left neighbor. If this is not the case we
connect i to i 4 1; otherwise we pick the right neighbor of i
uniformly at random among the sites i 4+ 2, ...,i + K which
have not yet been assigned a left neighbor. We then iterate this
procedure up to the end of the line imposing periodic boundary
conditions. In this way we generate a random one-dimensional
lattice with connectivity two at each site and arange equal to K .
We then repeat the procedure for each line and column of the
square lattice to define an instance of the KFA model. When
performing simulations of the KFA model, we also average
over independent realizations (typically 2000) of the lattice.

Note that in the limit K — oo the probability € that a site is
connected to its right nearest neighbor does not decay to zero;
however, it can easily be bounded from above by exp(—1) and
the numerics indicates that this probability saturates at a lower
value € >~ exp(—2). Thus in the K — oo limit, the geometry
becomes the one of a Bethe lattice with connectivity equal to
four, decorated by loops occurring with probability at most
€* ~ exp(—8) and a finite-temperature singularity occurs. We
expect this transition to share important similarities with the
mode-coupling transition as is the case on the pure Bethe
lattice [58]. In particular, time correlation functions should
decay in a two-step manner with power laws characterizing
the approach and departure from the intermediate time plateau
and an algebraic divergence of the temperature evolution
of the equilibrium relaxation time. Instead for K =1 the
topology of the square lattice is recovered and the physical
behavior is that of a cooperative kinetically constrained model,
with a divergence of time scales and length scales at 7 = 0
only [59].
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The crucial point for our purposes is that, for a large but
finite K, we expect the dynamics to be controlled in some
temperature range by the mode-coupling singularity because
the system locally resembles the K = oo decorated tree, but
the singularity must be avoided because the square lattice
topology eventually dominates at large enough length scales.

Therefore, as is believed to be the case in finite-dimensional
glasses, the mode-coupling singularity is “avoided” when
temperature decreases because of the presence of some
“activated processes.” Actually, in this case it is more correct
to call these processes cooperative instead of activated since
they are due to the diffusion of macro-vacancies [59]. There
are however two important differences between the KFA
model and supercooled liquids. First, in the KFA model both
temperature regimes and the related physical behaviors are
well understood, and thus our model smoothly interpolates
between limits that are under control. Second, we can tune
the parameter K to be very close or very far from the
mode-coupling limit, and thus we can control the relevance of
the infinite-range dynamics for the finite-range model, which
is not readily realized in liquids. We note that a closely related
attempt to control the importance of mean-field behavior
has recently been published [60] in the context of off-lattice
models of liquids, following an idea similar to ours where the
connectivity is kept constant while increasing the range of the
interaction between particles.

In the following we present results of extensive Monte
Carlo simulations of the above model using periodic boundary
conditions and a lattice of linear size L which we vary. We use a
continuous-time Monte Carlo algorithm [61] and study a broad
range of parameters, changing in particular the Kac range from
K =1to K = 24 (but note that we only consider the regime
K < L/2). It is important to stress that depending on K and
L, especially at small system sizes, some samples may contain
a finite fraction of blocked spins, a “backbone,” that will never
flip. We disregard these configurations and sample only the
ones that do not contain blocked backbones. A different choice
would be to average over all configurations and estimate the
relaxation time as the time decay of the persistence to a nonzero
long-time value. We have chosen the first solution, and so we
perform a “biased” average over all ergodic configurations,
in order not to mix ergodic and nonergodic configurations in
a single average. By contrast, no blocked configurations are
found when L is large enough and bulk dynamics is studied.
Here, L “large enough” means that the relaxation time and
the correlation functions no longer depend on L (and the
size dependence of these functions is studied in great detail
below). Because the Hamiltonian in Eq. (4) is trivial, it is
straightforward to generate equilibrium configurations and
to study equilibrium relaxation in the absence of any aging
effect. The only limitation is that complete relaxation cannot
be observed over our finite time window when temperature is
too low, a regime which again depends on the value of K and
is of course set by our computer resources.

B. Evidence of a mode-coupling crossover for
the bulk dynamics

Following previous work [37], we first probe the bulk
equilibrium dynamics in the KFA model by measuring the
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FIG. 1. Time dependence of persistence functions in the KFA
model for various connectivity range K and temperatures 7.
(a) Data for K = 1 and decreasing temperatures (from left to right).
(b) The data for K = 24 and decreasing temperatures (from left to
right) clearly show a two-step decay toward an intermediate plateau.
(c) Comparison between data for K = 8 and K = 24 at various
temperatures. A filled circle indicates the crossover time scale r*
after which the two sets of data deviate significantly, thus delimiting
the (¢#,7) domain of applicability of mean-field dynamics.

persistence function

1 N
P(t) = <ﬁ > P,»(t>>, ©)
i=1

where P;(t) =1 if the spin at site i has not changed state
between times 0 and 7, and P;(¢) = 0 otherwise. We have also
studied the spin-spin autocorrelation function and have found
qualitatively similar results, which are thus not presented here.

Our findings for different connectivity ranges K and
temperatures 7 are presented in Fig. 1. To obtain these data,
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we have used L = 150 for K = 1, up to L = 250 for K = 24,
carefully checking the absence of finite-size effects. The data
for K =1 in Fig. 1(a) resemble previously published results
in cooperative kinetically constrained models [35,37,62-64].
The shape of the persistence function changes very little when
temperature decreases. An important point for us is that these
curves only display a single decay toward zero instead of
the clear two-step decay (termed alpha and beta relaxations)
typically found in supercooled liquids. This distinction was
often interpreted as being a consequence of working on the
lattice because short-time thermal vibrations cannot contribute
to relaxation functions [62]. It was later understood that an
analog of the beta relaxation could nevertheless appear and be
studied in lattice models [50,58,63,64], as we now confirm.

When moving from K = 1 to K = 24 in Fig. 1(b), which
is the largest range studied in this work, we find that the shape
of the correlators changes continuously with increasing K.
In particular, the short-time dynamics changes from being
convex (or quasilogarithmic [62,64]) to becoming concave and
converging to an intermediate-time plateau, as can clearly be
seen in Fig. 1(b). This two-step decay is also characteristic of
the decay of dynamic correlators predicted by mode-coupling
theory. Due to the small probability [~ exp(—8)] for a site to
be in a loop, we expect the system for K — 0o to be well
described by a Bethe lattice for the system sizes which we can
numerically explore. We have performed a few simulations
directly on the Bethe lattice, as in Ref. [58], and found that, for
the range of temperature accessible for K = 24, the relaxation
functions for K = 24 and K = oo are extremely close, and so
we take K = 24 as being representative of the infinite-range
limit over the accessible temperature range. For the studied
connectivity, the transition temperature for the Bethe lattice
limit is 7,, = 0.480898.

Overall, these curves suggest that, as announced, the KFA
model crosses over from a mode-coupling-like dynamics at
large K toward a dynamics of a different nature at small K,
which is cooperative, yielding a super-Arrhenius growth of the
relaxation time.

Interestingly, while the data for K = 1 appear qualitatively
different from the K = oo counterpart, we find that for
intermediate K values, a finite-temperature regime seems
to open where the dynamics is qualitatively similar to the
mean-field regime, with deviations only appearing at lower
temperatures. We confirm these observations in Fig. 1(c),
where relaxation datafor K = 8 and K = 24 are superimposed
for various temperatures. It is clear that deviations between
the two sets of curves are very small at high temperatures
and become quite large when T decreases. More precisely, we
observe that for each temperature the relaxation data are very
similar at short times but differ at long times. This allows the
definition of a crossover time scale *(7T'), marked with a closed
symbol in Fig. 1(c), such that differences between the two
persistence functions only become significant for r > *. We
find that t* belongs to the alpha relaxation when temperature
is not too low, which implies that the correlation functions
and thus the relaxation time are controlled, in this tempera-
ture regime, by the infinite-range dynamics. However, when
temperature is decreased further, * now belongs to the beta
relaxation. This means that sufficiently close to the dynamic
singularity of the K = oo model, the temperature evolution
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of 1, differs significantly from the infinite-range model,
so that the singularity is eventually avoided. Quite remarkably,
we also find that the beta relaxation does not seem to be
very much affected by this crossover, which could imply that
short-time dynamics remains well described by the mean-field
limit even at temperatures where the long-time dynamics
is already controlled by activated processes. This would
suggest that a more precise prescription for the applicability
of the mode-coupling predictions should be done in the (time,
temperature) domain, rather than by defining a single crossover
temperature [39]. In practice, this suggests that mode-coupling
theory could still be useful below Tycr, at least to describe
the short-time dynamics of viscous liquids and estimate
for instance the temperature evolution of the Debye-Waller
factor [34,65].

A much sharper identification of the crossover is found
by studying the alpha-relaxation time of the system. We
extract 7,(7T) from the relaxation curve using the definition
P[t,(T)] = const. Note that the value of the constant is
irrelevant as the shape of the relaxation barely evolves with
temperature for a given value of K, as long as the constant
corresponds to the final decay. We use the value 0.28 which
lies roughly in the middle of the final relaxation for large K.
The temperature dependence of the corresponding t,(7) is
presented in Fig. 2 using an Arrhenius plot [see Fig. 2(a)] and
using a reduced plot inspired by the mode-coupling prediction
[see Fig. 2(b)]. These results confirm that for the largest range
studied, K = 24, the dynamics is very close to the results
obtained directly on the Bethe lattice [58], which were shown
to obey a power-law divergence,

To(T) < |T =T, (6)

with y = 2.9 and T, ~ 0.481. This temperature is indicated
with a vertical line in Fig. 2. When plotted as a function of
T — T,.inalog-log representation, the data for K = 24 follows
the power-law divergence over almost the entire temperature
regime we were able to study numerically. We observe a power-
law regime over nearly four decades of slowing down, which
is more than what is typically observed in supercooled liquids.

When K is decreased, however, stronger deviations from
this power-law divergence appear, and the deviations appear at
higher temperatures when K becomes smaller. Accordingly,
the mode-coupling power law is obeyed over a range which
shrinks with decreasing K [see Fig. 2(b)]. For K =1, the
power law is followed over about two decades only, which
means that the system is quite far from its mean-field limit. In
fact, without the K = 24 data as a guide, it would be difficult
to argue that a mode-coupling crossover occurs at all for this
system [50], a situation which we will again encounter in
Sec. V when considering off-lattice systems. Note that, in this
analysis, we have not tried to use 7. as an additional free
parameter, which would somewhat improve the quality of the
power-law fit.

These results clearly show that relaxation in the KFA model
is a combination of mode-coupling and cooperative dynamics,
whose respective importance depends on the temperature, the
geometry of the underlying lattice (i.e., the value of K),
and the considered time scale. For large values of K we
find an apparent mode-coupling divergence analogous to the
one reported for the Bethe lattice with the same connec-
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FIG. 2. Temperature evolution of the relaxation time in the KFA
model. (a) Arrhenius plot; the vertical line is at T.(K = o0) =
0.480898. (b) The same data plotted in a log-log representation as a
function of T — T; the full line represents the mean-field limit given
by Eq. (6). In both panels, we see that deviations from mean field
occur at higher T for smaller K, which shrinks the domain of validity
of the mean-field prediction for the growth of z,.

tivity. However, in contrast to Bethe lattices, the dynamic
singularity is eventually avoided for any value of K < oo.
This can be proven rigorously, the argument being deferred
to the Appendix. The proof for K > 1 is a straightforward
generalization of the K = 1 case discussed previously [59],
and it shows that for any finite K the relaxation time diverges
only at T = 0, with a divergence which becomes steeper when
K increases. This results from the behavior of the upper bound
we derive for t,(7T), showing that 7,(7) cannot grow faster
than exp[ K exp(K/T)], to leading order at low T'.
Interestingly, this argument also suggests that by using any
of the standard definitions of the kinetic fragility, the KFA
model would become more fragile with increasing value of
K, with the fragility even becoming formally infinite when
K — oo. The fragility increases with K because the dynamics
is more influenced by the mode-coupling crossover and
closer to an algebraic singularity at 7., which is responsible
for the fragility increase observed numerically in Fig. 2.
In the low-temperature regime below the mode-coupling
crossover where the upper bound derived in the Appendix
is valid, the corresponding fragility also increases because the
effective activation energy increases with K. Within the KFA
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model, we arrive at the intriguing conclusion that systems
where the mode-coupling crossover is more pronounced are
also characterized by a larger kinetic fragility. It would be
interesting to know whether such a correlation holds for real
supercooled liquids. We discuss this issue further in Sec. V.

C. Dynamical finite-size effects

Having established that the KFA model smoothly inter-
polates between mode-coupling and cooperative dynamics,
we are now in a position to study how the different regimes
are affected by confinement and the corresponding finite-size
effects. In order to do that, we shall analyze how the alpha
relaxation depends on the control parameters (K,7,L). We
recall that, for small system sizes, instances containing a
blocked backbone may appear with a finite probability. When
this probability becomes large, the KFA model is no longer a
physical description of realistic glassy liquids, which cannot
be truly blocked. In a more realistic system, a different
relaxation mechanism will replace facilitation. In order to
avoid this problem, we have decided to reject those instances
and perform an average over samples which do not contain
blocked backbones.

We find that the shape of the persistence functions depends
weakly but in a nontrivial manner on the control parameters.
For this section we use, for convenience, an integral definition
of the relaxation time:

Ty = /Oo dt P(1). (7N
0

We have checked that our conclusions do not depend on this
particular definition of t,,. We have explored the dependence of
7, on all three parameters over a wide range. We now present
the salient features of the finite-size effects within the KFA
model.

First, we fix the temperature and study how the relaxation
time reaches its bulk value for L — oo for different con-
nectivity ranges K (see Fig. 3). For a moderate temperature,
T = 0.577 (recall that T, = 0.481), bulk relaxation times are
of the order 5 x 10° for all K. We observe that this value is
reached for moderate system sizes in all cases, L ~ 20-40,
and that the K — oo limit is reached very quickly as well,
since the data do not change for K > 8. Strikingly, we find
that the asymptotic value of 7, (L) is reached from below for
K =1 and from above for K > 4, suggesting that finite-size
effects are qualitatively different for mode-coupling (K > 4)
and cooperative (K < 4) regimes at this temperature.

These observations are amplified at lower temperature. For
T = 0.502, bulk dynamics is recovered only at much larger
system sizes, from L ~ 30 for K = 1to L ~ 150 for K = 24.
Moreover, since we are very close to the mean-field singularity,
the K — oo limit is only achieved for much larger K, near
K = 32. Thus, by decreasing the temperature we observe
enhanced finite-size effects in both dynamical regimes, which
constitutes direct evidence that dynamical slowing down is
accompanied by a growing correlation length scale and unveils
the existence of a growing length ¢rs(7), which determines
dynamical finite-size effects and which grows by lowering
the temperature. We emphasize that this result holds both in
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FIG. 3. System size dependence of the relaxation time in the
KFA model at two fixed temperatures and various values of the
interaction range K. The strong temperature evolution of the finite-
size effects indicates the growth of £gs(T) at low T'. Note the different
L dependence in the cooperative (t, increases with L) and the
mode-coupling (7, decreases with L) regimes.

mean-field and cooperative regimes even though the system
size dependence is qualitatively different in the two cases.
We now fix the connectivity range K and study for each
different K value the whole temperature evolution of the finite-
size effects in Fig. 4. For the case K = 1, shown in Fig. 4(a),
the mode-coupling regime is almost absent and the dynamics
appears to be activated and of non-mean-field type in the
whole slow dynamics regime. Correspondingly, the relaxation
time increases with L for all temperatures with no sign of
nonmonotonic behavior. This behavior can be explained by
recalling that relaxation in the K = 1 model proceeds via
diffusion of so-called macro-vacancies. The relaxation time
corresponds to the time it takes a macro-vacancy to diffuse
over an area comparable to the inverse of the macro-vacancy
density. When the system size becomes smaller than this
characteristic area dynamical finite-size effects set in. The
interpretation is that by sampling configurations that do not
contain blocked structures, we are effectively conditioning
the sampled configurations to always contain at least one
macro-vacancy. The area over which this macro-vacancy must
diffuse becomes smaller when L decreases, and so does the
relaxation time. This argument also explains why convergence
to the bulk behavior is reached only at system sizes that grow
with decreasing 7', because the density of macro-vacancies
decreases. Therefore, the growth of £rs(T) is directly related
to the growth of dynamical correlations in this regime which
directly control the finite-size effects observed in Fig. 4(a).
The situation for K = 4, shown in Fig. 4(b), is different
because mode-coupling dynamics now controls the relaxation
over an intermediate temperature regime, as discussed above.
We have argued in Sec. IIIC that mode-coupling dynamics
in finite systems should be slower than in the bulk, which is
indeed compatible with the higher temperature data shown in
Fig. 4(b), which show that the bulk value of the relaxation
time is reached from above. This situation is in stark contrast
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FIG. 4. Temperature evolution of finite-size effects. (a) K =
1 and various temperatures: 0.577 < T < 0.409. (b) K =4 and
various temperatures: 0.577 < T < 0.490. (c) K = 24 and various
temperatures: 0.577 < T < 0.490. While t, grows with L in the
purely cooperative regime (K =1 at all T, K =4 at low T), it
decreases with L in the mode-coupling regime (K =4 and 24 at
moderate 7) and has a nonmonotonic size dependence when both
regimes coexist and compete (K = 4,24 near 7,). This competition
produces a nonmonotonic temperature evolution of the characteristic
length ¢gs(T), indicated by open symbols in (b).

with the cooperative behavior obtained for K = 1 in Fig. 4(a).
Decreasing the temperature has two effects. First, bulk dy-
namics is reached only at system sizes that grow, because
Lrs(T) grows, as noticed above. Second, the presence of the
mode-coupling regime becomes evident, as dynamics becomes
cooperative and thus reacts differently to finite sizes. At very
low temperature we find that dynamics is fully cooperative, and
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7, increases with L. A striking behavior is observed near T ~
T. where both types of dynamics coexist and compete to yield a
nonmonotonic behavior of 7,(L), which should be interpreted
as a mixture of high- and low-temperature behaviors.

A second striking consequence of this competition is that
the length ¢rs(T), which can be estimated as the system
size needed for t,(L,T) to converge to the bulk value, has
a nonmonotonic evolution with temperature, as indicated
by the open symbols in Fig. 4(b). These open symbols have
been placed in between the first two consecutive L values for
which the relaxation time no longer evolves, within statistical
accuracy. While these points do not represent the result of the
quantitative determination of a characteristic system size, they
describe qualitatively well the numerical data. This behavior
occurs near the mode-coupling temperature and the minimum
of £rs(T) occurs when the opposite effects of cooperative
and mode-coupling dynamics on the relaxation time nearly
compensate to produce negligible finite-size effects. The
effective nonmonotonic temperature evolution of frs(7) is
strongly reminiscent of the numerical findings of Ref. [31],
as we discuss further in Sec. VI. By contrast, the four-point
dynamic susceptibility measured in the bulk does not show
such a nonmonotonic temperature evolution, as discussed in
the Appendix.

We were only able to detect such a nonmonotonic temper-
ature evolution of ¢rs(7T) over a narrow range, 4 < K < 8.
This is because small K values are little influenced by the
mean-field limit, while for large K we cannot study low enough
temperatures and enter the fully cooperative regime. Indeed,
for K = 24, shown in Fig. 4(c), we find a qualitatively similar
coexistence and nonmonotonic behavior at intermediate tem-
peratures, and the effect is even more pronounced because, for
this K value, the mode-coupling singularity is only narrowly
avoided, and the mode-coupling regime extends to much lower
temperatures. However, for this value we have not been able to
reach sufficiently low temperatures to see purely cooperative
dynamics and a monotonic increase of 7, with L [see the lower
temperatures in Fig. 4(c)].

In conclusion, the study of finite-size effects in the KFA
model, where the relative importance of mode-coupling and
cooperative dynamics can be controlled, supports the validity
of the theoretical arguments developed in Sec. III. We find in
particular that both temperature regimes exhibit qualitatively
distinct responses to the use of finite sizes, while in the
crossover region a remarkable nonmonotonic size dependence
is obtained, which reveals in a very direct manner that
the nature of the relaxation is changing near the avoided
singularity 7.. We also observe that for systems that are too
far from the mean-field limit, this crossover is too weak,
dynamics is mostly controlled by cooperative processes, and 7,
increases monotonically with L. Therefore, finite-size effects
can be viewed as a powerful tool to probe the existence of
a physically relevant temperature regime where mean-field-
like dynamics prevails. In all cases, we find that finite-size
effects appear for L < €ps(T), where frs(T) represents a
length scale which grows upon decreasing the temperature
in both mode-coupling and cooperative regimes, but exhibits
an apparent nonmonotonic temperature evolution when the
opposite effects of mean-field and cooperative dynamics nearly
compensate.
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V. RESULTS FROM MOLECULAR DYNAMICS
SIMULATIONS

A. Models and bulk behavior

Given the diversity of behaviors predicted theoretically
in previous sections, we have decided to undertake a large
numerical effort to investigate finite-size effects in a broad va-
riety of model systems using molecular dynamics simulations
and to study liquids with different interactions and kinetic
fragilities. We have performed large-scale simulations of four
model liquids representative of different classes of systems.

The first model, which we call the “network liquid,” was
introduced and studied in Ref. [66]. By using carefully chosen
Lennard-Jones interactions between the two components of a
binary mixture, it is possible to mimic the structure of network-
forming liquids (such as silica) while avoiding the use of long-
range electrostatic interactions, which is especially convenient
when small systems need to be studied. Additionally, at
low enough temperatures the temperature dependence of the
relaxation time was found to be close to an Arrhenius law [66],
and therefore we use this network liquid as representative of
the class of strong glass-formers.

The second model we study is the binary Lennard-Jones
mixture introduced in Refs. [67]. The model was originally
devised as a simple Lennard-Jones model for two-component
metallic glasses and has become a canonical system for
numerical studies of supercooled liquids [68]. Its relaxation
time grows in a super-Arrhenius manner, and so it is considered
as a good model for fragile liquids. Although comparing
kinetic fragilities between simulations and experiments is
not straightforward, the binary Lennard-Jones mixture has an
“intermediate” fragility, which suggests it is less fragile than
typical fragile glass-forming materials studied in experiments
such as for instance ortho-terphenyl [66,69].

The third model is also a canonical model for studies of the
glass transition. It is a binary mixture of soft spheres interacting
with a purely repulsive r~!2 potential introduced in Ref. [70].
Its behavior is in fact very similar to the one of the binary
Lennard-Jones potential, since this model also seems to display
an intermediate kinetic fragility.

The fourth model we study is a binary mixture of soft
repulsive particles interacting with a one-sided repulsive
harmonic potential. The model was introduced in Ref. [71]
as a model for wet foams, and its glass-forming properties
were studied in Refs. [72], where it was shown that, over a
broad regime of densities, this system actually behaves as a
quasi-hard-sphere system. Comparing the kinetic fragility of
hard spheres (whose glass transition is controlled by density)
to molecular liquids (controlled by temperature) is ambiguous
[72]. However, using the compressibility factor Z = P /(pT)
to build the analog of an Arrhenius plot for hard spheres [72]
suggests that hard spheres are actually characterized by a
rather large kinetic fragility. We take harmonic spheres as
being representative of fragile glass-forming materials.

Because these models have been studied extensively before,
we only provide limited details about our simulations in the
sections below, and we refer to the original publications for
more information. Our focus in this work was to analyze
how simulations in finite-size systems differ from the bulk
behavior, and whether the observed finite-size effects could be
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FIG. 5. Bulk relaxation time 7,(7) of the four model liquids
studied in this work using the representation of Fig. 2(b) appropriate
for detecting a mode-coupling algebraic divergence at temperature
T.. We vertically shift the systems by a time constant 7, for clarity,
and show as a dashed line the result of power-law fits with exponents
y =2.8, 2.4, 2.2, and 2.8 for the network liquid, Lennard-Jones
particles, and soft and harmonic spheres, respectively. The power-law
fit is obeyed over a broader range from bottom to top.

interpreted along the lines discussed in previous sections. As
a dynamical observable the behavior of the self-intermediate
scattering function, F;(q,?), is measured, and we determine
the alpha-relaxation time 7,(7") from the time decay of this
correlator to the value 1/e and a wave vector corresponding to
the first peak of static structure, as is usual [1]. Our central aim
is to measure 7,(7',N) for systems containing a finite number
of particles, N.

By construction, simulations are performed in a tempera-
ture regime which corresponds to the first four to five decades
of dynamical slowing down. Thus, this regime is typically
the one where predictions from the mode-coupling theory
are usually tested. Therefore, our simulations fall in the
temperature range where a crossover from mode-coupling to
activated dynamics might occur. In Fig. 5 we give evidence
that such a crossover seems to be present in the bulk dynamics
of the four liquids. For all liquids, we measure the temperature
dependence of the bulk relaxation time. We then fit its
temperature evolution to a power-law divergence, as in Eq. (6),
to estimate the location 7, of the mode-coupling singularity.
We present the data for the four liquids in Fig. 5 using the same
representation as in Fig. 2(b), where a power-law divergence
appears as a straight line. For all liquids, a power-law regime
is obtained for intermediate temperatures, although the time
window over which it applies depends on the particular system.
Unsurprisingly, we find that a power-law divergence is not
very pronounced for the network liquid which rapidly enters
an Arrhenius regime at low temperatures, while the harmonic
sphere system is the one for which the power law is the most
convincing. The Lennard-Jones and soft-sphere mixtures have
an intermediate behavior. Thus, we find that the degree to
which mode-coupling theory predictions apply (at least for
the bulk relaxation time) seems correlated with the Kinetic
fragility of the model. The same connection was found in the
KFA model in Sec. IV. We emphasize that a power-law fit to
the relaxation for moderately supercooled liquids is bound to
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yield a quantitative estimate of the value of T, but this does not
necessarily imply, as we shall see, that the long-time dynamics
is truly controlled by the mode-coupling physics [50].

B. Network liquid with Arrhenius behavior

We start our discussion with the results obtained for the
network liquid [66]. The model is an AB, binary mixture
designed to be a simple analog of silica, SiO,, forming a
connected assembly of tetrahedric structures. For this system,
we find that dynamics becomes slow when temperature
becomes smaller than 7 ~ 0.45, and we can follow finite-size
effects down to T = 0.29, where bulk dynamics has slowed
down by about four decades. Using a power-law fit of these
data, we obtain an exponent y ~ 2.8 and extract the location
of the mode-coupling temperature, 7, =~ 0.31. Since the
power law is obeyed over a limited temperature range, it
is relatively easy to access temperatures lower than 7, in
equilibrium conditions, as found also in a more realistic model
of silica [73]. The density of the system, p = 1.655, has been
adjusted to best reproduce the structure of silica obtained in
molecular dynamics simulations performed at density p =
2.37 g/A° [73].

For this system we performed simulations both using
a thermostat (in the NVT canonical ensemble [74]) and
without a thermostat after proper thermalization (in the
NVE microcanonical ensemble), because as discussed in
Refs. [75] thermally activated processes for systems evolving
with Newtonian (i.e., energy-conserving) dynamics might
induce dynamical correlations between particles when the heat
needed to cross a barrier locally is borrowed from neighboring
particles. We found no quantitative differences between the
two sets of simulations, and we have therefore merged the two
sets of simulations for the bulk data presented in Fig. 5.

The results corresponding to dynamical finite-size effects
are reported in Fig. 6, where both NVT and NVE simulations
are shown, yielding quite similar results. We use system sizes
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FIG. 6. System size dependence of relaxation time in the network
liquid where T, =~ 0.31. The dynamics slows down for smaller
systems, but the amplitude and range of the effect evolve weakly
with temperature.

PHYSICAL REVIEW E 86, 031502 (2012)

that are limited on the small-N side by the fact that the static
structure, as revealed by the pair correlation function g(r),
becomes sensitive to N and the network of tetrahedra does
not fit well the small simulation box. For large N, we easily
observe convergence to the bulk behavior for the relaxation
time as soon as N is larger than a few thousand particles. In
Fig. 6 we observe a small finite-size effect, since t,(7T,N)
reaches its bulk value from above; that is, small systems are
slower than larger ones. However, this effect is quite modest
and, more importantly, it does not seem to evolve very much
over the temperature range where slow, Arrhenius dynamics is
observed, i.e., T < 0.45. Therefore, for the network liquid, we
find no clear evidence that the length scale ¢rs(7) becomes
large at low temperatures. These results are consistent
with the view that, for systems showing an Arrhenius
behavior, relaxation remains “local” and that correlations
are rather weak and evolve very slowly with the temperature
[76].

Dynamic heterogeneity has not been studied in detail for
the present network liquid, but growing four-point dynamic
susceptibilities (but not dynamic length scales) have been
reported in numerical studies of silica [77,78]. A way to
reconcile these findings with our result is either that £gg(7T') is
not related to the dynamical correlation length or that dynamic
susceptibilities grow at low temperatures because the strength,
rather than the spatial extent, of dynamic correlations increase
at low 7', a point that deserves further study.

Contrary to what was found for the activated (and highly
cooperative) regime of the KFA model, the small dynamical
finite-size effect reported for the network liquid goes in
the opposite direction of making the dynamics slower for
smaller systems, which indicates that this finite-size effect
is not related to a competition between the system size
and the spatial extent of the relaxing “entities.” A possible
explanation is that, for small system sizes, the silica-like
network is somewhat frustrated by the periodic boundary
conditions, which could increase slightly the energy barrier
needed to form a defected tetrahedra, and thus slow down the
dynamics. In this view, dynamical finite-size effects would
be dominated by noncollective effects and, possibly, related
to a subtle change of the static structure, an issue worth
pursuing.

C. Binary Lennard-Jones mixture

We now turn to the case of the binary Lennard-Jones
mixture [67]. This model displays super-Arrhenius relaxation,
and it is a model for which several quantitative tests of the
scaling predictions of the mode-coupling theories have been
performed with some success [67], even though deviations
from the predictions can be observed at low temperatures
[75]. Additionally, growing dynamic length scales have been
reported for this system [79-83]. For all these reasons, one
may expect a more interesting temperature dependence of
finite-size effects for this model.

The results of our molecular dynamics simulations are
shown in Fig. 7. The simulations were performed in the
microcanonical ensemble only, the value of the total energy
being carefully controlled in each independent simulation
to maintain the temperature equal to the desired value and
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prevent spurious fluctuations in the dynamics. We present
data for the high-temperature liquid, 7 = 2.0, and below the
onset of glassy dynamics, T ~ 1.0, down to T = 0.42, which
lies below the fitted value of the mode-coupling temperature
T, ~ 0.435 [67].

We find that almost no dynamical finite-size effects are
present above and near the onset temperature for slow dynam-
ics, consistent with the idea that, in simple liquids, relaxation is
a fast local process. For 0.5 < T < 1.0, we find that finite-size
effects are present at small sizes and that the dynamics slows
down when N is small [9]. Remarkably, we find that this effect
becomes more pronounced both in amplitude and in range, sug-
gesting that the interplay between system size and structural
relaxation has a more collective nature than in the Arrhenius
liquid studied in Sec. V B. This suggests that a nontrivial
characteristic length scale ¢ps(7") grows when temperature
is decreased below the onset temperature of this model, in
agreement with previous work [15,16]. Repeating the empiri-
cal analysis performed recently in Ref. [16], we find similarly
that the typical length scale over which finite-size effects occur
grows by about 50% over the temperature range T = 0.42—1.0.
In contrast to previous work [15], however, we always find a
monotonic N dependence of 7,,, even at low temperatures. We
believe that the (relatively small) nonmonotonic size depen-
dence reported earlier [15] was due to statistical uncertainty
[84].

Another result obtained below 7 is that we do not find a
qualitative change in the size dependence of the relaxation
time and the bulk value is still reached from above by
increasing L for this low temperature. Therefore, contrary
to what has been found for the KFA model or predicted
on general grounds for activated relaxation, we do not find
any nonmonotonic behavior near or below 7.. We find this
result somewhat surprising and suggest several hypotheses
to account for these observations. First, it could be that the
mode-coupling crossover is absent or very weak in this case,
as in the network liquid studied above. This is however
at odds with previous work establishing the validity of the
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FIG. 7. System size dependence of relaxation time in a Lennard-
Jones liquid from the high-temperature liquid, 7 > 1.0, down to
below the mode-coupling temperature 7 = 0.42 < T, =~ 0.435.
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scaling predictions of mode-coupling theory for this system
at intermediate temperatures [67]. The second hypothesis
is that activated dynamics at low temperatures involves a
cooperativity length that has not yet grown very large, and
thus it cannot compete with the system size L before other,
more microscopic effects, also appear such that there is no
room for the general argument of Sec. II to apply. By this
argument we would conclude that much lower temperatures
should be studied to reveal a change in the nature of finite-size
effects in this model, which is at present beyond our numerical
capabilities. A possible interpretation is that static point-to-set
correlation length scales do not grow significantly in this
system over the temperature regime currently accessible to
simulations, or at least much less than dynamical correlation
length scales. See Refs. [27,85,86] for recent work on static
correlations in this system.

D. Soft spheres

In this section we study the binary system of soft spheres
introduced long ago in studies of the glass transition [70]. We
choose the particular model studied by several groups [25,70,
87,88], namely, a 50:50 mixture of soft spheres interacting
with an ! repulsion, with different species having different
sizes. We use a diameter ratio of 1.2 and adopt the same units
as in Ref. [25], where density p is fixed and temperature 7
decreased (although this is a matter of convenience for this
system since the static structure is uniquely controlled by
the combination I' = p7~'/4). It was shown that this model
displays in the supercooled regime increasing dynamic [88]
and static [26] length scales. We perform simulations in the
canonical NVT ensemble, using a Nosé-Poincaré thermostat
with inertia parameter Q = 5.0 [74].

A new technical difficulty for this system is that its glass-
forming ability is worse than the three other models studied in
this work. In particular, we found that crystallization intervenes
very easily when temperature is decreased, especially in
small systems. Thus, we had to carefully determine for
each independent sample whether or not it had crystallized
in the course of the simulation. We did so by measuring
several structural indicators, such as pressure, energy, and pair
correlation function, from which crystallization was obvious.
Therefore, in the data presented below, we only consider state
points where crystallization was found very infrequently. In
practice, we do not show data when crystallization occurred in
more than 30% of the samples.

A few of the remaining data are still a little ambiguous, as
we observe fluctuations of the potential energy that are large
and long-lived but do not correspond to an irreversible crys-
tallization of the system. This is reminiscent of the numerical
observations reported for another binary mixture [89]. For
these runs, dynamics is typically slower than the average, and
it is not clear whether these runs should be discarded (as being
affected by incomplete crystallization) or averaged together
with “normal” samples (as being characterized by some other
forms of local ordering). We checked that the main conclusions
reported below are not affected if we remove these very slow
samples.

For this system, the bulk data were fitted to a power-law
divergence, and the result of this fitting is shown in Fig. 5,
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FIG. 8. System size dependence of relaxation time in a soft
sphere mixture from the high-temperature liquid, 7 > 0.25, down
to the mode-coupling temperature (7, ~ 0.198). We only consider
state points where crystallization is very infrequent. The overall
temperature evolution is similar to the Lennard-Jones results in Fig. 7.

where we use y & 2.2 and T, ~ 0.198. We note that this value
is significantly smaller than the values (7, = 0.226 — 0.246)
quoted in the literature [25,28,87,90], which stem from very
early work [87] and presumably overestimated the mode-
coupling temperature by a very large amount.

We present our results for finite-size effects in the soft-
sphere mixture in Fig. 8. As for the Lennard-Jones model,
we find that dynamics is rather insensitive to system sizes in
the high-temperature liquid but becomes size dependent below
the onset of glassy dynamics, which we locate near 7 & (.25.
The size dependence also extends to larger sizes when T
decreases, signalling again the growth of the characteristic
length €ps(7T') with decreasing 7. Unfortunately, due to the
crystallization issue mentioned above, it is not easy to follow
the size dependence to very low temperatures over a broad
range of system sizes. The limited amount of data shown in
Fig. 8 seems to suggest that soft spheres have a behavior similar
to the one observed in the Lennard-Jones system. In particular,
the size dependence for 7 = 0.2, near the mode-coupling
temperature, does not show sign of a qualitatively different
behavior as compared to higher temperatures. We were not
able to study this system at even lower temperatures, because
of crystallization issues. We suspect in particular that the very
strong finite-size effects reported in Ref. [10] might be affected
by crystallization as well, since the size dependence reported
in Fig. 8 is more modest.

E. Harmonic spheres

The final model we consider is a 50:50 binary mixture of
harmonic spheres with diameter ratio of 1.4, which we study
using molecular dynamics simulations in the microcanonical
ensemble. We use the same parameters as in Ref. [31] and work
at constant density p = 0.675 and use temperature as a control
parameter. For this density, the onset of glassy dynamics is near
T =~ 13 and the mode-coupling temperature used in Fig. 5
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FIG. 9. System size dependence of relaxation time in a harmonic
sphere mixture from the high-temperature liquid, 7 > 13, down
to the mode-coupling temperature 7. &~ 5.2. Note the qualitative
change of size dependence near the mode-coupling crossover and
the nonmonotonic size dependence at low T'.

is T, &~ 5.2 [31,72]. In contrast with the soft-sphere model
studied in the previous section we find that crystallization
is not an issue for systems as small as N = 108 over the
entire range of temperatures. Since the range of the potential
is equal to the particle diameter (as for hard spheres), we can
in principle study even smaller system sizes. We have found
that this is only possible for large enough temperatures, with
systems with N = 32 becoming very heterogeneous at low
temperatures. Therefore, we shall only display data for those
state points where stability is never an issue.

In Fig. 9 we present our results for the finite-size de-
pendence of the relaxation time in harmonic spheres across
the mode-coupling crossover. For high and moderately low
temperatures, we find results that are qualitatively very similar
to the ones discussed in the previous sections for soft and
Lennard-Jones particles, with no size dependence above
the onset and a slowing down at small sizes between the
onset and mode-coupling temperatures which becomes more
pronounced if T is lowered.

Strikingly, we find that near and below the mode-coupling
temperature the size dependence changes its qualitative form
to become nearly size independent at 7 = 5.0, and even
nonmonotonic with N at the lowest temperature we have been
able to study, 7 = 4.7. For this temperature, we note that the
maximum of t,,(N) occurs for a system size of about N = 600,
where the structure is very stable and very close to that found
in the bulk system. Additionally, these data have been averaged
over a large number of realizations and very long simulation
times to reduce the statistical noise, and so the effect reported
in Fig. 9 is physical.

The data presented in Fig. 9 are qualitatively similar
to the one obtained for the KFA model at intermediate
K [see Fig. 4(b)] and presumably have a similar physical
origin. A natural interpretation of this nonmonotonic behavior
comes from the fact that it occurs very close to the fitted
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mode-coupling temperature, 7, &~ 5.2, where deviations from
mode-coupling predictions are already present (see Fig. 5).
Therefore, we attribute this change of behavior to a change
of physical mechanism controlling the relaxation from mode-
coupling to activated dynamics.

From the behavior shown in Fig. 9 we conclude also that
mode-coupling and activated dynamics interact and compete
to produce an apparently nonmonotonic temperature evolution
of €ps(T), having a maximum near 7 &~ 6 and a minimum
near T ~ 5 (see Fig. 9). It is remarkable that this qualitative
evolution with temperature of £rs(7) follows very closely the
behavior reported for dynamic profiles near an amorphous
wall in Ref. [31] for the same system. Thus, we think that
the bulk data reported in Fig. 9 provide both an independent
confirmation and a natural physical interpretation of the
surprising nonmonotonic dependence of dynamic length scales
found near T, in this system [31].

Finally, for the system of harmonic spheres, we have
additionally studied the dynamics using Monte Carlo simu-
lations, using the same implementation as in Ref. [91]. For the
present system we found that Monte Carlo dynamics is slightly
less efficient than molecular dynamics, so that getting data
comparable to those shown in Fig. 9 is challenging. Instead,
we performed very long simulations for only a few selected
state points (N, T'), which confirmed that, also for Monte Carlo
dynamics, the size dependence of the relaxation time becomes
nonmonotonic at low temperature, 7 = 4.7, and nearly size
independent at T =5, in agreement with Fig. 9. Therefore,
this effect is not due to the specific type of dynamics chosen
to perform our study. This also confirms that hydrodynamic
effects [41,42] play very little role in the results presented in
this work.

VI. SUMMARY AND CONCLUSION

To conclude this article, we wish to summarize the main
results obtained in this work. First, we discussed from a
theoretical point of view the possible effects and the interest
in using small sizes to study the dynamics of supercooled
liquids. We presented the following arguments, which depend
on the precise mechanism envisioned for structural relaxation
in systems approaching the glass transition.

(1) Only minor finite-size effects are expected for strong
glass-formers whose relaxation time follows an Arrhenius
law because the corresponding activation energy likely corre-
sponds to a “local” excitation. Thus, the length £gs should not
grow with decreasing temperature and the relaxation time scale
for small system sizes should be dominated by nonuniversal
effects affecting the local energy barrier for relaxation.

(2) For cooperative, thermally activated processes, dynam-
ics becomes faster if the system size decreases because
cooperative events then involve a smaller number of particles,
thus reducing the barrier for relaxation. In this case the
growth of fgs should track the one of the length scale
measuring cooperativity (e.g., the point-to-set length within
RFOT theory).

(3) Mode-coupling relaxation becomes slower in smaller
systems because spatially extended, unstable relaxation modes
become stable in small systems [40]. This trend holds
until activated dynamics takes over when all unstable
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modes have disappeared, and presumably makes relaxation
faster as described in item 2. Overall, the size dependence
can thus be nonmonotonic at intermediate temperatures.
Moreover, this can lead to a quite unusual behavior of
Lrs(T) that would track that of the dynamical correlation
length.

(4) For diffusing point defects, dynamics becomes slower
when system size decreases because another relaxation chan-
nel must be used when no defects are present in small systems.
If cooperative activation occurs, then the dynamics may
accelerate at small sizes, making the overall size dependence
nonmonotonic. In this case £ps(T) is expected to be related in
a power-law way to the dynamical correlation length.

(5) For kinetically constrained models, defects are the
only channel available. Thus, dynamics becomes nonergodic
in samples containing no defects, which can be seen as
an extreme slowing down. By discarding these instances,
one biases the statistical weight toward configurations with
larger concentration of defects, and as a result the measured
relaxation time decreases when the system size decreases (the
effective defect concentration increases).

We have also introduced a lattice glass model, the Kac-
Fredrickson-Andersen model, for which the distance to the
mean-field (or mode-coupling-like) limit can be controlled
by tuning the range K of the spin connectivity. We have
provided numerical and analytical evidence that this approach
successfully generates an avoided mode-coupling singularity,
in analogy with real supercooled liquids. The detailed analysis
of the dynamical finite-size effects of this model agrees with
the general theoretical predictions. For K = 1, we obtain a
monotonic growth of the relaxation time with system size,
explained by mechanism 5. However, for intermediate values
of K, the system exhibits an MCT crossover and the behavior
follows a nonmonotonic size dependence. Although here the
reason for nonmonotonicity is not that small systems have
activated dynamics, the study of the KFA model is a concrete
example for which one finds that the interplay between two
competing relaxation mechanisms can lead, for intermediate
K values, to a surprising nonmonotonic temperature evolution
of the characteristic length €ps(T).

Subsequently, we have presented the results of simulations
of four models for supercooled liquids. Mechanism 1 gives
a good description of the size dependence for the strong,
network-forming liquid. The effect of the mode-coupling
crossover described by mechanism 3 is observed in a model of
quasihard spheres, while the behavior of the Lennard-Jones
and soft-spheres models appeared somewhat intermediate
between mechanisms 1 and 3 and was harder to interpret.

Overall, the simulation of fragile systems seem to confirm
the RFOT result of Ref. [40], recently discovered in simulation
of model systems [31], that dynamic and static length scales
are largely decoupled in the mode-coupling regime and have
distinct temperature dependencies, with static point-to-set
length scales starting to show a significant growth at tempera-
tures near the mode-coupling crossover, while dynamic length
scales grow rapidly even at higher temperatures. A natural
interpretation of the nonmonotonic size dependence found in
Fig. 9 is that both types of mechanisms compete near the
mode-coupling temperature. This competition has also been
invoked to interpret the nonmonotonic behavior of dynamic
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profiles near an amorphous wall in Ref. [31]. We have shown
that a similar nonmonotonic temperature evolution of £gs(7)
is obtained in the same harmonic-sphere model.

These results contribute to a clarification of the nature
of the mode-coupling crossover and show that the strength
of the mode-coupling relaxation mechanism depends on the
specific model and is very weak in glass-formers with low
and intermediate fragility. It would be desirable to understand
better why the mode-coupling crossover is more pronounced
in harmonic (and presumably hard) spheres than in other
models, in order to observe similar qualitative changes in
the mechanisms responsible for structural relaxation for other
systems and in experimental work. Another issue worth
exploring is the idea that using finite sizes may perturb
the static structure of the liquid at the level of high-
order correlation functions, which in turn could affect the
dynamics.
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APPENDIX: MORE RESULTS ON THE KFA MODEL

1. Relaxation time

In this section we discuss the relaxation time of the KFA
model, showing the absence of a finite-temperature dynamic
singularity for K < oo.

The relaxation mechanism for the square lattice K = 1
has been discussed in Ref. [59]. It is explained in terms
of the diffusion of macro-vacancies, i.e., extended defects.
The relaxation time scale is given by the time it takes for
macro-vacancies to diffuse over an area proportional to the
inverse of their density. Since the diffusion coefficient of a
macro-vacancy simply leads to subleading corrections, one
finds that the relaxation time scale is given by the inverse of
the probability of having one macro-vacancy around a given
site. This reads [59]

o0
P= ]_[[1 — (A=) ~e e~ et/ o g (AD)
=1

This argument shows that the relaxation time scale cannot be
longer than 1/ P, which is a finite number at all 7. Therefore,
the K = 1 model has a relaxation time that only diverges at
T = 0 and hence has no finite-temperature singularity.

In the opposite limit when K = oo i.e. on the decorated
Bethe lattice the relaxation time scales diverges at a finite 7,
and we expect an MCT-like behavior analogous to the one
occurring for the pure Bethe lattice where the probability
for a site to be unable to relax satisfies the self-consistent
relation [58]

P=(1-0o[P*+3(1- PP, (A2)
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which shows that P(T < T,) = P(T.) + a/T — T, and cor-
responds to the well-known ‘“square root” singularity also
found in the context of mode-coupling theory [34] and controls
for instance the temperature dependence of the long-time limit
of the persistence function in the glass phase.

For intermediate K, one can readily generalize the K = 1
argument on the probability. The only variant is that instead
of requiring one vacancy per side of an expanding square
of size £ [59], one now requires at least K consecutive up
spins on each side of the square. This procedure generates the
macro-vacancies of the KFA model. The probability of such a
“K macro-vacancy” reads

P(K) =& [T —a = c5)kp

(=K

~ X exp(—KcK) > 0. (A3)
From this argument, we conclude therefore that the KFA model
at finite K has no finite-7" singularity, as for K = 1, but since
the above probability P(K) increases rapidly with K, large K
values should produce results that are closer to the mean-field
Bethe lattice limit obtained at K = oo. The data shown in
Fig. 2 are clearly consistent with this expectation, and confirm
also that models with larger K have a larger kinetic fragility,
i.e., a sharper temperature dependence.

103 E 1 T T T
102

101 E

10°

103 F

10% F

100 102 10* 108 108

FIG. 10. Top: Temperature evolution of the peak of x4 for the
KFA model in an Arrhenius plot. Bottom: Dynamic scaling between
peak of the susceptibility and relaxation time. Power laws, Eq. (A6),
with exponents A; = 3 and A, = 1.45 are shown for comparison.
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2. Four-point dynamic susceptibility

In this section we discuss the behavior of the four-point
function in the KFA model and in particular its behavior across
the mode-coupling crossover.

We define the four-point susceptibility y4(¢) in terms of the
spontaneous fluctuations of the persistence function [37,64]:

xa(t) = N[(p2(1)) — (p(1))*], (A4)

where p(¢) is the instantaneous value of the persistence in a
system composed of N sites, such that (p(¢)) = P(¢). The time
evolution of x4(¢) is as found in many other systems. It has
a peak whose height x; increases when T decreases, and its
position in time shifts to larger times, essentially tracking the
alpha-relaxation time. As suggested in previous work [48], the
approach to this peak obeys either a single power for K = 1 or
is composed of two distinct power laws in the mode-coupling
regime, K > 2.

We follow the temperature evolution of the peak of
the dynamic susceptibility, x;(7T), in Fig. 10. We use two
representations. In Fig. 10(a), we use an Arrhenius plot to
emphasize the similarity of behavior of x; with the behavior
of 7,(T). The crossover nature of these curves is in particular
very clear, with a near power-law divergence for K = 24, or
a much slower growth for K = 1. Interestingly, we again find
that x; has a mixed behavior for intermediate K values, clearly
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crossing over from mode-coupling to cooperative behavior
near 7.

This crossover becomes more striking when representing
x4 as a function of 7,(T') using T as a running parameter, as
frequently used in studies of glass-forming systems [37,83]
[see Fig. 10(b)]. In this representation, both physical regimes
are well described by a power-law “dynamic scaling”

X~ (A5)
where the dynamic exponent A for a given K takes two values,
AK=00)= A A 145, AK=1)=A,~3. (A6)

For intermediate K values, the data exhibit a clear crossover
from A, to A; as 1, increases; see for instance the data for
K = 4in Fig. 10(b).

It is interesting to note that the mode-coupling crossover,
in this simple model at least, is not characterized by a
nonmonotonic behavior of y4(¢), but rather by a change of
its temperature dependence. Although this reflects nicely the
change of physical mechanism for structural relaxation near
T, as shown in Fig. 10, the behavior of x4 is not as striking as
the nonmonotonic size dependence of t,(L,T) in Fig. 4, and it
shows no sign of the nonmonotonic temperature dependence
found above for £rs(7T') or the nonmonotonic dynamic profiles
reported near amorphous walls in Ref. [31].
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