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Amorphous to amorphous transition in particle rafts
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Space-filling assemblies of athermal hydrophobic particles floating at an air-water interface, called particle rafts,
are shown to undergo an unusual phase transition between two amorphous states, i.e., a low density “less-rigid”
state and a high density “more-rigid” state, as a function of particulate number density (�). The former is shown
to be a capillary bridged solid and the latter is shown to be a frictionally coupled one. Simultaneous studies
involving direct imaging as well as measuring its mechanical response to longitudinal and shear stresses show
that the transition is marked by a subtle structural anomaly and a weakening of the shear response. The structural
anomaly is identified from the variation of the mean coordination number, mean area of the Voronoi cells, and
spatial profile of the displacement field with �. The weakened shear response is related to local plastic instabilities
caused by the depinning of the contact line of the underlying fluid on the rough surfaces of the particles.
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I. INTRODUCTION

In crystalline solids in thermodynamic equilibrium, the
onset of rigidity is a direct consequence of the appearance
of long-range positional order and the broken continuous
translational symmetry. No such overarching principles are
known to govern amorphous solids which are frequently out
of equilibrium. For example, the onset of rigidity in athermal
granular systems has been a topic of great recent interest [1].
Such studies explore the transition of a system from a state
of zero rigidity (the unjammed state) to that of a finite one
(the jammed state) [2–5]. But only a few have explored further
phase transitions that may exist within the rigid state of the
system [6]. In this paper we study the mechanical response of a
rigid but amorphous particle raft to compressive (longitudinal)
and shear (transverse) stresses for varying particulate number
density (�). These rafts are space-filling assemblies of ather-
mal hydrophobic particles floating at an air-water interface and
have properties common to elastic [7] and granular [8] solids.
Their mechanical response and structural reorganization reveal
anomalies that are suggestive of a phase transition between two
amorphous states, i.e., a low-density “less-rigid” state and a
high-density “more-rigid” state.

II. EXPERIMENTAL DETAILS

A. Particle raft: A rigid and athermal model system

Surface tension assists hydrophobic particles which are
denser than water to float on it. They deform the otherwise flat
liquid surface [9,10] under gravity, thereby generating long-
range interparticle attraction, and form particulate-clusters
[11,12]. The individual clusters show solidlike properties, i.e.,
they retain their shape and have a finite rigidity. However, for
small areal coverage, these clusters are sparsely distributed.
Hence, at length scales comparable to the system size the
collective mechanical property of the floating clusters is
governed by the intervening liquid. Upon compression, i.e.,
increasing the areal coverage, the individual clusters fuse to
form a contiguous system spanning structure. The short-range
interparticle interactions depend on the surface roughness
and wettability of the particles and are either attractive or

repulsive [12,13]. The polydispersity of the particles makes
the raft amorphous.

B. Experimental protocol to prepare the particle raft
and its structural characterization

The following experimental protocol is used to prepare the
space-filling structure of the raft.

(i) The hydrophobic (coated with FluoroPel PFC M1104V-
FS from Cytonix LLC) silica particles of average diameter (2a)
are initially sprinkled on the air-water interface in a Langmuir
trough. These particles form disjoint particulate clusters [see
Fig. 1(a)]. This state of the system is defined as a “patchy” state.
For data presented in this paper, unless otherwise mentioned,
2a = 0.5 mm (polydispersity is 15% and density of silica is
2500 Kg/m3).

(ii) These clusters are then brought within the interaction
distance, i.e., capillary length (Lc ∼ 2 mm) [11,14], by moving
the motorized Teflon barriers of the trough inwards. This
constitutes the first compression cycle (c1). As a result
of this compression the disjoint clusters coalesce to form
a system-spanning quasi-two-dimensional raft [7,8,13]. The
inward motion of the Teflon barriers is stopped just before the
out-of-plane deformations (wrinkling) [7] of the raft appear.
The resulting homogeneous “compressed” state of the particle
raft is shown in Fig. 1(b).

(iii) The barriers are then moved outward in the first
expansion cycle (e1) until they detach from the raft (Sup-
plemental Material [15]). Figure 1(c) shows the micrograph of
the resulting relaxed, yet rigid, state of the raft. Further cycles
of compression and expansion transform the system between
the “compressed” and the “relaxed” states.

The number density of the particles (�) between the
barriers defined as � = Nπa2/(LxLy), where Lx and Ly

(=140 mm) are the length and width of the raft, respectively,
is chosen to be the relevant control parameter. This is guided
by the literature on the jamming transition [1,2]. The reported
measurements are made in a range below the density where
folds, i.e., out-of-plane distortions [7], occur (Supplemental
Material [15]). The lack of distinct features beyond the third
peak in the radial density pair correlation function, g(r), in
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FIG. 1. Micrographs of hydrophobized silica particles at the air-
water interface in the form of (a) disjoint clusters (patchy state) and
(b) a homogeneous “compressed” state of the raft in presence and
(c) absence (“relaxed” state) of longitudinal stress, with scale bars of
10 mm. (d) The left (right) panel showing the plot of the radial density
pair correlation function, g(r), of the “relaxed” (“compressed”) state
of the system.

Fig. 1(d), illustrates that the raft remains amorphous in both
the compressed [see Fig. 1(b)] and the relaxed [see Fig. 1(c)]
states. The nonzero values of g(r) for r/2a < 1 are due to
the polydispersity of the particles and the possible numerical
errors in detecting their coordinates.

C. Experimental setup

The schematic of the experimental setup is shown in
Fig. 2. The system is compressed (or expanded) by moving
two motorized Teflon barriers along x in steps of 0.05 mm.
The system is sheared sinusoidally in the x direction with
a hydrophobized microscope cover-slip attached to a piezo
stage (PI-517.3CL) with an amplitude (u0

x) = 0.05 mm and
a frequency (ν) = 20 Hz. A stainless-steel cantilever and
a parallel plate capacitor are used to measure shear (σxy)
and longitudinal (σxx) stresses, respectively. Details of the
experimental methods and the parameters used for calculating
stresses are described in the Appendix. Additionally the
system is imaged under no shear for each position of the
barriers. These images are then analyzed to obtain the mean
coordination number (Z) and to generate the Voronoi diagram
from which mean cell area (A) is calculated.

D. Measurement of mechanical response

The mechanical response of this system to external stresses
(longitudinal and shear) is described in this paper in terms
of spatially averaged effective longitudinal and shear moduli
(KA and G, respectively) that are defined as KA = δσxx/δuxx

and G = σxy/uxy , where uxy = u0
x/D is the shear strain,

D = 60 mm is the distance of the cantilever from the shear-
launching microscope cover-slip, and δuxx = −δLx/L

0
x =

δ�/�0 is the incremental compressive strain, where L0
x

is the length of the raft in the relaxed (compressed) state
for a compression (expansion) run and �0 is the density
corresponding to L0

x . Both σxx and σxy are measured with
an instrumental resolution of 1 mPa. The noise observed in
the data is intrinsic to the system and is a signature of the
finite size effect of the system. Thus the longitudinal modulus
(KA) is calculated by numerically differentiating smoothed
(using a polynomial fit) σxx with respect to �. We note that
the elastic moduli are used here as an intuitive measure of the
stress-transmission defined above. A detailed discussion on
elastic constants of athermal amorphous materials is given in
Ref. [16].

Figures 3(a) and 3(b) show the variation of σxx and
σxy with � for c1 (open symbols) and e1 (filled symbols).
The first compression cycle (c1) starts from the patchy state
[see Fig. 1(a)] where both σxx and σxy are zero, while the
expansion cycle (e1) starts from the compressed state [see
Fig. 1(c)]. During the first compression, system-size spanning
stress-bearing networks form around � = 0.74, marked by
rapidly growing longitudinal and shear stresses. However,
during the subsequent expansion cycle towards the relaxed
state [� ∼ 0.69, as in Fig. 1(c)], both σxx and σxy remain
finite.

For the first compression onwards the observed variation of
the stresses separates into two regions: region I for � < 0.74,
where σxy decreases, and region II for � > 0.74, where σxy

increases rapidly with �, whereas σxx increases monotonically
and nonlinearly with � in both regions. The variations in the
stress transmission characteristics are illustrated through the
computed KA and G, shown in Figs. 4(a) and 4(b), respectively.
The ratio, KA/G, shows a pronounced but inhomogeneously
jagged cusp around � = 0.74 [see Fig. 4(c)] [17]. The
transition region is broad and shown as a shaded region in
the figures. The extent of decrease of σxy in region I decreases
on further cycling. This can be attributed to the athermal nature
of the particle rafts and is discussed in Sec. III B. Within the
experimental errors, we see no specific trend in the value of �

where the transition happens with particle size. The value of
� at the transition, averaged over different particle sizes and
many experimental realizations of each, is 0.64 ± 0.07.

E. Structural rearrangement

The displacement field associated with the particles in
response to the barrier movement is calculated by digitally
cross-correlating an image corresponding to a specific � to a
later one obtained after displacing the barriers by 0.25 mm.
The details of computing the displacement field are given
in Ref. [18]. The right panel of Fig. 5 shows the typical
displacement field during the first expansion cycle. The field
is inhomogeneous and exhibits a large number of complex
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FIG. 2. (Color online) Experimental setup: hydrophobized microscope cover-slip attached to a piezo stage oscillating along x producing
a sinusoidal shear deformation. The cantilever with an attached microscope cover-slip, placed along y at a distance (D = 60) mm away from
the piezo stage measures the shear stress (σxy). A parallel-plate capacitor, marked as the force sensor, is used to measure the longitudinal
stress (σxx).

cellular features for � < 0.74. This is reflected in the broad
distribution of the probability distribution function, P (θ ), of
the argument (θ ) associated with the displacement vectors
(�s), i.e., θ = tan−1(sy/sx) [19] shown in the left panel of
Fig. 5. However, for � > 0.74 the field becomes homogeneous
and P (θ ) narrows considerably. The spatial resolution of the
above imaging method is 0.05 mm and it limits us from

calculating the displacement field associated with the shear
deformation.

The inhomogeneity of the displacement field at low den-
sities (� < 0.74) arises from mechanical instabilities which
can be interpreted as plastic events at the scale of the particle
size (Supplemental Material [15] and Fig. 6). In order to study
the plasticity associated with the motion of the particles, they
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FIG. 3. (Color online) Variation of longitudinal stress (σxx) and
shear stress (σxy) plotted as a function of � in (a) and (b), respectively,
for c1 (open symbols) and e1 (filled symbols) cycles. The arrows
in (a) show the direction in which � changes. The region over
which σxy shows a softening is marked as region I. In region II,
σxy increases rapidly. The different states of the system, i.e., patchy,
“compressed,” and “relaxed,” are marked in the figure. The transition
region separating I and II is shaded.

are individually tracked. Representative particle displacements
(�i) measured from the relaxed state are plotted as a function
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FIG. 4. (Color online) The variation of (a) longitudinal modulus
(KA) and (b) shear modulus (G) and (c) the ratio KA/G as a
function of � for the first expansion cycle. The longitudinal modulus
(KA) is calculated by numerically differentiating smoothed (using a
polynomial fit) σxx with respect to �.
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FIG. 5. Displacement field of the particles and the probability
distribution of angles P (θ ) associated with the displacement vector
(�s) measured during the first expansion cycle, shown in the right and
left panel, respectively. Here θ = tan−1( sy

sx
). For values of � < 0.74

the displacement field is inhomogeneous and exhibits a large number
of complex cellular features (right panel). This is reflected in the broad
distribution of P (θ ) (left panel). However, for values of � > 0.74, the
displacement field becomes spatially correlated over large distances
and P (θ ) narrows considerably. The arrow indicates the progressive
sequence of �; i.e, the system moves from a state of high density,
i.e., � = 0.77, to a state of low density, i.e., � = 0.69.

of σxx in Fig. 6(a) for the second compression (c2) cycle. The
jaggedness of the graph, i.e., sudden jumps in �i , is associated
with plasticity. A measure of the total number of plastic
events associated with the stress cycling is obtained from the
hysteresis of the cumulative strain parameter (λ), = ∑

�i/L
0
x ,

where the summation is carried out over all the particles.
Figure 6(b) shows the variation of λ with σxx for successive
compression (open symbols) and expansion (filled symbols)
cycles.

The images of the raft at various � are used to fur-
ther explore possible structural signatures of the transition.
Figure 7(a) shows an increase in the mean coordination number
Z [=N

∫ 2a+ε

0 2πlg(l)dl], where ε is chosen to match the
first peak in g(r) as a function of �. The nonzero value of
ε suggests that the particles are not in mechanical contacts
and is a measure of short-range effective repulsion [13]. The
corresponding variation of the Voronoi cell area A normalized
with the particle area (πa2), an alternative measure of the local
structure and compactivity [20], is plotted in Fig. 7(b). Both Z
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FIG. 6. (Color online) (a) Typical displacement curves of a few
particles (�i), measured from its position in the “relaxed” state as
a function of σxx . For visual clarity the curves are shifted vertically.
The corresponding scale bar of the displacement is shown in the
figure. The data are plotted for a compression cycle. (b) The variation
of the cumulative strain (λ = ∑

�i/L
0
x , where the summation is

over all the particles) with σxx for successive compression (open
symbols) and expansion (filled symbols) cycles. The uncertainty in
the measurement of �i and λ is shown by the accompanying band.

and 〈A〉/πa2 vary linearly with � in region I, but however start
to deviate from the initial slope (shown by the extrapolated
dotted line) in the transition region. This suggests that the
measured weakening of the shear modulus is accompanied
by structural reorganizations at the length scale of nearest
neighbors throughout the system.

III. DISCUSSION OF RESULTS

The choice of an order parameter in a disordered system
is usually not unique and is often subjective [21]. In our
experiments we find the mean coordination number Z is a
sensitive parameter to describe the transition. The dependence
of KA and G on Z is shown in Figs. 8(a) and 8(b), respectively,
for e1 and c2. The system exhibits two terminal states, (i) a less-
rigid state (KA ∼ 20 Pa and G∼ 10 Pa) and (ii) a more-rigid
state (KA ∼ 2000 Pa and G∼ 200 Pa). The transition from one
state to the other is marked by a decrease in G around Z ∼ 3.6
[22], although KA changes monotonically with increasing Z.
Hence, the anomaly observed in the variation of the shear
compliance, i.e., 1/G, is reminiscent of the behavior of the
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FIG. 7. (Color online) The variation of (a) the mean coordination
number Z and (b) the mean Voronoi cell area A normalized with
the particle’s area (πa2) as a function of �. The solid lines show
their linear variation in region I. The dotted lines which are a linear
extrapolation of initial variation highlight the later deviation of the
graphs. The data presented here are for e1.

magnetic susceptibility at a spin glass transition in disordered
magnets [23].

The cusp in KA/G [see Fig. 4(c)] is a robust feature of this
transition. This is a signature of the difference in the density
dependence of KA and G, reminiscent of, but distinct from, the
power-law divergence observed in simulations of the jamming
transition in frictionless granular materials [1]. However, one
must emphasize that the phenomenology observed here is
far from the original definition of athermal jamming for
which only hard core interaction is considered and where
the transition is between rigid and nonrigid states. In the
conventional sense the relaxed state of the system is already
in a jammed state. The observations should be viewed as
a transition between two rigid states whose differences are
discussed below.

A. Microscopic mechanism associated with the transition

In order to understand the microscopic mechanism asso-
ciated with the transition, we investigated the dependence
of G on the particle size [see inset of Fig. 8(b)]. For the
less-rigid state (filled triangles), G ∝ a−1. This is consistent
with a capillary bridging mechanism (G ∼ γ /a, where γ is
the surface tension of the liquid) through the pinned contact
lines of the liquid on the particles [7,13]. In the more-rigid state
the contact friction dominates the interparticle interaction. The
measured shear modulus (G) scales with the number density
of contacts, which is proportional to the number density of
particles, i.e., G ∝ N/(LxLy) ∼ �/a2. It assumes that the
roughness scale is independent of the particle size. Since this
happens over a narrow range of �, one obtains G ∝ a−2 as
in conventional elasticity in a quasi-two-dimensional system
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FIG. 8. (Color online) Variation of (a) KA and (b) G as a function
of Z. The filled symbols correspond to e1 while the open ones
correspond to c2. The shaded regions indicate the spread in the data.
The “less-rigid” state [schematically shown as a capillary bridged
interaction in (a)] and “more-rigid” state [schematically shown as a
friction dominated interaction in (a)] are marked in the figure. The
inverted cusp in G vs Z corresponds to the slipping of the contact line
[schematically shown in (b) with a greater width of a sliding contact
line]. The inset of (b) shows the variation of G of the less-rigid
(triangles) and more-rigid (square) states of the raft as a function of
particle diameter (2a). The solid lines passing through the data show
a−1 and a−2 variations of G for the less-rigid and more-rigid states,
respectively.

[24]. We hence conclude that regions I and II represent a
capillary bridged solid and a frictional solid, respectively.

B. Time dependent effects and stress cycling in the particle raft

The structural relaxation time of the particle raft τ =
12πηa3/mv2 ∼ 1000 s, where m = 0.2 μg and v = 50 μm/s
are the mass and velocity of a single particle, respectively,
and η = 1 mPa s is the viscosity of the liquid. In calculating
the relaxation time, we assume that the effective temperature
of the system (Teff) is related to the kinetic energy of the
particle, i.e., Teff = mv2/2KB , where KB is the Boltzmann’s
constant. The system thus takes a long time to reach its
equilibrium state. This would mean that the system would
typically find itself in a kinetically arrested state and would
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FIG. 9. (a) Frequency dependence of G measured at � = 0.77.
(b) The time dependence (creep effect) of σxy shown for different �.

show a dependence on the history of the paths via which a
given state of the system is reached. Indeed, measurements
above 1 mHz probe a frequency-dependent rigidity of the
material as shown in Fig. 9(a) for � = 0.77. Moreover, creep
effects (time dependence) in σxy are more pronounced in
region II than in region I, as shown in Fig. 9(b). Interestingly,
the stress allows the more-rigid frictional solid to explore
various metastable states and hence the system shows a marked
“creep”, i.e. a temporal variation, in σxy . This is absent for
the less-rigid capillary solid, suggesting that it is closer to
a deeper metastable minimum. Strong history dependence
is also seen in the variation of σxx and σxy measured for
subsequent compression and expansion cycles which broadly
follow the trend (see Fig. 3) but with greatly reduced hysteresis
(see Fig. 10: the data shown in the figure is for particles
whose diameter is 1 mm), analogous to residual densification
observed in amorphous materials [25].

IV. CONCLUSION

We have shown that a rigid particle raft can undergo a phase
transition from a less-rigid low density state to a more-rigid
high density state as a function of particulate number density.
The transition is marked by a weakening of the shear modulus.
The measured shear modulus which distinguishes the two
states of the system, i.e., less-rigid and more-rigid, arises from
the restoring force of pinned contact lines in the former case
and from particle contacts through a frictional coupling in the
latter. The weakening of the shear modulus observed in the
crossover region is thus attributable to a reduction of restoring
force arising from plastic events caused by the mechanical
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0.001

FIG. 10. (Color online) Variation of σxx and σxy for various
compression (open symbols) and expansion (filled symbols) cycles
as a function of � for particles of diameter 1 mm. The sequences of
expansion and compression are as follows: first compression (data are
not shown for reasons discussed in the main text), first expansion (e1:
filled triangles), second compression (c2: open triangles), second
expansion (e2: filled circles), third compression (c3: open circles),
third expansion (e3: filled stars), and fourth compression (c4: open
stars). The repeated compression-expansion cycles result in annealing
of the raft and thus later cycles show a reduced but finite hysteresis.

instabilities and the associated depinning of the contact lines
[26,27]. The paper shows there exists a transition from a
less-rigid solid to a relatively more-rigid one in the particle
rafts under compression. Given that the long-range interaction
between the particles is attractive, the system can be thought
of as a glass. We classify the transition as a deep jamming [6]
phenomenon observed in an attractive glass system. This is
suggestive and further study needs to be done to provide a
rigorous classification of the transition [28].

Although the results presented in the present paper are
specific to particle rafts, the weakening of the shear response
and local reorganization seen in the present experiment have
also been observed in network glasses [29,30]. We hope that
the present experiment will provide some insight into the

complex phenomenon of pressure induced phase transitions
in amorphous solids [25,31–35].
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APPENDIX: EXPERIMENTAL SETUP

The schematic of the experimental setup is shown in Fig. 2.
Hydrophobic silica particles are sprinkled on the air-water
interface in a Langmuir trough (300 × 145 × 25 mm) made
of Teflon. These particles coalesce and form disjoint (patchy)
clusters. The two motorized Teflon barriers of the trough are
used to fuse these clusters into a homogeneous compressed or
relaxed state by moving the barriers inward or outward in the
x direction, respectively. The system is illuminated uniformly
from the bottom using an LCD monitor through a glass window
sealed in the trough and a camera above records the image in
the x-y plane at each barrier step (=0.05 mm). The system
is sheared in the x direction by moving a hydrophobic cover-
slip (60 × 24 × 0.15 mm) sinusoidally ν,ux = u0

xcos(2πνt),
where u0

x = 0.05 mm and frequency ν = 20 Hz, connected
to a three-axis piezo stage (PI-517.3CL). A stainless steel
cantilever is kept at D = 60 mm in the y direction from
the shear launching cover-slip as marked by (i) and shown
at the left-bottom of Fig. 2 with the dimensions mentioned.
The hydrophobic cover-slips attached to the piezo stage and
the cantilever make contact with the particles at the air-water
interface. The shear stress (σxy) is measured from the lateral
displacement of the cantilever. The displacement is sensed by a
fiber optic based displacement sensor (MTI-2000 FOTONIC)
from the interference of light that is reflected from the mirror
glued on the cantilever at a distance of 25 mm from the
fixed support. The output of the displacement sensor is fed
to a lock-in amplifier (SR830). A parallel plate capacitor,
used as a force sensor, is marked by (ii) and also shown
with dimensions in the right-bottom of Fig. 2. It is made of
0.2 mm thick flexible polymeric sheet and kept at a distance
of 30 mm from the cantilever in the y direction. The metal
electrodes are glued at the bottom of the two plates of the
force sensor with a separation of 3 mm and are immersed in
water. A capacitance bridge (1615-A General Radio) is used to
detect the change in the plate separation during compression
(or expansion) from the lateral deflection of the individual
capacitor plates. The output of the capacitance bridge is fed
to another lock-in amplifier (SR830) which drives the bridge
at 100 kHz. The stresses, shear (σxy) and longitudinal (σxx),
are calculated using the “bending-of-a-beam” formula using
lateral displacement of the cantilever in the former case and
the plate deflection in the latter. The formula used in general is

TABLE I. Parameters used in the calculation of σxx and σxy for the cantilever and the parallel plate force sensor.

Length Width Thickness Young’s modulus Point of detection Effective area (α)
(l0) (mm) (b) (mm) (h) (mm) (E) (GPa) (x0) (mm) (mm2)

Cantilever 90 13 0.13 200 25 30
Parallel plate force sensor 60 25.4 0.2 2 60 12.7
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given by the stress σ = 6REI/x2
0 (3l0 − x0)α [36], where R is

the lateral displacement, E is Young’s modulus, I = bh3/12
is the second moment of the area (b and h are the width and
thickness of the detecting object, respectively), l0 is the length

of the object, x0 is the point of detection from the fixed end,
and α is an effective area of contact with the particles. All
these parameters used in the calculation of stress are tabulated
in Table I for the cantilever and the parallel plate force sensor.
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