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Stability, deformation, and variability of granular fills composed of polyhedral particles
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By means of extensive contact dynamics simulations, we investigate the mechanical equilibrium and
deformation of a granular material composed of irregular polyhedral particles confined between two horizontal
frictional planes. We show that, as a consequence of mobilized wall-particle friction forces at the top and
bottom boundaries, the transient deformation induced by a constant vertical load is controlled by the aspect ratio
(thickness over width) of the packing as well as the stress ratio. The transient deformation declines considerably
for increasingly smaller aspect ratios and grows with the stress ratio. From the simulation data for a large number
of independent configurations, we find that sample-to-sample fluctuations of the deformation have a broad
distribution and they scale with the average deformation. We also analyze the evolution of particle connectivity
during settlement and with the applied force. The face-face and edge-face contacts between polyhedral particles
concentrate strong force chains with a growing proportion as a function of the applied force.
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I. INTRODUCTION

Granular materials are widely used as filling materials
in various applications due to their original complementary
properties of flowability, shear strength, and porosity [1]. Well-
known examples are construction foundations, earthworks
(dams, embankments, etc.) and transport infrastructure (rail-
way ballast, asphalt). A major concern in all such applications
is the short- and long-term stability of the granular fills under
variable loading conditions. Plastic deformations induced by
static and dynamic overloads, such as train traffic in the
case of railway ballast, or material degradation as a result
of weathering, may lead to settlement and failure or damage
to the structure [2–5].

In absolute terms, a granular system is stable if small
stress increments can be accommodated by small strains
[6–9]. However, the particle-scale processes underlying this
transition between consecutive equilibrium states are generally
stochastic due to granular disorder [10–14]. In constitutive
modeling of the quasistatic behavior of granular materials, it
is assumed that the strain and stress increments present a finite
average and the fluctuations can be neglected. Elastoplastic
models of soil behavior are based on this assumption, with
phenomenological internal variables or parameters pertaining
to the packing structure. The plastic threshold is characterized
by an internal friction angle and the flow rule by a dilatancy
angle relating volume change to shear strain [14–17]. In such
models, the stability coincides with hardening behavior. and
the cumulative strains may be calculated from stress variations
by means of the constitutive tensor for a representative volume
element undergoing homogeneous deformation.

The stability and deformation of granular materials under
complex boundary conditions are in general far less clear even
when the rheological behavior (for homogeneous boundary
conditions) is correctly captured. Failure may happen as a
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result of strain localization in shear bands or compaction bands
[18]. Due to dilatancy, the material may also become unstable
depending on how the boundary conditions are controlled
[7,8]. For example, if the volume change is prohibited, a
sufficiently loose sample will collapse when subjected to
shear. This failure mode, known as static liquefaction, is
homogeneous [6,9].

An important case is a granular material confined by
frictional boundaries. This is a common and crucial part of the
problem of stability in most applications and, in contrast to the
examples cited above, it has a stabilizing effect on the granular
assembly. The friction forces may be only partially mobilized
depending on the dynamic processes and past deformations
leading to the present state of a granular assembly. The
importance of boundary friction is quite evident from the fact
that a sandpile cannot be stable without friction at the basal
plane. In experiments on granular flow on an inclined plane,
it has been established that, due to friction with the plane,
the angle at which the particles start to flow depends on
the thickness of the granular bed [19,20]. In the well-known
example of a silo, the wall friction governs stress transmission
by fully compensating stress gradients due to particle weights
[21–23]. A nontrivial effect of wall friction is to make the
stress field inside the confined granular material depend on the
width of the silo. Besides the case of silos, most past studies
of wall friction have focused on the uniaxial compaction of
granular materials in a mold [24–26], the effect of friction
with a retaining wall [27], friction mobilization along an array
of particles [28], and the effect of friction with side walls on
granular flow [29–32].

In this paper, we are interested in the equilibrium and
deformation of a granular material confined between two
horizontal frictional planes. The bottom plane is immobile
whereas the top plane is mobile and subjected to a constant
load. A uniform horizontal pressure is applied over the lateral
boundaries of a sample of nearly cylindrical shape. The
granular material is squeezed under the action of the imposed
load and flows sideways by overcoming both the lateral
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confining pressure and the friction forces with the top and
bottom walls. As the deformation proceeds, the thickness of
the packing declines and friction forces at the top and bottom
walls increase until the deformation stops.

In general, the equilibrium and transient deformations of
a granular material depend on the nature of the contact
interactions (elastoplastic or viscous behavior, wear, etc.).
However, the upscaling of such local interactions is mediated
by the complex contact and force networks and collective
particle rearrangements. In some limits, such as in coarse-
grained materials with rigid grains, the length and time
scales involved in contact interactions can be neglected
compared to collective rearrangement phenomena. The latter
are at the focus of this work, and for this reason we
assume rigid undeformable and cohesionless particle inter-
actions that can be described by frictional contacts although
with realistic angular particle shapes in three dimensions
(3D).

The stability and transient deformations are analyzed by
means of extensive contact dynamics simulations with rigid
particles of irregular polyhedral shape for a large number
of independent configurations and different thicknesses and
values of the imposed load. In particular, we show that,
due to wall friction, the total vertical settlement induced
by the applied load depends both on the load and on the
aspect ratio (thickness over width) of the packing. However,
sample-to-sample fluctuations occur around the mean. From
the data, we find that the distribution of transient deformations
is broad and it scales with the mean deformation.

In the following, we first introduce in Sec. II the numerical
procedures including the simulation method, particle prop-
erties, and preparation protocol. In Sec. III, we illustrate the
influence of various parameters such as the applied load, aspect
ratio, particle inertia, and loading history on the temporal
behavior and total deformations. In Sec. IV, a parametric
investigation of the total deformations and their sample-to-
sample fluctuations is presented with aspect ratio and stress
ratio as parameters, and compared with a simple model based
on the analysis of the stresses inside the packing. Section V is
devoted to the microstructure and its evolution. We conclude
with a few remarks and summary of the most salient results of
this work.

II. NUMERICAL PROCEDURES

In this section, we briefly introduce the contact dynamics
(CD) method, as a discrete element method for the simulation
of granular materials, with polyhedral particles, as well as
the numerical procedures used for the preparation of the
numerical samples.

A. Contact dynamics method

The simulations were carried out by means of the contact
dynamics method with irregular polyhedral particles [33–38].
The CD method is a discrete element approach for the
simulation of nonsmooth granular dynamics with contact laws
expressing basically the mutual exclusions and dry friction
between particles without introducing the elastic or viscous
regularization often used in explicit methods such as molecular

dynamics [39–42] or the distinct element method introduced
initially by Cundall and Strack [43]. Hence, this method
is particularly adapted for the simulation of perfectly rigid
particles. The nonsmoothness refers to various degrees of
discontinuity in the velocities arising in a system composed
of rigid particles. In this method, the equations of motion
for each particle are formulated as differential inclusions
in which velocity jumps replace accelerations [44,45]. The
unilateral contact interactions and Coulomb friction law are
treated as complementarity relations or set-valued contact
laws.

The time-stepping scheme is implicit but requires explicit
determination of the contact network at each time step. At
each time step, all kinematic constraints implied by frictional
contacts between particles are simultaneously taken into
account, together with the equations of dynamics, in order to
determine all the velocities and contact forces in the system.
This problem is solved by an iterative procedure pertaining
to the nonlinear Gauss-Seidel method. It consists of solving a
single contact problem with other contact forces being treated
as known, and iteratively updating the forces and velocities
until a convergence criterion is fulfilled. The iterations in a
time step are stopped when the calculated contact forces are
stable with respect to the update procedure. It should be noted
that, due to implicit time integration, the time-stepping scheme
is unconditionally stable.

The determination of the contact set for irregular polyhedral
particles proceeds in three steps. First, a “bounding box”
method is used to sort a list of neighboring particle pairs.
Then, for each pair, the overlaps are calculated through a 3D
extension of the “shadow overlap method” [37,46]. Several
algorithms exist for overlap determination between convex
polyhedra [47–50]. In the case of an overlap, the contact
plane is determined by means of the intersection between
the two particles. This detection procedure is fairly rapid and
allows us to simulate large samples composed of polyhedral
particles.

The contacts between polyhedral particles belong to dif-
ferent categories, namely, face-face, edge-face, vertex-face,
edge-edge, vertex-vertex, and vertex-edge contacts. Face-face
contacts are represented by three points, corresponding to three
geometrical constraints, and thus will be referred to below
as triple contacts. The edge-face contacts are represented by
two points and will be called double contacts. The edge-edge
and vertex-face contacts are simple contacts and they are
represented by a single point. The vertex-vertex and vertex-
edge contacts are rare, but do occur from time to time in the
course of evolution of the system. They are treated as a simple,
double, or triple contact on the basis of secondary criteria.
In the iterative procedure of determination of the contact
forces and velocities, the points representing the contacts
between two particles are treated as independent points but
the resultant force of the calculated point forces is attributed
to the contact with its application point located on the contact
plane.

For our simulations, we used a multipurpose software ca-
pable of modeling a collection of deformable or undeformable
particles of various shapes by different algorithms [37]; see
Ref. [51]. Video samples of the simulations analyzed in this
paper can be found in Ref. [52].
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(a)

(b)

FIG. 1. (Color online) (a) Four examples of polyhedral particles
used in the simulations. (b) Snapshot of a numerical sample.

B. Sample preparation

The numerical samples are composed of rigid polyhedral
particles taken from a library of 1000 digitalized ballast
particles [53]. Each particle has at most 70 faces and 37 vertices
and at least 12 faces and 8 vertices. Figure 1(a) shows examples
of the polyhedral particles used in the simulations. The size
of a particle is defined as twice the largest distance between
the barycenter and the vertices of the particle; we will refer to
this as the “diameter” of the particle. The particle sizes vary
between 25 and 50 mm with 50% of diameter 25 mm, 34%
of diameter 37.5 mm, and 16% of diameter 50 mm. The mean
particle diameter is 〈d〉 = 37.5 mm. The bulk density of the
particles is 2700 kg m−3.

The coefficient of friction between the particles is set
to μ = 0.8 for all samples. This value represents friction
at a rough surface such as that of particles resulting from
the crushing of a rock. But this choice is not essential for
the phenomenology of settlement investigated in this paper.
The normal and tangential coefficients of restitution are
set to zero. The value of the coefficient of restitution has
no significant effect on the dynamics of dense granular
systems where frictional dissipation prevails and collisions
are basically of multicontact nature due to the presence of a
dense contact network.

The mechanical properties of a granular material composed
of the same polyhedral particles with the same distributions of
shape parameters and sizes were investigated numerically by
Azéma et al. [50] under homogeneous boundary conditions
(triaxial compression) and compared with a similar packing
composed of spherical particles. The internal angle of friction
of the packing of polyhedral particles was found to be 34◦,
in full agreement with the experimental value for ballast used
as a reference material for angular particles. The origin of

this enhanced shear strength was found to be basically a
consequence of an extra force anisotropy induced by face-face
contacts. These face-face contacts were also shown to belong
mostly to the strong force network.

The preparation protocol consists in first pouring the
particles into a cylindrical box with zero particle-wall friction.
A rigid wall of mass mw � 16 kg is placed on top of the
sample. Then, the cylinder is removed and replaced by a
radial confining pressure of σR = 80 kPa applied by a uniform
distribution of radial forces over the outermost particles located
on the periphery of the cylinder while keeping the bottom wall
fixed. The sample obtained by this procedure is subjected to
vibrations of small amplitude by applying a vertical sinusoidal
displacement on the top wall. The vibrations last for about
0.4 s with a frequency of 10 Hz. The vibrations remove the
irregularities at the interface between the block and the top
layer of particles. Finally, the vibration is stopped and the
sample is allowed to relax to equilibrium.

We prepared different samples with the same radius R �
0.35 m but with different heights H depending on the number
of particles. By changing the number of particles from Np =
1600 to Np = 3200, we get different samples with aspect ratios
α = H/(2R) varying from 0.4 to 0.7. As we shall see below,
a detailed statistical analysis is performed for the samples
with α = 0.5 (containing 2700 particles) by generating 32
independent configurations. The applied protocol results in
packing fractions ρ for the 32 samples varying in the range
[0.610,0.626]. Figure 1(b) shows one snapshot of a numerical
sample.

In a system prepared by the above procedure, there is
no lateral wall and the radial pressure is supported by the
outmost particles, which behave in this way as a flexible
“membrane” confining the sample. This is very similar to the
usual triaxial compression tests performed on soil samples but
with the major difference that in a triaxial device the radial
displacements of the particles are strongly constrained by the
presence of a real membrane fixed to the top and bottom plates.
In our system, we impose a large friction coefficient μw = 1 at
the contacts with the top and bottom walls. This corresponds
to the condition of “rough walls” that prevents the particles
in contact with the top and bottom walls from sliding [27].
Hence, the stability of the sample is controlled by both the
bulk friction and the friction with the top and bottom walls.

The transient deformations of the numerical samples are
studied by applying a force F on the top wall. 500 different
values of F varying from 1 to 120 kN are applied to each
sample in order to obtain both the mean value and variability
of the deformation. Given the initial area of the sample S =
πR2 � 0.38 m2, the vertical stress σH = F/S supported by
the sample varies in the range [2,315] kPa. The time step
was 4 × 10−4 s in all simulations, and at most 150 time steps
were needed for a full stabilization in the case of the longest
transient. The CPU time was 2 × 10−3 s per particle and per
time step on a Dell computer of speed 3.16 GHz.

III. TRANSIENT DEFORMATIONS

In this section, we would like to illustrate the sensitivity of
the vertical deformation to different system parameters. This
will allow us to define the relevant parameters for a quantitative

031308-3



QUEZADA, BREUL, SAUSSINE, AND RADJAI PHYSICAL REVIEW E 86, 031308 (2012)

FIG. 2. (Color online) Settlement of a sample of aspect ratio α =
0.5 subjected to different values of the vertical force F as a function
of time.

description of the behavior in the following sections. The
downward cumulative displacement of the top wall is denoted
by δH and normalized by the mean particle diameter 〈d〉.

Figure 2 displays δH as a function of time in a sample of
aspect ratio α = 0.5 corresponding to a height H = 2αR �
0.35 m, subjected to different values of the force F . The
evolution seems to occur in three stages with a fast increase
of δH at the beginning and a slower evolution at intermediate
times followed by a longer phase with small change of δH . As
expected, the total settlement �H = ∫ ∞

0 δH (t)dt increases
with F . The displacements are typically below one particle
diameter. The vertical deformation for a displacement of one
mean particle diameter is 〈d〉/H � 0.11.

The time evolution of δH reflects the dynamic particle
rearrangements induced by sudden application of the load.
The settlement is homogeneous with a nearly constant vertical
velocity gradient from the bottom to the top of the sample.
As a result of particle inertia and collisions, the normal force
Fb on the bottom plane increases greatly beyond the applied
force F as shown in Fig. 3. Fb grows in a short time period to
a peak twice as large as F . This time interval coincides with
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FIG. 3. Time evolution of the normal force Fb at the basal plane
following the application of a constant force F = 60 kN on the top
plane.

the initial rapid increase of δH . The kinetic energy gained
by the particles is not fully dissipated by this collective shock of
the sample with the bottom wall, since Fb takes much more
time to relax from its peak value towards the force F , where the
particles jam in a new state of static equilibrium. Comparing
the times series of δH and Fb, we observe that the particle
rearrangements from the peak to the end of the relaxation
contribute as much to the settlement of the packing as the
highly dynamic evolution from the application of the force to
the peak.

The characteristic time �t of the dynamic transient is
obtained by dimensional analysis from the natural units of
the system: particle mass m, average pressure p, and particle
size 〈d〉. We get

�t =
(

m

p〈d〉
)1/2

. (1)

This time may be interpreted as the time for a particle of mass m

to fall a distance equal to its own diameter under the action of a
force equal to pd2 [20]. For an average pressure of the order of
the lateral pressure σR = 80 kPa, we get �t � 0.005 s, which
is the right order of magnitude for the observed relaxation time
according to Figs. 2 and 3.

Clearly, as a consequence of the application of a finite force
on an initially stable packing, the dynamics plays an essential
role in the total settlement �H . In order to illustrate this effect,
we applied the same total force F = 60 kN on a sample in a
single step, in two successive steps of 30 kN, in three steps
of 20 kN, or in six steps of 10 kN by allowing the sample
to relax to equilibrium in each step. The time evolution of
δH is shown in Fig. 4 for these four simulations. The largest
settlement is reached for the application of the total force
in a single step, and the total settlement declines when the
number of intermediate steps increases. The lowest settlement
is obtained by quasistatic compression, which corresponds to
a large number of small force increments.

An important feature of the stepwise compression test, as
observed in Fig. 4, is that most of the deformation occurs in
the first step. The partial settlement in the next steps is smaller
and keeps nearly the same magnitude in each step. This means

0 0.05 0.1 0.15 0.2 0.25
0

0.1

0.2

0.3

0.4

t (s)

δH
/<

d>

1 step
2 steps
3 steps
6 steps

FIG. 4. (Color online) Settlement of a sample subjected to a total
vertical force of 60 kN applied in a single step, two steps, three steps,
or six steps.
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FIG. 5. (Color online) Settlement of a sample subjected to a total
vertical force of 60 kN in two samples with and without consolidation.

that the microstructure is modified by the application of the
first load. This effect of preloading is illustrated in Fig. 5
where the time evolution of δH is plotted for F = 60 kN in a
sample without preloading and in the same sample preloaded
by the application of a force F = 3.6 kN and allowed to
relax. The preload is removed after the relaxation. We see
that the evolution is smoother in a sample consolidated by the
application of the preload and the settlement is considerably
lower. The effect of preloading is similar to that of primary
consolidation in soils [15]. Although the boundary conditions
are very different here from those used for the compaction
of soils, in both cases the application of a preload leads to
irreversible reorganization of the contact network, enhancing
its strength in response to a secondary compression in the same
direction [50,54].

Due to friction with the top and bottom walls, the settlement
for a given applied load crucially depends on the aspect ratio
α. Figure 6 shows the time evolution of δH in response to
the application of a force F = 60 kN for several samples of
different aspect ratios. We see that larger aspect ratios imply
larger settlement. The total settlement is negligibly small for
α = 0.32.
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α=0.32
α=0.41
α=0.50
α=0.56
α=0.64

FIG. 6. (Color online) Time evolution of vertical deformation for
different samples of different aspect ratios α but the same applied
load F = 60 kN.
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FIG. 7. Geometry and boundary conditions of the granular system
in the presence of wall friction forces T .

To analyze the role of the aspect ratio, let us consider the
condition of mechanical equilibrium by assuming perfect axial
symmetry of the sample and friction at the top and bottom
walls. The axial symmetry implies σrθ = 0. It is obvious that,
as a result of cylindrical geometry and radial friction, the stress
state is not homogeneous. As a simplifying approximation, we
assume that the radial stress component σrr depends only on
the radial distance r from the axis of the sample; see Fig. 7.
Therefore the condition of force balance for a volume element
enclosed between two cylindrical surfaces of radii r and r + δr

reads

2T (r) + 2π (r + δr)Hσrr (r + δr) − 2πrHσrr (r) = 0, (2)

where T (r) is the friction force exerted by the top and bottom
walls against a radial deformation of the sample.

To solve Eq. (2), we further assume a linear relation
everywhere inside the packing between the vertical and radial
stress components:

σzz = kσrr . (3)

This assumption underlies the Janssen model also and yields
a correct prediction of stress transmission in a silo [22,55].
The values of the coefficient k are bounded between kp and
ka = k−1

p , corresponding to the so-called limit Rankine passive
and active states, with [27]

ka = 1 + sin ϕ

1 − sin ϕ
, (4)

where ϕ is the internal angle of friction. We recall that the
major principal stress σ1 coincides with vertical stress σH in
the active state and with radial stress σR in the passive state.

Assuming that, at incipient flow, the friction force T (r) at
the walls is fully mobilized, we have

T (r) = 2πr δr τ (r) = 2πr δr μwσzz(r), (5)

where μw is the coefficient of friction at the walls. For a nearly
rough wall, which is the case in our system with μw = 1, the
particles do not slide at the walls and the friction mobilization
is bounded by the internal friction coefficient, so that it is
physically plausible to set μw = tan ϕ.

Equations (2), (3), and (5), together with the boundary
condition σrr (r = R) = σR , yield

σrr (r)

σR

= R

r
exp

{
μwk

α

(
1 − r

R

)}
. (6)
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FIG. 8. (Color online) Average profile of normalized radial force
fr (r) = 2πrHσrr (r) as a function of radial distance r to the axis of
the sample.

According to this equation, the stresses diverge at the center
as 1/r and decline exponentially to σR at the approach to the
periphery of the sample. In practice, it is more convenient to
consider the resultant force fr (r) = 2πrHσrr (r), which is not
singular at the center and varies as

fr (r) = fR exp

{
μwk

α

(
1 − r

R

)}
, (7)

where fR = 2πRHσR . This relation is in good agreement
with the average normalized stress profile calculated in our 32
samples in the passive state, as shown in Fig. 8.

Regarding friction mobilization at the walls, we should
distinguish the active state, where the particles tend to flow
outward and therefore the radial friction forces exerted by
the top and bottom walls on the sample are oriented radially
inward, from the passive state, where the particles tend to flow
inward (due to the action of the lateral stress) and therefore
the radial friction forces are oriented radially outward. With
our sign conventions, the inward friction force behaves as a
compressive force and should be counted positive whereas the
outward friction force is negative and we should replace μw

by −μw in Eqs. (6) and (7). Hence, the radial force declines in
the active state from the center (r = 0) toward the periphery
with fr (0) = fR exp(μwka

α
) and it declines in the passive state

from the periphery (r = R) toward the center with fr (0) =
fR exp(−μwkp

α
). Figure 9 displays a map of “particle stresses,”

i.e., the average stresses supported by the particles due to the
forces exerted by their contact neighbors, for a packing in the

FIG. 9. (Color online) A snapshot of particle stresses in a vertical
section of the sample passing through the axis of symmetry.

active state. As expected, the strongest force chains occur at
the center of the sample and they decline in intensity toward
the periphery.

Equation (6) can now be used with the condition∫ R

0 σzz(r)(2πr)dr = πR2σH , to relate the stress ratio to the
aspect ratio. We get

η ≡ σH

σR

= 2
α

μw

{
exp

(
μw

α
k

)
− 1

}
. (8)

This is an interesting relationship as it shows that, under the
assumption of friction mobilization at the walls, the stress ratio
η is the relevant parameter for the stress state and its limiting
values depend on the aspect ratio α. η tends to 2k in the limits of
μw/α → 0 and increases without bound when μw/α → ∞.
The effect of friction is amplified by the exponential factor
and it leads to increasingly large values of η. In the limiting
active state, k should be replaced by ka , whereas in the limiting
passive state one should set k = kp and μw should be replaced
by −μw:

ηactive = 2
α

μw

{
exp

(
μw

α
ka

)
− 1

}
, (9)

ηpassive = 2
α

μw

{
1 − exp

(
− μw

α
kp

)}
. (10)

For a system of aspect ratio α = 0.5 and internal friction
angle 34◦, which is the case of the ballast material used in our
simulations [50], we get ηactive � 160, which is far higher than
2ka � 7 for nonfrictional walls, and ηpassive � 0.47, which is
slightly below 2kp � 0.57. The reason is that the effective
values of k and μw, starting from an initial state prepared
by vibrations or consolidated by the application of a preload,
reflect the mobilization of internal friction (for k) and wall
friction (for μw). The packing has a hardening behavior due to
the evolution of the microstructure as increasingly larger loads
are applied, and in our simple model of stress transmission
the hardening is basically represented by the increase of the
effective values of k and μw. On the other hand, the plastic
deformation of our system is also partially governed by finite
size effects that, given the limited number of particles, cannot
be avoided in 3D simulations with particles of complex shape.

Another consequence of finite size effects for our system
is the fluctuation of deformations in independent samples
prepared identically. Figure 10 displays the time evolution
of δH for five different samples of the same aspect ratio α

prepared independently, but according to the same protocol,
and subjected to the same vertical load or stress ratio η applied
in a single step. We see that the transient deformations take
nearly the same time but lead to different settlements. This
rather large variability in the settlement reflects the stochastic
nature of the deformation process which amplifies small
differences in the initial packing fraction as well as subtle
details of the contact network.

In the next section, we present a parametric study of the
total vertical deformation �H and its statistical fluctuations
as a function of α and η for an ensemble of identically prepared
and consolidated samples.
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FIG. 10. (Color online) Time evolution of vertical deformation in
four samples for the same value of η and aspect ratio α but different
initial configurations.

IV. TOTAL DEFORMATION AND ITS VARIABILITY

Because of sample-to-sample fluctuations and the influence
of consolidation and particle inertia, we need a large number
of simulations in order to be able to quantify the dependence
of the total deformation �H with respect to the applied stress
ratio η and aspect ratio α. The simulations are performed
for nine different aspect ratios varying from α = 0.36 to
α = 0.64. For each value of α, we generate 32 independent
samples by the procedure described in Sec. II. A consolidation
stress σH = 40 kPa (corresponding to η = 0.5) is applied to
all samples and removed after relaxation. Each sample is
subjected to 500 different values of the vertical force with
η varying in the range [2,315]. The vertical force in all
simulations is applied in a single step so that the dynamic
effects are systematically present in the resulting settlement.
The data are analyzed by considering both the ensemble
average of the vertical deformation over the 32 independent
samples for given η and α and the variability around the
average deformation.

The consolidation stress is large enough to predispose the
granular packing to stress increments applied in the same
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FIG. 11. (Color online) Total settlement as a function of η in a
sample of aspect ratio α = 0.5 for the initial configuration (before
preloading) and the preloaded configuration.

0 0.5 1 1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

η

ΔH
/<

d>

α=0.36
α=0.39
α=0.43
α=0.46
α=0.49
α=0.53
α=0.57
α=0.60
α=0.64

FIG. 12. (Color online) Total normalized settlement as a function
of stress ratio for different aspect ratios.

direction. As shown in Sec. III, the dynamic effects are reduced
by preloading, and consecutive loads of the same magnitude
produce equal settlements. Due to the plastification of the
packing in the consolidation step, the application of a stress
ratio η below 0.5 will produce tiny deformations, as shown in
Fig. 11 for a packing with aspect ratio α = 0.5. In the whole
range, the consolidated packing undergoes lower settlement
�H , but the difference is most remarkable for η < 0.5. �H

increases with η at a lower rate in the consolidated than in the
unconsolidated samples. All the data presented in the following
concern only the consolidated samples.

Figure 12 shows the total averaged settlement �H as a
function of η for all aspect ratios. �H is an increasing function
of η at a rate that increases with α. Apart from the weak values
of η (close to the consolidation stress ratio 0.5), where the
deformation is equally low for all aspect ratios, and the largest
value of η, where the data seem to curve slightly down, �H

is nearly linear as a function of η. The same settlement data
are represented in Fig. 13 as a gray-level map in the parameter
space [α,η]. The isovalue lines of �H/〈d〉 are plotted for the
data smoothed out over the close neighborhood of each data
point. The map shows how the same amount of settlement
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FIG. 13. Gray-level map of settlements as a function of aspect
ratio α and stress ratio η. The full lines represent isovalues of the
total settlement �H/〈d〉.
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FIG. 14. (Color online) Rate of change of the aspect ratio α with
respect to the stress ratio η as a function of α from the simulation
data (symbols) and as predicted by Eq. (11) (dashed line).

may occur for a combination of different aspect ratios and
stress ratios. The settlement is negligibly small for α < 0.4
and η < 0.5 unless for very high stress ratios or large aspect
ratios, respectively.

Since α is a control parameter for deformation, it is also
interesting to use the variations δα of the aspect ratio as
strain variable. Figure 12 indicates that the rate δα/δη �
(1/2R)(−δH/δη) is a well-defined quantity that can be
extracted from the data by taking the mean slope of each
plot. Figure 14 shows the rate −δα/δη as a function of α. It
increases from 0.003 for α � 0.35 to 0.015 for α � 0.65 with
a change of trend around α = 0.5.

A theoretical dependence of δα/δη on α may also be
obtained by deriving Eq. (8) for the active states with respect
to α. We get

−δα

δη
= μw

2

{
1 +

(
μwk

α
− 1

)
exp

(
μwk

α

)}−1

. (11)

This equation yields an exponential increase as a function of
α with the right order of magnitude of the rate by setting
k = 2.2 and μw = tan ϕ � 0.67, as shown in Fig. 14. This
model cannot fully capture the observed behavior. However,
it remains an interesting point of departure as it conveys an
interesting physical picture of the mechanism of settlement:
The settlement is triggered by an increment of stress ratio
δη. The friction at the top and bottom walls increases due to
the increase of the contact surface πR2 with the decrease of
aspect ratio. The settlement stops when δη is balanced by the
friction force. This frictional feedback implies an exponential
decrease of the settlement rate for decreasing α. Since the
suggested value of k is below the theoretical value ka = 3.53
for the limiting active state, the process seems to be governed
by a partial mobilization of the internal friction.

We turn now to the fluctuations around the average values
of the settlements as a function of η. Figure 15(a) shows the
standard deviation S of the settlement normalized by the mean
particle diameter calculated from 32 independent samples of
aspect ratio α = 0.5 for each value of η with and without a
consolidation step. We see that without consolidation S rises
with η at a rate that is much faster in the range η < 0.5,
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η
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without preloading
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FIG. 15. (Color online) (a) Standard deviation S of settlements
calculated for 32 independent samples for each value of stress ratio η

with and without preloading; (b) coefficient of variation as a function
of η.

whereas with consolidation a negligibly weak variation occurs
in this range. Its order of magnitude for larger values of η

becomes comparable to the average settlement. To compare S

with the average deformation, we have plotted the coefficient
of variation, defined by the ratio Cv = S/�H of S and the
average settlement �H , as a function of η in Fig. 15(b).
The coefficient of variation is high at low values of η but
declines rapidly in the range η ∈ [0,0.1] and then continues to
decrease at a lower rate. This high variability at low stress
ratios represents a ratio of two small numbers (both the
settlement and its standard variation), but it is a signature of
the stochastic processes governing the particle displacements
when the external forcing is too weak to impose collective
deformations compared to single-particle events.

Figure 16 shows the probability density function of the
settlements �H for all samples where the settlements are
simply normalized by the mean settlement 〈�H 〉 for each
value of η. Remarkably, in spite of the high dispersion of the
values of �H , the data collapse on a single distribution due to
normalization by the mean settlement. The distribution can be
approximately fitted to a decreasing exponential function

P (�H ) ∝ exp

(
−γ

�H

〈�H 〉
)

(12)
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FIG. 16. (Color online) Probability density function of settle-
ments �H in all samples of aspect ratio α = 0.5 normalized by
the mean settlement for each value of stress ratio (symbols). The full
line is an approximate exponential fit P (�H ) ∝ exp(−γ�H/〈�H 〉)
with γ � 0.8. The inset shows the data on a log-linear scale.

with γ � 0.8. Although small settlements are most frequent,
the exponential falloff indicates that large settlements may
occur with a significant probability. An exponential distribu-
tion of settlements means that the fluctuations are an intrinsic
part of the deformation process and controlled by the granular
disorder for all levels of loading. Equation (12) together with
the map of average settlements in Fig. 13 provide detailed
information both on the mean dependence of settlement with
respect to aspect ratio and stress ratio and on its sample-to-
sample variability.

V. FABRIC VARIABLES

The fabric, i.e., the spatial organization of particles and
the topology of the force-bearing contact network, encodes
most of the past history of loading [50,56–59]. In this section,
we briefly investigate the evolution of several fabric variables
during the settlement as a function of the applied stress. These
are the mean coordination number z, the proportions Ks , Kd ,
and Kt of simple, double, and triple contacts, respectively, as
well as the mean force carried by each type of contact.

Figure 17(a) displays a typical example of the evolution of
z as a function of time in a sample after the application of
a stress ratio η = 2.5. The initial fast drop of z reflects the
opening of a large number of contacts belonging to the weak
contact network as a result of particle displacements, a feature
usually observed at the beginning of plastic deformation
[14,60,61]. The second peak is the signature of collective
dynamic compaction of the sample corresponding to the first
peak of the force observed in Fig. 3 followed by a slight
decompaction and decrease of z. The relaxation continues
afterward at a lower rate with a gradual increase of z toward a
constant level comparable to its initial value.

The time evolution is shown in Fig. 17(b) separately for
Ks , Kd , and Kt in the same sample. We observe the same
dynamic effects as for z. But the main effect of settlement
is to reduce the fraction of simple contacts and to increase
considerably that of double and triple contacts. The edge-face
and face-face contacts allow for stable columnlike structures,
and their growth in the sample is a signature of hardening and
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FIG. 17. (Color online) Evolution of the coordination number (a),
proportions of simple, double, and triple contacts (b), and mean force
carried by each type of contact (c) with time during settlement for
η = 2.5. The forces are normalized by the mean force of all contacts.

enhanced stability of the packing, although the proportion of
simple contacts prevails at all times. The double and triple
contacts capture strong force chains and concentrate stresses.
Figure 17(c) shows the mean normal forces fs , fd , and ft

carried by simple, double, and triple contacts as functions of
time. The triple contacts, despite their weak presence in the
packing, carry the largest forces, with a mean value of nearly
1.5 times the mean force, whereas the simple contacts carry
the lowest forces with an average below the mean. The double
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FIG. 18. (Color online) Proportions of simple, double, and triple
contacts as a function of stress ratio.

contacts carry a mean force of the order of the mean force in
the packing.

The above trends of fabric evolution are increasingly
reinforced as the stress ratio increases. For example, Fig. 18
shows the evolution of the proportions of different types of
contact at the end of settlement as functions of η. Ks declines
systematically with η whereas Kd and Kt increase. We also
find that the mean forces carried by different types of contact
follow the same trend. This evolution naturally underlies the
growing aptitude of the packing to support larger stresses.

The analysis of the fabric may be pushed further to include
the contact and force anisotropies, which underly the shear
strength of granular materials [62–65]. These aspects and the
local stresses in our simulated packings with frictional walls
will be reported elsewhere. In fact, the evolution of contact
types and their role in force transmission as presented above
are the most intuitive features of the evolution of packings of
polyhedral particles. But it can be shown that their effect is to
reinforce the force anisotropy and more specifically the nearly
rigid columns that are formed at the center of the packings
such as those observed in Fig. 9.

VI. CONCLUDING REMARKS

In this paper, we analyzed the transient deformations of a
granular material composed of polyhedral particles confined

between two frictional walls, under the action of a constant
vertical force applied in a single step. The polyhedral shape of
the particles is representative of angular particles often found
in nature and civil engineering applications. The friction at the
top and bottom walls is also a realistic feature of granular
fills used to sustain large external loads. In practice, the
stability and settlement of granular materials under variable
loading conditions cannot be predicted with confidence from
classical elastoplastic models of soil behavior based on a
mean-field approximation of the kinematics and stresses. The
role of the microstructural details, when a low number of
particles is involved, is fundamental in the application of
such models. The effect of dynamics when the load is not
increased in a quasistatic fashion, as often assumed in models,
is a fundamental concern for such systems. Finally, the stress
gradients induced by wall friction complicate considerably
the analysis since the wall friction and internal friction are
intricately coupled. It is also obvious that the deformations are
controlled to a large extent by the present state of the material
and it is important to account carefully for the loading history.

For all these reasons, a quantitative description of transient
deformations even in a model system with controlled geometry
and material parameters appears to be a challenging task. The
primary aim of this work was to show the feasibility of such
a description by appropriate simulations and analysis. The
sample-to-sample fluctuations led us to perform a large number
of simulations with independent configurations. In order to
ensure a reasonable reproducibility of the average settlements,
we also added a preloading step to the simulations.

The results presented in this paper seem to indicate that
the average deformation has a well-defined dependence with
respect to the applied stress. But we also showed that the
fluctuations, arising from the microstructural disorder varying
among independent configurations, are large and scale with the
average deformation. Another important feature investigated
in detail was the dependence of transient deformations on
the aspect ratio as a result of the frictional feedback at the
boundaries. This effect is captured by a simple model based
on stress analysis and suggests that the increment of the aspect
ratio is a relevant strain variable for a system with frictional
walls. It shows that the settlement caused by a vertical load
applied on a granular material does not depend only on the
horizontal pressures acting on the material but also crucially
on the surface area and friction coefficient of the support.
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[50] E. Azéma, F. Radjai, and G. Saussine, Mech. Mater. 41, 729
(2009).

[51] www.lmgc.univ-montp2.fr/∼dubois/LMGC90
[52] www.cgp-gateway.org/ref014
[53] The library was provided by the French Railway Company

SNCF.
[54] F. Radjai and V. Richefeu, Philos. Trans. R. Soc. London A 367,

5123 (2009).
[55] G. Ovarlez, E. Kolb, and E. Clément, Phys. Rev. E 64, 060302

(2001).
[56] M. Oda, J. Koshini, and S. Nemat-Nasser, Geotechnique 30, 479

(1980).
[57] M. M. Mehrabadi, S. Nemat-Nasser, H. M. Shodja, and G.

Subhash, in Micromechanics of Granular Media (Elsevier,
Amsterdam, 1988).

[58] B. Saint-Cyr, J.-Y. Delenne, C. Voivret, F. Radjai, and P. Sornay,
Phys. Rev. E 84, 041302 (2011).
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