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Flow and clogging in a silo with an obstacle above the orifice
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In a recent paper [Zuriguel et al., Phys. Rev. Lett. 107, 278001 (2011)] it has been shown that the presence of
an obstacle above the outlet can significatively reduce the clogging probability of granular matter pouring from
a silo. The amount of this reduction strongly depends on the obstacle position. In this work, we present new
measurements to analyze different outlet sizes, extending foregoing results and revealing that the effect of the
obstacle is enhanced as the outlet size is increased. In addition, the effect of the obstacle position on the flow
rate properties and in the geometrical features of arches is studied. These results reinforce previous evidence of
the pressure reduction induced by the obstacle. In addition, it is shown how the mean avalanche size and the
average flow rate are not necessarily linked. On the other hand, a close relationship is suggested between the
mean avalanche size and the flow rate fluctuations.
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I. INTRODUCTION

When a group of particles flow through a narrow
bottleneck—an opening not much larger than the particle
size—the dissipative interactions among the particles may lead
to the spontaneous development of clogs. These kind of jams
can be observed in grains discharging from a silo [1], people
escaping from a room [2], or vehicle traffic in a highway.
Although the nature of the particles is wildly different in each
one of these instances, they share interesting resemblances,
which suggests that a general theory could describe at least
the most important features of the phenomenon [3]. One of the
most striking similarities among people escaping from a room
and beads passing through a narrowing is that the distribution
of avalanche sizes (or bursts) displays an exponential behavior.

Generally speaking, the avalanche size is defined as the
number of particles passing through the bottleneck between
two consecutive clogs. For the case of inert beads, the
avalanche size is easily determined, as the flow is halted
permanently and for good by arches formed just above the
exit orifice [4–6]. The flow can only be restored by breaking
such arches with an external energy input. At that moment, a
new avalanche begins. Therefore, the avalanche size is defined
as the number of particles that get out of the silo from the
instant when such an energy input is applied, until the moment
when an arch blocks the orifice and ends the outpouring. In the
case of people, or other live beings, the definition of avalanche
is more problematic due to the fact that the clogs last for just
a short time. Hence, the only way to define a clog is to choose
a certain time lapse during which no individual has come out
from the enclosure [7]. Once the clogs are thus specified, the
avalanche sizes are just measured as the number of individuals
that get out between two consecutive clogs. Obviously, in this
case the avalanche sizes depend on the time lapse chosen to
determine whether clogging has occurred, whereas in the case
of inert particles this arbitrariness is absent. This difference
in the nature of the clogs may be at the heart of a remarkable
fact: While the exponential behavior is general in the case of
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granular flows [4–6], it is only observed for very small door
sizes in crowd dynamics [2,7].

The exponential distribution of avalanche sizes for inert
beads was explained in Ref. [4] in terms of the probability
p that a particle passes through the outlet without getting
stuck. Assuming that this probability remains constant during
the whole avalanche, the distribution of avalanche sizes was
written as

n(s) = ps(1 − p), (1)

where 1 − p is, of course, the probability that a particle blocks
the orifice. The mean avalanche size 〈s〉 [i.e., the first moment
of the distribution described by Eq. (1)], can be written as

〈s〉 = p/(1 − p). (2)

As expected, if the probability of clogging 1 − p increases,
then the mean avalanche size decreases.

In both cases—people escaping from a room and particles
outpouring from a silo—the enlargement of the outlet leads to
an increase in the size of bursts (or avalanches). A lingering
question is whether there exists an outlet size above which
clogging is impossible. For the case of a silo filled with
grains, the debate continues [5,6]. Nevertheless, outlet sizes
larger than seven or eight times the particle size generate
immense avalanches, so in practical terms two regimes can
be distinguished: one of clogging for small outlet sizes and
another one of no clogging for big outlet sizes.

Another feature of clogging that is shared by people in
a crowd and particles in a silo is the role of pressure. In
humans, an increase of pressure caused by panic seems to
be a key ingredient for the appearance of clogging [2]. Parisi
and Corso [8] have shown that the evacuation time for a room
as a function of the pedestrians’ desired velocity (which is
a variable considered in the model) presents a minimum for
intermediate velocities. A very high desired velocity leads to
an increase in the evacuation time due to clogs. In granular
matter, low pressure (which can be attained in shallow layers
of grains) is found to effectively prevent clogging [9]. Low
pressure is also behind an ingenious idea sometimes used when
trying to improve the flow of pedestrians through a bottleneck:
the placement of an obstacle before the exit [8–13]. The size
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of the column—the obstacle—is typically of the order of a
pedestrian and the position varies from one study to another,
although it is generally close to the exit (at most at a distance
of 2 or 3 pedestrian sizes). In the case of silos, the placement
of an obstacle above the outlet has also been used, but its
relationship with clogging remains scantily explored. Instead,
the placement of obstacles is usually aimed to improve the flow
and to the reduction of undesirable wall stresses. Indeed, most
of the studies about silos and obstacles are performed with
such a large outlet size that clogging is practically impossible
[14–17].

In a previous work we reported experimental evidence of
the silo clogging reduction induced by the presence of an
obstacle [9]. It was shown that the clogging probability could
be reduced by almost two orders of magnitude if the obstacle
position is properly selected. This important effect was
attributed to a pressure reduction in the outlet neighborhood.
Notably, the presumed pressure variation induced by the
obstacle affects the flow rate very little. This result is in
agreement with previous works, where it was proved that the
pressure in a silo does not have a significant influence on the
flow rate [18,19]. In this paper, we extend the range of previous
results by analyzing the effect of the obstacle position for
different sizes of both the outlet and the obstacle. Furthermore,
we investigate the effect of the obstacle in the features of the
flow rate and its fluctuations. Finally, the comparison between
the arches formed in silos with and without an obstacle reveals
meaningful geometrical differences which seem to be related
to the pressure variation. The paper is structured as follows.
First, we explain the experimental setup and procedure. Then,
we show the generality of the effect caused by the obstacle
regardless of outlet size. In the next two sections we analyze
the flow rate properties in connection with clogging. Finally,
we relate the pressure reduction induced by the obstacle with
the arch shape and draw some conclusions.

II. EXPERIMENTAL PROCEDURE

The experimental setup consists of a two-dimensional
rectangular silo 800 mm high and 200 mm wide. It is made
of two glass sheets separated by two flat metal strips 1.1 mm
thick and 800 mm high. These metal bands are the side walls,
so the distance between them (200 mm) fixes the width of the
silo. The silo bottom is flat and formed by two facing metal
flanges, so that their edges define the outlet size R, which can
be varied at will (Fig. 1). Above the bottom, a disk of diameter
DI is placed vertically above the outlet center. In most of the
experiments DI is set at 10 mm, although in Sec. V this value
has been modified in order to study its effect in the discharge
phenomenon. The distance h from the bottom of the obstacle to
the outlet (see Fig. 1) can be varied and is carefully measured
with an accuracy of 0.05 mm. As in a previous work [9], the
case of a silo without obstacle will be referred to as h → ∞.

The silo is filled with a sample of monodisperse stainless
steel beads with a diameter of 1.00 ± 0.01 mm. Hence,
the grains are disposed between the two glass sheets as a
monolayer. The silo filling is performed by pouring the grains
along its whole width through a hopper at the top. After the
silo filling, grains start to flow through the outlet until an
arch blocks it. The particles are collected in a cardboard box

FIG. 1. Photograph of an arch formed above the outlet. The
dashed horizontal segment marks the line where the crossing of each
bead is scored to compute passage times. R is the length (size) of
the outlet and h is the distance from the bottom of the obstacle to
the outlet. Particles forming the arch are indicated by crosses and
particles forming the base of the arch are indicated by circles.

placed on top of a balance. As the weight of one particle is
known, the size of the avalanche s—the number of particles
fallen between two consecutive clogs—is easily calculated.
Then, a picture of the region above the orifice is taken with a
standard video camera and further analyzed in order to detect
the position of every particle in the image. From these, the
particles forming the blocking arch are obtained as explained
in Ref. [20]. The experiment is resumed by blowing a jet
of compressed air aimed at the orifice that starts a new
avalanche. The experimental setup is automated and controlled
by a computer. This allows us to register a large number of
avalanches (between 800 and 3000) and the corresponding
arches at each run. Let us note that the silo is refilled whenever
the level of grains falls below a preset lower limit of around
300 mm (1.5 times the width of the silo). The reason for this
is to avoid pressure variations at the bottom due to the amount
of grains in the silo; recall that the pressure at the base of a
silo saturates and is therefore independent on the filling level
as long as the height of the granular layer exceeds a certain
level [21].

Additionally, for each experimental condition, a number
of movies were recorded of the region above the outlet with
a high speed camera at 1500 frames per second during a
total time lapse of 40 s. These recordings allowed us to
accurately measure the moment at which each particle crosses
the outlet (with a precision better than 1 ms). From this, the
flow rate q (in number of particles per second) is calculated
within time intervals of 30 ms. It should be noted that the
flow rate measurements were always performed well inside
the avalanches. In particular, we always waited 3 s after the
beginning of the avalanche and we stopped the measurement
at least 1 s before the end of the avalanche. In this way we
intend to avoid any possible influence of a transient regime
at the beginning or the end of the avalanche. We remark that,
as reported before [23], it is possible to find values of q = 0
within the avalanche. Such events were proposed to correspond
to unstable clogs: arches that interrupt the flow of the particles
for a short time but were not strong enough to durably clog
the silo. From all the values of q obtained (typically 1300
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h
→

∞

FIG. 2. (Color online) (a) Mean avalanche size vs h for R =
3.13 mm (�), R = 4.20 mm (◦), and R = 4.55 mm (�). Horizontal
lines indicate the values of 〈s〉 when h → ∞. (b) Same results as
in panel (a), but the mean avalanche size is divided by the mean
avalanche size at h → ∞ corresponding to each value of R.

measurements for each experimental conditions) we calculated
the average flow rate 〈q〉 as well as its coefficient of variation.

III. CLOGGING REDUCTION: DEPENDENCE
ON THE OUTLET SIZE

In a previous work, it was shown that the avalanche
size distribution displays an exponential decay for all the
obstacle positions [9]. Hence, the mean avalanche size 〈s〉
can be defined and used as a characteristic parameter of the
distribution. Let us now focus on the behavior of 〈s〉 as a
function of the obstacle height above the outlet (h) for different
outlet sizes. In Fig. 2(a) we plot the experimental values of
〈s〉 vs h for three different outlet sizes (R = 3.13, 4.20, and
4.55 mm). For these values of R, the mean avalanche size
if the obstacle is absent (〈sh→∞〉) extends over a wide range:
from 〈sh→∞〉 = 100 to 〈sh→∞〉 = 3000 particles. These values
are represented by dashed horizontal lines in Fig. 2(a). This
plot manifests that the mean avalanche size as a function
of h displays the same trend independent of the outlet size.
In all the cases, for positions of the obstacle above 10 mm
or so, the value of 〈s〉 is very similar to the value obtained
without obstacle. This indicates that for such values of h the
obstacle effect nearly vanishes. When the obstacle approaches
the orifice from h → ∞, 〈s〉 increases, displaying a maximum
for h ≈ 4 mm. For smaller values of h the mean avalanche
size decreases, because arches begin to build up between the
obstacle and the bottom (before that, arches just span over the
exit orifice without touching the obstacle) [9].

Despite the similar behavior displayed in Fig. 2(a) for
different outlet sizes, it is evident that the consequence of the
peak is enhanced as R increases. This result is more obvious
if we plot 〈s〉 divided by the values of 〈sh→∞〉 corresponding
to each R [Fig. 2(b)]. This behavior makes sense, because as
R increases and approaches values of “no clogging,” arches
are composed of more particles and are weaker [22,24].
Hence, a similar decrease of pressure can result in a stronger
reduction of the clogging probability (or enhancement of the
mean avalanche size) as R increases. Another interesting fact
observed in Fig. 2(b) is that the position of the peak does
not depend significatively on the outlet size. This result can
be understood if we assume that the decay of 〈s〉 for small
values of h is due to clogs developed between the orifice and
the obstacle. Thus, in this region, the parameter that governs
clogging is not R but the distance between the bottom of the
obstacle and the bottom of the silo. In any case, the mechanisms
causing clogging for such small values of h—which should be
closely related to clogging in inclined orifices [25,26]—are
not the focus of this paper. In brief, if we just consider the
domain where arches are not formed between the outlet and
the obstacle (h > 4), it can be stated that the bigger the outlet,
the stronger the effect of the obstacle in the clogging reduction.

IV. FLOW RATE

In this section we analyze the effect of the obstacle on the
flow rate (calculated as explained in Sec. II). We first show in
Fig. 3(a) the results of the average flow rate 〈q〉 obtained for
different obstacle positions h. Clearly, the behavior is similar
for the three outlet sizes (R) studied in this work. When h

is too small, the flow rate is smaller than the one obtained
without obstacle [which is marked with dashed horizontal lines

h
→

∞

FIG. 3. (Color online) (a) Average flow rate vs h for R = 3.13 mm
(�), R = 4.20 mm (◦), and R = 4.55 mm (�). Error bars are
confidence intervals at 95%. Horizontal lines indicate the values of
〈q〉 when h → ∞. (b) Same results as in panel (a) but dividing the
average flow rate by the average flow rate at h → ∞ corresponding
to each value of R.
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in Fig. 3(a)]. This is due to the short distance between the outlet
and the obstacle, which strongly affects the flow rate. If the ob-
stacle position is moved upward, far from the orifice, the flow
rate can be increased, reaching values up to 10% higher than in
the silo without obstacle. This result is in agreement with recent
results obtained for large outlet sizes where clogging did not
appear [16,17]. The measurements displayed in Fig. 3(a) also
indicate that the flow rate enhancement is more conspicuous for
the smallest outlet size. In addition, it seems that the transition
point from flow rate reduction (at small values of h) to flow
rate enhancement (at high values of h) moves towards higher
values of h as R is increased. This is more clearly seen if we
represent the results of the flow rate rescaled by the flow rate
obtained without obstacle corresponding to each outlet size,
that is, 〈q〉/〈qh→∞〉 [see Fig. 3(b)].

We remark that no obvious relationship can be perceived
between the average flow rate and the mean avalanche size
measurements. Indeed, the effect of the obstacle on the
avalanche size is more prominent as R is increased, whereas
the effect on the flow rate is stronger for small R. At the
same time, the obstacle positions at which the maximum flow
rate is obtained do not coincide with the positions at which
the avalanche size is maximized. All these facts suggest the
different nature of two processes: the flow of particles through
the outlet and the clogging due to arch formation [27].

On the other hand, it has been recently proposed that some
connection does exist between the mean avalanche size and
the fluctuations of the flow rate [23]. Indeed, it was shown
that in a two-dimensional (2D) silo the values of q display
a Gaussian distribution if the outlet size is large. In contrast,
as R was reduced and the region of clogging approached,
there was an increase on the number of events with q ≈ 0,
so that the distribution was no longer Gaussian. Those events
were attributed to the existence of partial clogs that were not
strong enough to permanently halt the flow. In Fig. 4(a) we
present the time series of q obtained for a silo with orifice
size R = 4.2 without obstacle. In agreement with Ref. [23],
the trace displays downward spikes in which the flow goes to
zero. These events are consequence of temporal (not definitive)
interruption of the flow. If the same results are presented for
the case of a silo with an obstacle of 10 mm diameter placed
at h = 4.2 [Fig. 4(b)] it becomes clear that the downward
spikes disappear. Recall that h = 4.2 is the obstacle position
for which the avalanche size is maximum and hence the
clogging probability is minimum. In addition, from Fig. 4(b)
it seems that placing an obstacle also minimizes the upward
fluctuations, making the flow rate more homogeneous while
its average value is practically unaltered.

In Figs. 4(c)–4(f) we present the normalized distributions
of q for four different obstacle positions. Figure 4(a) shows
the distribution for q without obstacle, where the existence of
a large number of events with q ≈ 0 is rather obvious. As the
position of the obstacle is moved toward the outlet, the number
of events corresponding to q ≈ 0 is reduced, to the point of
being almost absent when h = 4.2 [Fig. 4(d)]. In addition,
decreasing h, the histograms become narrower, implying that
the placement of the obstacle helps to avoid fluctuations of
the flow rate. The results obtained for the distributions of q

for the two other outlet sizes (not shown) display the same
behavior.

FIG. 4. Time series of the flow rate q (beads per unit time as
measured at nonoverlapping time windows of 30 ms) for an orifice
size R = 4.2 and an obstacle of 10 mm diameter placed at (a) h → ∞
and (b) h = 4.20 mm. In panels (c)–(e) the normalized histograms of
the flow rate values are presented for different obstacle positions,
namely (c) h → ∞, (d) h = 9.04 mm, (e) h = 4.82 mm, and
(f) h = 4.20 mm.

The effect of the obstacle position in the flow rate
fluctuations is quantified by means of the standard deviation of
the distribution divided by the average, that is, the coefficient
of variation CV = σq/〈q〉. The results obtained for different
obstacle positions and the different values of R are presented
in Fig. 5. Interestingly, the global behavior obtained can be
easily related to the one reported in Fig. 2(a) for the mean

FIG. 5. (Color online) Coefficient of variation, i.e., standard
deviation of the values obtained for the flow rate q rescaled by 〈q〉,
vs the obstacle position for R = 3.13 mm (�), R = 4.20 mm (◦), and
R = 4.55 mm (�). The horizontal lines indicate the values of σq/〈q〉
for h → ∞ for each value of R.
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FIG. 6. (a) Mean avalanche size, (b) average flow rate, and (c) coefficient of variation for different obstacle diameters (DI ). In all the graphs
DI = 0 represents the values obtained for the silo without obstacle. All the obstacles were placed at h = 3.05 ± 0.07 mm in a silo where the
outlet size was R = 3.13 ± 0.05 mm. Error bars [which are too small to be perceived in panel (a)] are confidence intervals at 95%.

avalanche size. For all the outlet sizes studied, high values of
h display values of CV close to the ones seen in the absence
of an obstacle. As h is reduced, the fluctuations decrease just
as the probability of clogging does (which implies an increase
in the mean avalanche size). In all the cases, the minimum of
CV is reached at values of h similar to those for which the
maximum avalanche size is obtained. These results exhibit
the close relationship between clogging reduction and the
fluctuations of the flow rate: Reducing the clogging probability
is always associated with a reduction in the fluctuations of the
flow rate.

Let us finally stress that by placing an obstacle above the
outlet, the flow rate fluctuations can be reduced without an
associated increase of the outlet size and average flow rate. This
implies a clear advantage with respect to the work of Janda
et al. [23], where the reduction of fluctuations was always
associated with an increase of the flow rate.

V. OBSTACLE SIZE

In order to further explore the possible relationship between
clogging and flow rate fluctuations, we have performed some
experiments where the diameter of the obstacle (DI ) has been
varied. We choose a fixed outlet size (R = 3.13 ± 0.05 mm)
and obstacle position (h = 3.05 ± 0.07 mm). The election of R

is based in practical terms as the mean avalanche size is small,
with the consequent time savings that this implies. The reason
for choosing h = 3.05 ± 0.07 mm is that, for such values of
h, both the avalanche size and the average flow rate depend on
the obstacle position (Figs. 2 and 3 respectively). Therefore,
we expect that the change of obstacle size has also an effect
on these variables. We suspect that choosing a higher value of
h could lead to values of the flow rate and avalanche size less
dependent on the obstacle size. In any case, this hypothesis
remains to be confirmed in future works.

In Fig. 6(a) the results of the mean avalanche size are
displayed for five different diameters of the obstacle and
compared with the case without obstacle (which is presented
as DI = 0). The first result that becomes evident is that the
obstacle, whatever its size, causes an important increase of the
mean avalanche size. The mere presence of the obstacle, even
when it is small, prevents the clogging of particles passing
through a bottleneck—at least for the outlet size and the
obstacle position used here. In addition, it seems that there
is a obstacle size (DI ≈ 15 mm) for which the avalanche size

is maximum. This result can be understood as follows: for
small obstacle sizes, the bigger the obstacle, the stronger its
effect in preventing clogging. Hence, enlarging the obstacle
leads to an increase of the avalanche size. This tendency is
reversed for very big obstacle sizes, a fact which is attributed
to an enhancement of the clogging between the obstacle and
the bottom of the silo. Intuitively, an exceedingly large obstacle
would lead to a situation where the flow would be impossible,
as the angle of repose of the material imposes a limit at which
the particles are sustained by themselves [26].

We also analyzed if the flow rate depends on the obstacle
size; measurements are presented in Fig. 6(b). It can be seen
that as the diameter of the obstacle becomes larger, the average
flow rate becomes smaller. This behavior can be understood if
we think that increasing the obstacle size leads to a reduction
of the distance between the obstacle and the static region
of grains at the bottom corners of the silo imposed by the
angle of repose. This process is analogous to moving the
obstacle towards the orifice (decreasing h). Let us recall that the
obstacles of different diameters were placed at a position (h =
3.05 ± 0.07 mm) for which the average flow rate decreases as
the obstacle approaches the outlet (as shown in Fig. 3).

Finally, in Fig. 6(c) we show the variation coefficient
as a function of DI . Interestingly, the highest value of
σq/〈q〉 is obtained for the silo without obstacle, where the
minimum value of the mean avalanche size is also found.
In addition, the coefficient of variation also displays the
nonmonotonic dependence on DI that was observed for the
mean avalanche size, supporting the suggestion in Sec. IV
about the relationship of reduced clogging probability and
lessened flow rate fluctuations. In contrast, the average flow
rate and the mean avalanche size (or the clogging probability)
do not seem to be related in any recognizable way.

VI. ARCH SHAPE

From the pictures recorded in the experiment (Fig. 1) the
position of the beads in the arches that block permanently
the silo can be accurately obtained. As reported in a previous
paper [20], the particles forming the base of the arch are not
considered to belong to it, in compliance with the definition
of arch given in numerical works [28]. In practical terms, the
particles in the base are those whose centers are at the extreme
positions in the horizontal direction. In Fig. 1 the centers of
the particles belonging to the arch are marked with crosses
and the particles of the base are marked with circles. Once the
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FIG. 7. (Color online) (a) Normalized histogram of the size of the arches measured in number of beads (η). (b) Normalized histogram
of the arch height (note the semilogarithmic scale). (c) Normalized histogram of the arch span (in semilogarithmic scale). (d) Normalized
histogram (in semilogarithmic scale) of the aspect ratios (A) of the arches, defined as half the span divided by the height. In all the graphs
measurements have been carried out in a silo with an outlet size R = 4.2 mm, without an obstacle (�) and with a 10-mm-diameter obstacle
placed at h = 4.2 mm (◦).

particles forming the arch have been identified, a number of
arch properties can be analyzed (the size, measured in number
of beads; span; height; and aspect ratio). The span is defined as
the distance, projected on the horizontal direction, between the
two outermost particles of the arch. Accordingly, the height
is defined as the distance between the vertical coordinates
of the centers corresponding to the highest and the lowest
beads of the arch. Finally, the aspect ratio (A) is calculated
as the quotient between half the span and the height of the
arch. All these parameters will allow us to explore if the
presence of an obstacle induces any kind of difference in the
geometrical properties of the arches. In this work, we compare
the arch features in a silo with an orifice of R = 4.2 mm in
two different situations: without obstacle and with an obstacle
at h = 4.2 mm. We note that for this value of R, the obstacle
placed at h = 4.2 mm yields the maximum avalanche size
observed [Fig. 2(a)].

For these two cases, namely, no obstacle and an obstacle
placed at h = 4.2 mm, let us compare the arch size, measured
in number of beads (η). In Fig. 7(a) we present the two arch size
distributions. Clearly, smaller arches (with fewer particles) are
formed when there is an obstacle. The arch height distribution
[Fig. 7(b)] and the arch span distribution [Fig. 7(c)] confirm
this result: In the presence of an obstacle the arches are shorter
and narrower. The aspect ratio A, plotted in Fig. 7(d), shows
how arches are flatter (higher A) when there is an obstacle. In
addition, it seems that both distributions present an exponential
decay in the aspect ratio probability.

The aspect ratio of an arch is a especially important variable,
as it is used as a key ingredient in one of the few models
linking the silo clogging probability to the arch properties
[1,29]. In this model the arch is proposed to be semicircular,
that is, has an aspect ratio equal to one. In an experimental
work performed afterward, the validity of this assumption was
demonstrated for large arches (broader than the outlet by more
than one bead diameter) [20]. In addition, the aspect ratio of the
arches is appealing because it may reflect interesting features
related to the loads sustained by them. Thus, an aspect ratio
smaller than one (pointed arch) would indicate that the arch is
optimized to sustain a vertical pressure. An arch optimized to
sustain a horizontal load would be flatter, exhibiting an aspect
ratio larger than one. A semicircular arch (aspect ratio one) is
the preferred shape to optimize an isotropic pressure [30,31].
Based on these assumptions, the results presented in Fig. 7(d)
are consistent with the fact that an obstacle above the outlet
screens the pressure of the particles in the silo. If so, the
flatter arches (higher aspect ratio) obtained when an obstacle
is present could be the consequence of the load reduction in
the vertical direction caused by the obstacle.

Once we have seen that the arches developed in the presence
of an obstacle are smaller (in number of particles, height, and
span) and flatter, we can consider if those are independent
effects or else if one effect is caused by the other. Indeed, in
a previous work [20] it was suggested that all these variables
are strongly related. In Fig. 8 we present the values of the
aspect ratios averaged over all the arches formed by a given
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FIG. 8. (Color online) Average aspect ratio for arches as a func-
tion of their number of particles (η). As in Fig. 7, the measurements
have been carried out in a silo with an outlet size R = 4.2 mm,
without an obstacle (�) and with a 10-mm-diameter obstacle placed
at h = 4.2 mm (◦). The error bars are the 95% confidence intervals.

number of particles. The results obtained for silos without
an obstacle and with an obstacle at h = 4.2 mm are almost
identical and confirm that the aspect ratio of the arches is one
when they are sufficiently large. The only difference between
both situations is that arches in the silo without obstacle are
formed by a higher number of particles—reaching maximum
values of 10 instead of 9—something that was expected from
Fig. 7. The fact that the obtained results in both situations are
so far indistinguishable seems to indicate that the arches of a
given number of particles have the same geometrical properties
regardless of the presence of an obstacle. The only effect of
placing an obstacle is to prevent the formation of pointed
arches (aspect ratio smaller than one) which, in general,
consist of more particles. It cannot be conclusively determined
whether the aspect ratio is responsible for this behavior—-the
cause could instead be ascribed to another variable—but
the abovementioned relationship between the aspect ratio and
the load distribution makes it a likely candidate.

VII. CONCLUSIONS

We have presented a detailed analysis of the effect that
placing an obstacle above the outlet of a silo has on the flow
and clogging processes. The measurement of the dependence
of the avalanche size on the obstacle position, for different
outlet sizes, reveals that the clogging reduction caused by the
obstacle is enhanced as the outlet size is increased, thereby
approaching the region of “no clogging.” This phenomenon
can be understood in terms of the robustness of the arches. If
we assume that arches become weaker as their size increases, it
seems plausible that a similar pressure reduction has a stronger
effect in greater arches than in smaller ones. Although it is still
not clear if there is a critical outlet size above which clogging
is forbidden [5,6], if we assume that this boundary does exist
in practical terms, then it makes sense that small perturbations
have more consequence as the critical point is approached.

We have also presented results of the flow rate properties
for different outlet sizes and obstacle positions. Concerning
the average flow rate, it is shown that the obstacle can cause
an increase up to around 10%. This increase of the flow rate is
shown to be relatively more pronounced as the outlet size

is reduced. In other words, the placement of the obstacle
has a stronger effect in the flow rate for small outlets. This
trend is opposite the one observed for the avalanche size
(or the clogging probability). Indeed, it seems that there is
not any relationship between the average flow rate and the
probability of clogging. On the contrary, we report a clear and
strong relationship between the clogging reduction (increase of
avalanche size) and a decrease of the coefficient of variation in
the flow rate fluctuations. This could be of practical interest as
it suggests that the measurement of this coefficient of variation
would be enough to estimate the mean avalanche size. The
relationship among these two parameters may be signaling
that the number of stable and unstable clogs is correlated.
Increasing the number of stable clogs leads to a decrease of the
avalanche size, while increasing the number of unstable clogs
provokes an enhancement of the fluctuations. This behavior
was already observed in previous works [23] by varying the
outlet size in a silo without an obstacle: By increasing the
outlet size, the probability of clogging was reduced, as well
as the fluctuations, but the price was a corresponding increase
of the average flow rate. An interesting fact observed when
placing an obstacle is that fluctuations and average flow rate
are not necessarily linked. The use of different obstacle sizes
has allowed us to check that this effect is robust.

Finally, we have performed an exhaustive comparison of
the shape of the arches developed in a silo in the two situations
where the pressure difference is apparently more significant:
the silo without an obstacle and the silo with an obstacle
placed at h = 4.2 mm. The results reveal that smaller and
flatter arches are obtained in the silo with an obstacle—the
case in which the pressure at the outlet is reduced. This can be
qualitatively understood if we recall that pointed arch shapes
optimize vertical loads (which seem to be more important in
the absence of an obstacle) and flatter arches are the optimal
response to horizontal loads (which seem to be more important
in the silo with obstacle).

In summary, the experimental results presented in this
work show that the placement of an obstacle has a robust
effect in the silo clogging reduction. In addition, we report
convincing evidence that the mechanism by which this effect is
attained is a pressure reduction near the orifice. However, other
possibilities—such as a modification of the flow streamlines
similar to the one reported in Ref. [32]—should not be
discarded. Another interesting analogy of this work can be
drawn with experiments where a big obstacle moves slowly
within granular media [33,34]. Indeed in Ref. [34] it is
suggested that the stress fluctuations induced by an obstacle
in a dense granular flow close to the jamming transition may
help to overcome the flow threshold. Further experiments and
simulations would be interesting in order to characterize the
pressure exerted by the granular media on the obstacle as well
as its fluctuations.
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[14] U. Tüzün and R. M. Nedderman, Chem. Eng. Sci. 40, 325
(1985).

[15] B. Zelinski, E. Goles, and M. Markus, Phys. Fluids 21, 031701
(2009).

[16] S. C. Yang and S. S. Hsiau, Powder Technol. 120, 244 (2001).

[17] F. Alonso-Marroquin, S. I. Azeezullah, S. A. Galindo-Torres,
and L. M. Olsen-Kettle, Phys. Rev. E 85, 020301(R) (2012).

[18] M. A. Aguirre, J. G. Grande, A. Calvo, L. A. Pugnaloni, and J.-C.
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