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Effects of weak disorder on stress-wave anisotropy in centered square nonlinear granular crystals
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The present study describes wave propagation characteristics in a weakly disordered two-dimensional
granular media composed of a square array of spheres accommodating interstitial cylindrical intruders. Previous
investigations, performed experimentally as well as numerically, emphasized that wave-front shapes in similar
systems are tunable via choice of material combinations. Here, we investigate the effects of statistical variation in
the particle diameters and compare the effects of the resulting disorder in experiments and numerical simulations,

finding good agreement.
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I. INTRODUCTION

The nonlinear behavior of highly ordered granular ma-
terials, that is, granular cystals, originates from both the
Hertzian contact interaction between particles [1] and their
inability to transfer tensile loads. Extensive one-dimensional
(1D) studies have shown uniform chains of spheres to support
the formation and propagation of solitary waves with distinct
properties [2-5]. The existence of solitary waves in simple
2D systems has also been observed [6]. Further studies of
2D granular crystals allow for the possible design of complex
predetermined loading paths within the system.

Previous studies of the static load transfer path in 2D
granular systems showed that ordered granular arrays allow the
load to be transmitted primarily along lattice vectors [7—10],
while disordered particle arrangements result in complicated
force chain networks [7,10—13]. The role of force chains in
the dynamic load transfer within disordered granular systems
has also been studied [14—16]. Unlike disordered systems, the
dynamic response of 2D granular crystals has been shown
to possess differing, ordered wave propagation paths based
on the underlying particle arrangement [6,17-22]. In earlier
studies based on a perfect contact lattice of uniform particles,
we showed, using experiments and numerical simulations,
the ability to systematically alter the wave-front properties
[21,22].

The presence of disorder arising from particle imperfections
in real granular arrays is inevitable and results in experimental
variability of the load transfer path. A variety of causes could
account for the disorder present in real granular assemblies,
such as tolerances in the particle size and shape imperfections.
Even slight variations in particle sizes can result in the presence
of gaps or local compressive forces in the initial contact lattice.
It has also been suggested that irregularities in particle surface
profiles could lead to deviations from Hertzian behavior and
reorganization of particles between successive experiments
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[23]. Other sources of disorder stem from the redundancy in
particle contacts in densely packed arrays and the presence of
friction [7,9,10].

The particle imperfections, or small defects, act as weak
scattering points [8,24-26]. While the majority of load is still
transferred along the preferential load path, slight misalign-
ments divert some of the force to neighboring particles [8].
For example, several studies have looked at the effects of
weak disorder on the static load transfer path of a triangular
or hexagonal array of particles subject to a point load
[7-10]. The presence of disorder causes the ideal sharply
peaked response to broaden; the further away one looks from
the loading point, the less pronounced the ideal load path
since the disorder compounds [7-10]. Mueggenburg et al.
experimentally observed the same trends for both quasistatic
and dynamic loading conditions for 3D hcp and fcc granular
arrays [8].

Several studies considered the effects of weak polydisper-
sity on the dynamic load transfer path in granular crystals
[25-29]. However, the studies of 2D crystals [27-29] focused
on the effects of disorder on the weakly nonlinear behavior of a
hexagonal packing of spheres that is, the case where excitation
displacements are small or comparable to static loadings. Coste
and Gilles observed that, by increasing the static prestress on
a granular array, the initial contact lattice becomes regularized
and deviations from Herztian behavior are no longer observed
[27,28]. In the highly nonlinear regime, previous dynamic
studies primarily focused on the effects of relatively large
imperfections, such as voids [30,31], significant mass or
size deviations [31-34], and cracks [35]. The presence of
large defects causes the scattering behavior to become more
pronounced, significantly altering the system response from
the undamaged case. By further increasing disorder in the
form of significant size and material distributions or disordered
particle placements, force chain networks arise and we lose the
predetermined load transfer path of interest [14—16].

This work is an extension of a previous study [22],
in which we showed the ability to methodically alter the
shape and properties of the wave fronts traveling through a
centered square granular crystal. In this study, we numerically
investigate a wider range of particle material properties for
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an ideal crystal. Additionally, this work focuses on the effects
of weak polydispersity on the highly nonlinear transient wave
propagation in a densely packed granular crystal subjected to a
localized impulsive excitation. The incorporation of multiple
materials within each test configuration leads to additional
complexities in the wave scattering behavior compared to pre-
vious studies. We compare experimental results with numerical
simulations which have incorporated diameter tolerances of
the experimentally tested particles to determine the effects of
weak disorder on the wave-front characteristics.

II. PROBLEM DESCRIPTION AND APPROACH

The centered square granular crystals studied in this work
consisted of a 20-by-20 square packing of spherical particles
with central particles (i.e., intruders) residing in the interpar-
ticle spaces within the square arrays, effectively forming a
smaller 19-by-19 square lattice. To simplify the experimental
assembly, cylindrical particles were used as intruders. The
cylindrical particles were oriented such that their longitudinal
axes were perpendicular to the plane of the 2D bed. The radii
of cylindrical particles [given as r = (v/2 — 1)R] is fixed by
geometry such that they touch the surrounding spheres (radii
R) and their height is chosen to be equal to the diameter of
the spherical particles. The initially uncompressed granular
crystal is excited impulsively, either centrally or along one
edge.

We performed a series of experiments in order to mea-
sure the average wave-front characteristics and capture the
variability due to imperfections in the initial contact lattices.
Numerical simulations were performed for ideal granular
crystals as well as for weakly disordered crystals. Here, we
use the term ideal granular crystals to refer to assemblies
with identical particles placed along even grid spacings. In
this study, weakly disordered crystals were modeled by in-
corporating small random deviations in the particle diameters,
resulting in initial contact lattice imperfections.
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A. Experimental methods

Experiments were performed on self-standing granular
crystals assembled within a confining box. Custom-fabricated
sensor particles, instrumented with miniature triaxial ac-
celerometers, replaced solid spheres at selected locations
within the crystal. Refer to [6] for a detailed description of
the experimental setup and sensor particles. The acceleration
recorded from the sensor particles can be directly compared
with the acceleration of the center of mass of each particle
obtained from numerical simulations. We performed experi-
ments on four different sphere-cylinder material combinations:
(a) steel’-ptfe® (b) delrin*-ptfe®, (c) steel®-steel, and
(d) delrin®-steel®, where the s and c superscripts denote sphere
and cylinder materials, respectively.

The spherical particles (from [36]) were 19.05 mm in
diameter. The steel spheres had a diameter tolerance of
40.0127 mm (0.0667%) and the delrin spheres had a diameter
tolerance of +0.0254 mm (0.1333%). The cylinders were
machined to fitexactly in the interstitial spaces, with a specified
diameter and tolerance of 7.8908 + 0.0127 mm (0.1609%).

The system was excited by a striker sphere centrally
impacting the granular crystal, in-plane between the 10th and
11th edge spheres. Since the mass of the impactor can influence
the response of the system (causing more than one impact
in the case of a heavy striker [37,38]), the striker particles
were chosen to be identical to the spherical particles in the
granular crystal, either delrin or steel based on the material
combination being tested. The striker sphere was given an
initial velocity with a solenoid mechanism and the striker
velocity was measured just before impacting the system [6].
The average striker velocity was V, = 0.92 m/s for the delrin
sphere and V, = 0.73 m/s for the steel sphere.

In order to capture the wave propagation at variable
locations within the system, we collected data for three
different sensor configurations (Fig. 1) for each material
combination. To capture the variability between successive
experiments, we repeated each experiment 15 times before
modifying the sensor configurations. Additionally, each ma-
terial configuration was unpacked, reassembled, and retested

® sphere
® sensor sphere
cylinder

® sphere
@ sensor sphere
cylinder

2D

x
'

striker striker

striker

>l<——-<

LE

(a)

LX

(b) ()

FIG. 1. (Color online) Schematic diagrams showing the sensor locations in experiments. (a) Sensor configuration 1 had sensors 1A, 1B,
1C, and 1D located at XgY10, XsY7, XsYs, and XgY14 of the 20-by-20 sphere array for all material combinations. (b) Sensor configuration 2
had sensors 2A, 2B, 2C, and 2D located at X3Y19, X12Y10, X16Y10, and Xg¥;; of the 20-by-20 sphere array for the steel®- ptfe®, delrin®-ptfe®,
and steel’-steel® crystals. Sensors 2A, 2B, 2C, and 2D were moved to locations X4Y19, Xg¥10, X12Y10, and XY of the 20-by-20 sphere
array (4 spheres closer to the impact), due to small signal amplitudes for the delrin®-steel®, crystals at locations far from the striker impact.
(c) Sensor configuration 3 had sensors 3A, 3B, 3C, and 3D located at X,Ys, X¢Ys, XgY4, and XgYyg of the 20-by-20 sphere array for all material
combinations. For all experiments, the striker sphere impacted the system between the 10th and 11th edge spheres with initial velocity V,.
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three times for sensor configuration 1 (see Fig. 1), totaling 45
experiments (for each sphere-cylinder material combination)
for sensor configuration 1. This unpacking and reassembling
allowed us to also capture the variability caused by differences
in the initial contact lattices of the granular crystals.

B. Numerical simulations

In the numerical component of the present work, the
individual particles are represented as point masses. There
are two types of contacts in the system: one consisting of
two spherical particles and another between a spherical and
cylindrical particle. These contacts are modeled by nonlinear
force-displacement laws as described in Ref. [1] for spherical-
spherical contact and [39] for spherical-cylindrical contact at
a curved surface. The force-displacement contact law between
two spherical solids i and j is given as

o 4 EE; RiiRy; 3p
Fij =3 3 3 Ajj
. 3 Esj(l - vsi) + Esi(l - vsj) Rsi + st

_ pss A3/2
N )

where 7} is the contact force acting along the line joining
the centers of the i-j pair and the ss superscript indicates an
interaction between two spheres, kj; is the nonlinear stiffness
for two spheres in compression, Ey;, E;, Vs, Vsj, Ry, and Ry;
respectively represent the Young’s moduli, Poisson’s ratios,
and radii of spheres, and A;; is the relative displacement of the
compressed particles. The nonlinear compressive interaction
between cylindrical and spherical particles contacting at their

curved surfaces is given as
2 1dP (1\'* 5,
FS =ZgE*2R | ——— (=) A}
vo3 e de (K) Y
= kAL, 2)
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where superscript c¢s indicates a cylinder-sphere interaction,
E* = E;E.J[Es(1 —v}) + E.(1 —v})], E. and v, are, re-
spectively, the Young’s modulus and Poisson’s ratio of the
cylindrical particles, e is the eccentricity of ellipse of contact
between spherical and cylindrical particles, and K and P are
the complete elliptic integrals of the first and second class, re-
spectively, with elliptic modulus e [39], with e = sin«, where
o is the angular eccentricity. For both spherical-spherical
and spherical-cylindrical contacts, the force-displacement law
only applies when the particle pairs are in compression; the
interaction force is set to zero whenever the particles separate.
Materials of both spherical as well as cylindrical particles are
assumed to be linear elastic and any effects due to material
nonlinearity, plasticity, and dissipation are assumed to be
absent.

We prescribe boundary and initial loading conditions, and
the dynamic evolution of the granular system is evaluated using
an explicit time scheme with the granular module [40] of the
LAMMPS molecular dynamics (MD) package [41], specially
modified to allow for both cylinder-sphere and sphere-sphere
contacts. The particle material properties used in the numerical
simulations are given in Table I.

Two types of simulations are performed in the present
work. The first evaluates the wave propagation response of
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TABLE 1. Material properties used in numerical simulations [22].

Density Young’s Poisson’s

(kg/m*)  modulus (GPa) ratio
Stainless steel (type 316) 8000 193 0.30
Delrin 1400 3.1 0.35
PTFE 2200 0.5 0.46

ideal (nonrandom) granular crystals while the second examines
the wave propagation features in weakly disordered granular
lattices.

1. Nonrandom crystals

Numerical simulations of nonrandom crystals are per-
formed on two setups. The first configuration is an extended
pack of the centered square lattice which incorporates ap-
proximately 10 000 of both spherical particles and interstitial
cylindrical intruders. For this extended system, we examined
a wide space of cylinder-sphere mass and stiffness ratios in
order to observe the different regimes of wave propagation.
The extended system is perturbed symmetrically by giving
equal initial velocities to four spheres (Fig. 2), and the different
regimes of wave propagation are analyzed by monitoring the
total compressive force, which for the ith particle is defined as

N;
Fr= | Y [(Fy? + (Fy)*, 3)
j=1

where N; denotes the number of particles adjacent to particle
i and Fy; and F; are, respectively, the x and y components
of contact force due to particle j on particle i. Prior numerical
studies of wave propagation in a sphere-sphere system demon-
strated the existence of different regimes of propagation which
directly depended on the mass and stiffness ratios [21]. Here,
a parametric study is performed to assess the influence of the
mass, m./my, and stiffness, E./E;, ratios on the nature of
propagation in the sphere-cylinder system.

FIG. 2. (Color online) Schematic of extended granular crystal
analyzed in the present study. Larger sized granules represent spheres
(radius, R) while smaller ones are cylinders (radius, r). Wave
propagation studies are performed on an extended set of this packing
by giving a symmetric disturbance, setting initial velocities on four
spherical granules as shown.
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The second setup is a smaller system identical to the to
the experimental setup. Numerical simulations of nonrandom
crystals corresponding to the experimental configuration were
also performed for each of the four sphere-cylinder material
combinations tested in experiments (Fig. 1). For these simula-
tions, the impulse excitation is created with a spherical particle
impacting the crystal between the 10th and 11th edge spheres,
with initial velocity V. (measured from experiments).

2. Weakly disordered granular crystals

Numerical simulations of weakly disordered granular crys-
tals were performed for each of the four sphere-cylinder
material combinations tested in experiments (steel®-ptfe€,
delrin®-ptfe, steel®-steel®, and delrin®-steel®). These numerical
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studies were conducted over a setup similar to the experimental
system described in Fig. 1, and the setup was impacted from
the side by a striker sphere. To describe the variation in radii
numerically, a normal random distribution was chosen around
the mean radius for both types of granules. We assumed
tolerance values correspond to 6 standard deviations, which is
a common statistical interpretation for mechanical tolerances
[42].

To compute the initial configuration for each realization
(each initial contact lattice), a set of normally distributed
random radii for cylindrical and spherical granules was
randomly assigned to the particles of the nonrandom crystal.
Mismatching radii placed on perfect lattice sites cause some
contacts to separate and others to compress. To achieve an
equilibrated starting configuration, the particles were first
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FIG. 3. (Color online) (Center) Different wave propagation regimes mapped on mass (m,/m;) and stiftness (E,/E/) ratio space for the
cylinder-sphere (2-1) system. (Top) Diagrams depicting examples of different wave fronts achievable in the systems at selected mass and
stiffness ratios, indicated with circles in the central figure. (Bottom) Four insets depicting the propagating wave-front shapes for the four
material systems tested in experiments, indicated with diamond-shaped symbols in the central figure.
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subjected to a gravitational field to ensure a tightly packed
configuration. The random particle velocities arising from
the disorder were damped by applying a viscous damping
force on each particle, which was proportional to the particle
velocity. The strength of the gravitational field and the viscous
damping force were gradually reduced until contact forces due
to gravity were eliminated and the whole system of particles
was consolidated. The settled weakly disordered system was
impacted to study the wave propagation.

The effects of disorder were investigated in two ways. The
first one consisted of preparing multiple random realizations of
the granular crystal and impacting each individual realization
once (MR-SI, multiple realizations with single impacts).
The second approach involved impacting a single realization
multiple times (SR-MI, single realization with multiple im-
pacts). For each study of MR, 15 realizations were prepared.
Additionally, for several SR (chosen from the 15 MR) the
initial configuration was impacted 15 times, allowing the
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system to come to rest between impacts. The acceleration time
response of individual particles was monitored and compared
with experimental results.

III. RESULTS AND DISCUSSION

A. Nonrandom system response

The present sphere-cylinder granular system supports a
variety of propagating wave fronts which are tunable through
the choice of mass and elastic moduli (stiffness) ratios as
shown in Fig. 3. There are two clearly distinguished wave-front
regimes: (1) lattice-directed or directional propagation and
(2) dispersed or 2D propagation. Within the dispersed propa-
gation category, we further distinguish two types of transient
wave propagation: (2a) pulsed and (2b) transitional. The di-
rectional wave propagation is characterized by pulses traveling
along the lattice directions [Fig. 3(i)], similar to the case of a
square array of spheres without interstitial cylinders [6]. This
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FIG. 4. (Color online) Peak acceleration (m/s?) in the wave front as a function of X1 (in units of spheres) for each sphere-cylinder material
combination: (a) steel’-ptfe®, (b) delrin®-ptfe®, (c) steel*-steel®, and (d) delrin®-steel®. The results from numerical simulations for the ideal
granular crystal are shown by the solid (red) lines. The mean and standard deviation are represented by a dashed lines and dark (blue) shaded
regions for the MR-SI (15 realizations each with a single impact) and by dot-dashed lines and light (gray) shaded for the SR-MI (a single
realization with 15 impacts).The experimental data are represented by black dots with error bars for the three realizations tested with 15 impacts

each.
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directional behavior is characteristic of systems having a low
stiffness ratio and high mass ratio. The 2D pulsed regime is
characterized by a convex wave front, with either a square
or a circular propagating wave-front shape [Fig. 3(iv)]. This
propagation regime occurs for mass ratios less than 0.1 and
stiffness ratios greater than 0.5. Systems with wave fronts in
the 2D transitional regime propagate without the presence of
a distinct leading pulse and were observed to support a wide
range of wave-front shapes (Figs. 3(ii) and 3(iii)].

The present results are consistent with the findings of
previous reports on spherical-spherical systems [21]. The
particle configurations tested experimentally are highlighted
by diamond-shaped symbols in Fig. 3, and their wave-front
shapes in the extended system are shown in the bottom panels
of Fig. 3. The very low stiffness ratio inherent in the steel®-ptfe®
system causes the wave propagation to be directional. While
the other experimental systems (delrin®-ptfe€, steel*-steel®, and
delrin®-steel®) all lie in the transition regime, the shape of the
propagating front is significantly different for each material
combination. As discussed in [22], the trends observed in
experiments were found to be in good agreement with
numerical simulations on nonrandom granular crystals.

B. Weakly disordered system response

We now study how the presence of disorder in experiments
and numerical simulations affects the response of the system
and compare the response with that of ideal granular crystals.
We focus our discussion primarily on how the disorder affects
the shape of the propagating wave fronts. As discussed in
Ref. [22], we can characterize the shape of the wave front
by the relative arrival times or by the wave-front amplitudes
between sensor locations. However, in our system, these two
parameters are not independent. Several studies have con-
firmed a specific wave-speed—amplitude-scaling relation for
1D systems [3-5]. In 2D systems, we expect a similar behavior,
with waves of larger amplitudes traveling faster in specific
directions [22].

For the chosen sensor configurations, the shape of each
wave front can best be captured by looking at the relative
amplitudes and arrival times of the signals along an axis
perpendicular to the impact, for example, the X1 direction (see
Fig. 1). The peak accelerations in the wave front along the X1
direction are shown in Fig. 4 for the four material systems
under consideration. In the case of the steel®-ptfe® crystal
[Fig. 4(a)], the two central rows of spherical particles have
a significantly higher amplitude than the remaining particles
extending to the crystals edge, clearly signifying the highly
directional shape observed in the ideal system (Fig. 3). For
the delrin®-ptfe crystal [Fig. 4(b)], we see a similar trend,
with significantly larger amplitude at the central particles,
but with a more gradual decrease in amplitude as the sphere
locations approach the edges, corresponding to a triangular
wave-front shape. The peak acceleration distribution for the
steel®-steel® crystal [Fig. 4(c)] is smoother, with comparable
amplitudes along X1, corresponding to the circular wave front
predicted for the ideal system. Finally, for the delrin®-steel®
crystal [Fig. 4(d)], the largest amplitudes are now located close
to the crystal edges and the smallest amplitudes at the center
of the domain, indicating the squared, redirective wave-front
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FIG. 5. (Color online) Peak acceleration (m/s?) in the wave front
as a function of X1 (in units of spheres) for the steel*-steel® crystal.
The results from numerical simulations for the ideal granular crystal
are shown by the solid (red) lines. The mean and standard deviation
for three single realizations with 15 multiple impacts (SR-MI) are
represented by dot-dashed lines and shaded light gray regions. The
experimental data are represented by black dots with error bars for
the three realizations tested with 15 impacts each.

shape observed in the ideal crystal numerical simulations
(Fig. 3).

The effects of the weak disorder on the wave-front shapes
of the four tested material systems are also illustrated in
Fig. 4. The wave shapes depicted by average values of
peak acceleration along X1 obtained from MR-SI (multiple
realizations with single impacts) on each system are consistent
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FIG. 6. (Color online) Relative wave-front arrival times along
X1 (spheres) with respect to sensor location 1A, for the delrin®-ptfe®
crystal. The results from numerical simulations for the ideal granular
crystal are shown by the solid (red) lines. The mean and standard
deviation are represented by a dashed line and dark (blue) shaded
region for the MR-SI and by a dot-dashed line and light (gray) shaded
region for the SR-MI. For each sensor location along X1, three sets of
black dots and error bars represent the mean and standard deviation
for the three single experimental realizations with multiple impacts.
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with those predicted for the respective ideal crystals. Addition-
ally, the average peak acceleration at sensor locations in the
three experimental realizations of each system generally lie
within the distributions predicted through MR-SI. Previous
1D studies have shown that the presence of weak disorder
results in attenuation of the leading pulse [25,26]. We observe
a similar trend in the numerical simulations, in which the
average wave-front amplitude predicted through MR of weakly
disordered systems is slightly lower than that of the ideal,
nonrandom, system.

While the overall trends for individual particle responses
from MR closely resembles the ideal system, any single
realization (SR) may produce larger deviations from the
ideal system response. This is illustrated in Fig. 4, in which
a randomly selected SR (one of the MR) is shown for
each sphere-cylinder system. The distribution of wave front
amplitude for an SR depends on the underlying initial contact
lattice and does not vary significantly over multiple impacts
(MI), which may cause slight particle rearrangements. The
wave-front amplitude distributions along X1 for three SR-MI
of the steel®-steel® system are shown in Fig. 5. The variability
in wave-front amplitude distribution between SR is evident and
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arises from slight particle misalignments which are unique to
the individual contact lattice of an SR.

Another way to characterize the effects of disorder on the
wave-front shapes is to consider the relative arrival times
between sphere locations along X1 (Fig. 6). Here, we present
only the arrival times for the delrin®*-ptfe® crystal, since the
results show similar information as the peak acceleration plots
(Fig. 4). As the spheres are located further from the central
particles, the arrival times increase linearly with distance from
the impact location, consistent with a triangular wave front.
Similar to the distribution of wave amplitudes, we note that
the variability, or standard deviation in arrival times, associated
with MR is greater than that emerging from MI. Additionally,
for both SR and MR, the scatter observed in the results is more
pronounced near the sides of the primary wave front. This is
expected since the waves must travel through more particle
contacts and hence encounter more interfaces than the middle
portion. We find good agreement between the numerical results
and the signal variability measured experimentally.

Next, we present in Fig. 7 the acceleration-time curves
measured by our sensors at each particle location. These local
measurements allow for a more direct comparison of the signal
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FIG. 7. (Color online) Experimental and numerical simulation results for the X- and Y-acceleration profiles for sensor configuration 1 (see
Fig. 1) of the delrin®-ptfe® granular crystal. (a) Simulation results for the ideal granular crystal. (b) Experimental results for a single packing
(SR) impacted 15 times. (c) Numerical simulation results for 15 different realizations (MR), each impacted once. (d) Numerical simulation
results for a single realization (SR), impacted 15 times. For visual clarity, the acceleration data at sensor locations 1B, 1D, and 1C are shifted
by 1000, 2000, and 3000 m/s?, respectively, from sensor location 1A. The zero time in the simulations denotes the moment of impact, while
the zero time in experiments is arbitrary since the recorded data are based off the signal arrival time of sensor 1A.
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FIG. 8. (Color online) Peak acceleration (m/s?) in the wave front versus X2 (in units of spheres) for each sphere-cylinder material
combination: (a) steel*-ptfe®, (b) delrin®-ptfe® (c) steel*-steel®, and (d) delrin®-steel®. The results from numerical simulations for the ideal
granular crystal are shown by the solid (red) lines. The mean and standard deviation are represented by dashed lines and dark (blue) shaded
regions for the MR-SI and by dot-dashed lines andlight (gray) shaded regions for the SR-MI. For each sensor location along X2, a set of black
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dots and error bars represent the mean and standard deviation for the single experimental realization with multiple impacts.

variability due to the presence of disorder in the system. We
compare the numerical results obtained for a lattice with no
disorder [Fig. 7(a)] and with experimental results [Fig. 7(b)]
and results obtained numerically for the MR-SI [Fig. 7(c)]
and SR-MI [Fig. 7(d)] cases. Similar to the experimental
data, the numerical results show slight deviations from the
ideal response for each realization. The individual particle
responses corresponding to any one impact in experiments
and numerical simulations are quantitatively different, but
qualitatively similar. The variation in wave-front amplitude,
initial pulse shape, and signal arrival times in numerical
results are similar to those obtained experimentally for the
delrin®-ptfe® crystal (Fig. 7), as well as for the other three
sphere-cylinder systems (not shown).

The individual acceleration profiles also show that variabil-
ity in the tails of the signals is more pronounced than that in the
initially arriving pulse. This effect is linked to the combination
of small compressive forces and gaps present in the system
as a result of disorder. The larger amplitude oscillations in the
tails of the signals are also responsible for the more pronounced
amplitude decay of the leading pulse, evident in the disordered
systems.

In order to study the effects of disorder on the wave-front
propagation along different radial directions within the crystal,
we measure the wave-front peak acceleration distributions
along the X2 (in-line with the impact) and X3 (along a 45°
angle to the impact) directions (refer to Fig. 1). We observe

more variability between the amplitudes along X1 compared to
those along X2 and X3. Sensors A, B, and C along X2 and X3
measure the peak acceleration along a line of particle contacts
originating at the excitation, while sensors A, B, and C along
X1 capture the relationship between the peak acceleration
distributions along several radial directions from the impact.
In all cases, we observe good agreement between ex-
periments and numerical results obtained including initial
contact lattice disorder due to the particle tolerances. In
experiments, additional sources of disorder could arise from
imperfect orientations and surface textures of the confining
walls. Also, minor variability in striker speed and impact
locations can be present in the experiments. Variable striker
speeds are expected to equally affect the measurements at
all sensor locations, while off-center striker impacts are
expected to result in asymmetries in the system response.
We performed additional numerical simulations incorporating
a uniform random distribution of particle diameters (not
shown). A uniform probability distribution leads to more
frequent and larger gaps in the initial contact lattice, that
is, increased disorder. In numerical simulations, we observed
significantly larger wave amplitude variability, corresponding
to less distinguishable wave-front shapes between material
combinations, for a uniform random distribution compared
to the normal distribution of particle diameters. The level of
disorder present in experiments was effectively captured by the
numerical simulations incorporating the normal distribution

. . . 6000 . .
A
| MR - S| EMR-SI | ol R MR - S |
i CIsR-MmI Lt [ IsR-MI 7 [ JsrR-Mi
10000 = |deal 4000 \ = |deal = |deal
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FIG. 9. (Color online) Peak acceleration (m/s?) in the wave front as a function of X3 (in units of spheres) for each sphere-cylinder material

combination: (a) steel’-ptfec, (b) delrin®-ptfe® (c) steel’-steel®, and (d) delrin®-steel®. The results from numerical simulations for the ideal
granular crystal are shown by the solid (red) lines. The mean and standard deviation are represented by dashed lines and dark (blue) shaded
regions for the MR-SI and by dot-dashed lines and light (gray) shaded regions for the SR-MI. For each sensor location along X2, a set of black
dots and error bars represent the mean and standard deviation for the single experimental realization with multiple impacts.
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of particle diameters based on the specified precision ball-
bearing tolerances. Additionally, some discrepancies between
trends observed in experiments and numerical simulations
can be attributed to dissipation which are not accounted for
in our numerical simulations. The presence of dissipation
in experiments results in signal attenuation and time delays
(Figs. 4, 6, 8, and 9).

The average particle responses from MR (both experimental
and numerical) are consistent with the wave-front shapes
predicted by numerical simulations of ideal granular crystals.
For the steel®-ptfe® and delrin®-ptfe® granular crystals, the
average particle responses from MR are in good agreement
with the directional and triangular wave-front shapes, respec-
tively [Figs. 4(a) and 4(b)]. Similarly, for the steel®-steel®
and delrin®-steel® systems, the average particle responses
from MR are comparable with those predicted by the ideal
system. However, the average response of the steel®-steel®
weakly disordered systems produces a slightly more uniform
distribution of peak acceleration in the wave front compared
to the ideal system response [Fig. 4(c)]. Additionally, in both
numerical simulations and experiments, the weakly disordered
delrin®-steel® system results in the diverted impact energy, or
squared wave-front shape to be more pronounced compared to
that of the ideal crystal [Fig. 4(d)].

IV. CONCLUSIONS

We investigated the stress wave propagation in a 2D
granular crystal comprised of spheres arranged in a square
lattice with cylindrical interstitial intruders. Experiments were
compared with numerical simulations to capture the basic
characteristics of the propagating wave fronts. We performed
multiple experiments on the same crystal to capture the
variability in the system response between successive impacts.
We also assembled and tested several individual granular
crystals to determine the effects of variability derived from
differences in the initial contact lattices.

PHYSICAL REVIEW E 86, 031305 (2012)

Numerical simulations were performed on nonrandom
systems for a wide range of sphere-cylinder mass and stiffness
ratios to characterize the properties of the traveling stress
waves supported by this system. By systematically altering
these two ratios, we observed a variety of propagating
wave-front regimes, including directional, 2D pulsed, and
2D transitional propagation. Experiments were performed for
systems in the directional and 2D transitional regime spanning
a wide range of wave-front shapes.

Additional numerical simulations on weakly disordered
systems incorporated particle diameter tolerances. We
independently assessed the variability arising from differences
in initial contact lattices and from particle rearrangements
between successive impacts by performing tests for MR-SI
and SR-MI. The agreements between the acceleration profiles
in experiments and numerical simulations suggest that the
main source of variability present in real systems derives from
particle size imperfections which create a weakly disordered
initial contact lattice.

In both experiments and numerical simulations, larger
discrepancies existed between the average response of SR-MI
and those of the ideal granular crystal, compared to the average
response of the MR-SI. However, while discrepancies exist
between individual tests, the average properties of the wave
fronts for each of the four material configurations tested were
consistent with those predicted by numerical simulations on
ideal granular crystals, confirming the ability to systematically
alter the properties in real 2D arrays. This work is a first
step in designing granular crystals with predetermined wave
propagation paths.
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