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Maximally dense packings of two-dimensional convex and concave noncircular particles
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Dense packings of hard particles have important applications in many fields, including condensed matter
physics, discrete geometry, and cell biology. In this paper, we employ a stochastic search implementation of the
Torquato-Jiao adaptive-shrinking-cell (ASC) optimization scheme [Nature (London) 460, 876 (2009)] to find
maximally dense particle packings in d-dimensional Euclidean space Rd . While the original implementation
was designed to study spheres and convex polyhedra in d � 3, our implementation focuses on d = 2 and
extends the algorithm to include both concave polygons and certain complex convex or concave nonpolygonal
particle shapes. We verify the robustness of this packing protocol by successfully reproducing the known putative
optimal packings of congruent copies of regular pentagons and octagons, then employ it to suggest dense packing
arrangements of congruent copies of certain families of concave crosses, convex and concave curved triangles
(incorporating shapes resembling the Mercedes-Benz logo), and “moonlike” shapes. Analytical constructions
are determined subsequently to obtain the densest known packings of these particle shapes. For the examples
considered, we find that the densest packings of both convex and concave particles with central symmetry are
achieved by their corresponding optimal Bravais lattice packings; for particles lacking central symmetry, the
densest packings obtained are nonlattice periodic packings, which are consistent with recently-proposed general
organizing principles for hard particles. Moreover, we find that the densest known packings of certain curved
triangles are periodic with a four-particle basis, and we find that the densest known periodic packings of certain
moonlike shapes possess no inherent symmetries. Our work adds to the growing evidence that particle shape can
be used as a tuning parameter to achieve a diversity of packing structures.
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I. INTRODUCTION

The problem of packing nonoverlapping particles in d-
dimensional Euclidean spaceRd has been of interest in discrete
mathematics and geometry for centuries. One overarching aim
is to ascertain organizing principles that govern the nature
of dense packings of various shapes [1] in order to better
understand many natural phenomena, including liquid, glassy,
and crystalline states of matter [2–5]; heterogeneous materials
[4]; crystalline polymers [6,7]; and biological systems [8–10];
to name a few. In two dimensions, the packing of hard particles
has implications for understanding the behavior and structures
found in thin films [11], adsorption of molecules on substrates
[12,13], and the organization of epithelial cells [14,15].

In the two-dimensional Euclidean plane R2, considerable
effort has been devoted to study and characterize packings
(roughly speaking, large collections of nonoverlapping par-
ticles), especially of congruent copies of convex particles
[16–21]. Perhaps the simplest characteristic of a packing is its
packing density, φ, which is, intuitively speaking, the fraction
of the plane covered by the particles. It is well known that the
triangular lattice is the densest packing of congruent circles,
and its packing density is φ = π/

√
12 = 0.906899 . . . [22].

Other simple two-dimensional shapes that have been studied
include the class of regular polygons and related variations.
For example, it is known that the densest packing of congruent

regular octagons is the optimal Bravais lattice packing with
φ = [4(3 − √

2)]/7 = 0.906163 . . . . When the corners of the
octagon are all appropriately “smoothed” into hyperbolic
curves, the resulting “smoothed octagon” is conjectured
to possess the lowest optimal packing density among all
convex, centrally-symmetric particle shapes, with φ = (8 −
4
√

2 − ln 2)/(2
√

2 − 1) = 0.902414 . . . [23]. Another simple
yet interesting case is the regular pentagon, which has a
putative maximum packing density of φ = (5 − √

5)/3 =
0.921311 . . . , given by its densest (non-Bravais) double-lattice
packing [24–27].

Generally, it has been shown independently by both Fejes
Tóth [18] and Rogers [17] that the densest packing of congru-
ent copies of any convex, two-dimensional shape possessing
central symmetry is achieved by a lattice structure. Fejes Tóth
[28] and Mahler [29] also proved that such a construction must
be able to achieve a packing density of at least φ = √

3/2 =
0.866025 . . . for any convex shape. Moreover, Kuperberg
and Kuperberg showed that, for any convex shape (with or
without central symmetry), a double-lattice packing may be
constructed, also with φ �

√
3/2, and conjectured that the

densest double-lattice packing realizes the maximum packing
density for shapes such as regular pentagons and heptagons
while asking if this might extend to all regular polygons with
an odd number of sides [25].
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In the present work, we use a two-dimensional stochastic
search implementation of the Torquato-Jiao adaptive shrinking
cell (ASC) packing method, originally implemented in three
and higher dimensions in Refs. [30–32], to generate the
densest known packings of a variety of nontrivial convex
and concave noncircular particles. The ASC scheme generates
dense packings by rearranging a nonoverlapping configuration
of particles within a periodic fundamental cell (FC) whilst
decreasing its volume to increase the packing density. Our
current implementation of the ASC scheme expands upon
the previous one by detecting overlaps between any concave
polygons and certain smoothly shaped convex and concave
nonspherical particles. This allows us to readily investigate
dense packings of a wide spectrum of nontrivial nonspherical
particles in the plane that exhibit unique packing behaviors.

In this paper, we study the dense packing behavior of
several families of noncircular particle shapes including so-
called “fat crosses,” convex and concave “curved triangles”
(incorporating shapes resembling the Mercedes-Benz logo),
and “moonlike” shapes. We then use the results of the
ASC algorithm to inform analytical constructions of the
densest known packings of those particle shapes considered,
recovering several well-known results, then moving onward
to study other particle shapes. Specifically, we find that the
densest packings of certain curved triangles are periodic with
a four-particle basis. Also, we find that the densest periodic
packings of certain moonlike shapes possess no inherent
symmetries. Our work adds to the growing evidence that
particle shape can be used as a tuning parameter to achieve
a diversity of packing structures.

The rest of this paper is organized as follows: in Sec. II,
we will introduce the mathematical definitions that are
necessary for a rigorous treatment of the packing problem;
in Sec. III, we review the ASC scheme and discuss our
contributions to the method; in Sec. IV, we introduce the
particle shapes whose packing behavior we have studied; and
in Sec. V, we discuss a number of results in packing congruent
copies of both well-known and other particle shapes. We then
offer conclusions and plans for future work. In addition, an
appendix includes some additional numerical results, and the
Supplemental Material contains mathematical details for many
of the packing structures presented in this work [33].

II. DEFINITIONS

In order to make precise the problem that will be addressed,
we introduce some mathematical definitions. First, we define
a particle, S, to be a closed, simply connected set in R2 that
may be either concave or convex. The boundary of the set is
denoted as �. A special case of convexity is strict convexity,
denoting a convex boundary that contains no line segments.
The area of S is denoted by a1, and we will henceforth assume
that this quantity is bounded.

Given two linearly independent (column) vectors λ1 and
λ2, the lattice generated by λ1 and λ2 is defined as the set
{iλ1 + jλ2∀i,j ∈ Z}. A packing P is defined as a collection
of particles {Si} whose interiors are mutually disjoint. If all
members of P are translates of each other where the vectors of
translation form a lattice, P is known as a Bravais lattice (or,
simply, lattice) packing. Furthermore, ifP can be decomposed

(a () b)

FIG. 1. (Color online) Examples of a lattice packing (a) and pe-
riodic packing with four-particle basis (b). The lattice parallelogram
is shown by the black grid behind the particles.

into the union of two distinct lattice packings P0 and P1 such
that an inversion about some point in the plane interchangesP0

and P1, then P is called a double-lattice packing. Generally,
if one can decompose P into the union of N � 1 distinct
lattice packings, each sharing the same lattice vectors, then
P is said to be a periodic packing with an N -particle basis.
Also, for all periodic packings, there exists a fundamental cell
(FC) of the packing, parallelogrammatic in shape, described
by a lattice matrix � = {λ1,λ2}, inside which all N centroids
lie. Examples of lattice and periodic packings are given in
Fig. 1. Note that, in a lattice packing, all particles must have
the same orientation, whereas, in a general periodic packing,
the N particles in the FC are free to have their own orientations.

The packing density, φ, defined for a given P is, intuitively
speaking, the fraction of the plane covered by the copies of
S. When it is assumed that P is a periodic packing with an
N -particle basis,

φ = Na1

Area(F )
, (1)

where a1 denotes the area of a single particle, and Area(F )
denotes the area of the FC. If φ = 1, thenP is said to be a tiling.

III. TORQUATO-JIAO ADAPTIVE SHRINKING
CELL (ASC) OPTIMIZATION SCHEME

The Torquato-Jiao adaptive shrinking cell (ASC) optimiza-
tion scheme seeks to generate dense packings of a collection of
shapes within a periodic FC through a process of rearranging
the positions of the shapes within an FC while decreasing the
FC’s volume in order to increase the packing density. Formally
stated, the ASC optimization scheme is

minimize − φ
(
rλ

1,r
λ
2,r

λ
3, . . . ,r

λ
N ; θ1,θ2,θ3, . . . ,θN ; �

)
,

such that (Si ∩ Sj ) ⊆ (�i ∪ �j ) ∀ i,j = 1,2,3, . . . ,N,

i �= j, (2)

where N is the number of particles in the FC, and rλ
i and θi

specify the position and orientation of particle i, respectively
(see below). The optimization scheme can be solved using a
variety of techniques including stochastic search methods with
simulated annealing [30,31] and linear programming [32]; the
present work uses an adaptation of the former. For the sake of
completeness, the technique will be described here.
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In R2, the ASC scheme utilizes a parallelogrammatic
fundamental unit cell (FC) with periodic boundary conditions.
The positions of the N particles are given by the lattice
coordinates (i.e., the relative coordinates with respect to the
lattice vectors) of their centroids, rλ

1,r
λ
2,r

λ
3, . . . ,r

λ
N ∈ [0,1)2;

and (global) orientations, θ1,θ2,θ3, . . . ,θN ∈ [0,2π ). From the
initial configuration, the stochastic search method uses an
iterative process to increase the packing density. Its main steps
are the following:

(1) Random rotations or translations are applied to the
shapes, accepting moves that satisfy the required nonoverlap
constraints between the shapes (“random movements”).

(2) Then, random strains, composed of a combination of a
deformation and either a dilation or a compression, are applied
to the FC that seek to either increase or decrease its area with
a specified probability, corresponding to uphill and downhill
moves, respectively (“random strains”).

During the “random movements” step, every particle in the
basis is either translated or rotated within some prescribed
limits on the magnitude of the movement. If the new position
of the particle does not cause it to overlap with any other
particles in the FC (or their periodic images), the move is
kept; otherwise, the move is rejected and the particle remains
where it began. Note that only one particle is moved at a time;
collections of particles never move simultaneously during this
step. The process is repeated a specified number of times
for each particle to explore the configurational space of the
packing; the precise number is determined empirically based
on the criterion that the particles are allowed to equilibrate
before attempting to strain the FC. In the present work, at least
500 trial movements are attempted for each particle at each
occurrence of this step, and this number remains constant for
the duration of the simulation.

During the “random strains” step, the simulation box is
simultaneously deformed and compressed or dilated in a way
that attempts to decrease its area on average while preserving
the nonoverlap constraints. Since the locations of the particles
are expressed in terms of the lattice vectors, straining the
simulation box also effects a collective motion of the particles.
The straining process is attempted up to a prescribed maximum
number of attempts. The first successful strain is kept, and the
algorithm returns to the first step (random movements). After
each unsuccessful strain attempt, the maximum allowed strain
is decreased by a constant ratio in order to steadily increase

the chances of finding a valid strain. Therefore, more attempts
are required as the packing increases in density. In addition,
uphill moves that allow the FC to expand are allowed with a
given probability.

The maximum magnitude of the trial movements is steadily
decreased throughout the execution of the algorithm, reducing
the maximum magnitude by a constant ratio when the
acceptance rate of trial moves falls significantly below 50%.
Moreover, while the maximum strain magnitude is decreased
after each unsuccessful attempt, the maximum magnitude is
restored to its original value the next time the “random strains”
step occurs, since, for example, particle movements within the
FC may result in two particles being next to each other at the
end of one “random movements” step (necessitating a small
strain), and may result in the particles being more uniformly
spaced at the end of the next step (allowing for a larger strain
even though the FC may be smaller).

The sequence of random movements and random strains is
repeated a prescribed number of times, chosen such that the
algorithm has “enough time” to find and settle in a minimum
of the objective function (which is determined by monitoring
the convergence of the packing density); in the present work,
the maximum number of iterations is always at least 500.
In order to refine the results, a fine-tuning procedure may
be used in which the ASC algorithm is executed a second
time, starting with the previous final dense configuration by
expanding the FC by some small amount and greatly reducing
the magnitude of the movements and strains in order to
more accurately approach the density maximum that has been
identified. However, this process is only used in cases where
the particles are convex, since this is necessary to ensure that
a general expansion of the FC does not introduce overlaps.

In the past, the ASC scheme has been applied to determining
packings of convex polyhedra in three and higher dimensions,
detecting overlaps between particles through use of the
separation axis theorem [30,31]; in this work, the algorithm has
been modified to detect overlaps between concave particles in
two dimensions through a combinatoric check of the particle’s
edges, which may be some combination of line segments and
circular arc segments.

This solution of the ASC scheme is a particularly strong
investigative tool since it is capable of identifying dense pack-
ing configurations quickly and with appreciable consistency.
Analytical methods may then be used, benefitting from the

l

δ

(a) (b) (c)

FIG. 2. Three instances of the general “fat cross” with w = 1/10 (a), 1/3 (b), and 9/10 (c).
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FIG. 3. (Color online) Three examples of the basic form of a curved triangle: convex [(a), k = 0.71], concave [(b), k = −0.39], and “spiked”
[(c), k = −1.55].

information derived from the algorithm’s results to determine
the exact structures of the packings. In addition, the freedom to
choose any initial condition may be used to enhance the quality
of solutions found if an interesting structure is more often
realized through specific initial conditions [32]. In the present
work, we find that, by choosing initial lattice vectors that more
closely resemble the final lattice vectors of dense structures,
denser results are achieved, and with increased frequency.

IV. NONCIRCULAR PARTICLE SHAPES

A variety of noncircular particle shapes were studied in
the present work; this section aims to make precise the
geometries that were studied. In order to establish benchmarks
for the program’s performance, the well-known cases of
regular pentagons and octagons were considered. In addition,
we consider three families of nontrivial particle shapes: “fat
crosses,” “curved triangles,” and “moonlike shapes.” The
packing characteristics of these noncircular particle shapes
have heretofore not been studied. We show that they lead to
unique packing arrangements.

A. Fat cross

The first nontrivial particle shape that we investigate is a
so-called fat cross. Several examples of this particle shape are
given in Fig. 2. The particle shape is described by a width
parameter w according to the definition

w = δ

l
, (3)

(a) (b)

FIG. 4. (Color online) Examples of a “crescent” [(a), k > 0] and
a “gibbous” [(b), k < 0] moonlike shape.
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TABLE I. Symmetries of the putative densest packings of the aforementioned particle shapes. The properties of well-known shapes
(pentagons and octagons) are compared to the results we obtain for our nontrivial particle shapes (fat crosses, curved triangles, and moonlike
shapes).

Shape name Convex Centrally-symmetric particle Centrally-symmetric basis N

Pentagon Yes No Yes 2
Octagon Yes Yes Yes 1
Fat cross No Yes Yes 1
Curved triangle Depends on k No Yes 2,4 (depending on k)
Moonlike shape Depends on k No Depends on k 2

where δ is the width of the cross’s legs, and l is the end-to-end
length of the cross. Therefore, it follows that w ∈ [0,1]; the
w = 0 case corresponds to a pair of lines of length l bisecting
each other at a right angle, and the w = 1 case corresponds to
a square of side length l.

B. Curved triangle

Another particle shape that we investigate is the so-called
curved triangle, that, in the convex case, is a two-dimensional
analog of the “tetrahedral puff” described in Ref. [34]. This
particle shape is derived by replacing the sides of an equilateral
triangle with circular arc segments; this is illustrated in Fig. 3.
The particle shape may then described by a parameter

k = ± r0

r
, (4)

where r is the radius of the arc segments, and r0 is the
radius of a circle passing through the triangle’s vertices.
The parameter k is taken by convention to be positive when
the curved triangle is convex as in Fig. 3(a), and negative

(a () b)

(c () d)

FIG. 5. (Color online) Computer-generated dense periodic pack-
ings of octagons using one- (a), two- (b), three- (c), and four-
particle (d) bases. The packing densities are φ = 0.906144, 0.906029,
0.905929, and 0.905903, respectively.

when the curved triangle is concave as in Fig. 3(b). When
k = 0, then the particle shape becomes an equilateral triangle;
when k = 1/

√
3 = 0.577350 . . ., the particle shape becomes

the well known Reuleaux triangle [35]; and when k = 1,
the particle shape becomes a circle. When k = −1/

√
3, the

vertices of the particle become cusps, and in order to decrease
k beyond this point, a line segment connects the cusp and
the vertex, as is shown in Fig. 3(c); the curved triangle is
said to be “spiked” in this regime, and begins to resemble the
Mercedes-Benz logo. In the limit k → −∞, the particle shape
becomes the union of three line segments of length r0, each at
an angle of 2π/3 from the others.

C. Moonlike shape

The third nontrivial particle shape that we investigate is
the a “moonlike” shape, which is constructed by a pair of
circular arc segments with radii r0 and r , where the former
arc is a half-circle. This particle shape is parametrized by the
same parameter k used to characterize the curved triangle [cf.
Eq. (4)], where k is, by convention, taken to be negative when
the particle shape is a concave, “crescent” shape, as in Fig. 4(a)
and positive when the moon is a convex, “gibbous” shape, as
in Fig. 4(b).

V. RESULTS

The stochastic search solution of the ASC scheme described
in Sec. III is used to generate dense periodic packings of
congruent copies of the particle shapes described above,
and the resulting computer-generated packings are used to

(a () b)

FIG. 6. (Color online) Computer-generated dense periodic pack-
ings of pentagons using two- (a) and four-particle (b) bases. The
packing densities are φ = 0.921102 and 0.921301, respectively.
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0.8

1

w

φ

FIG. 7. Analytically-derived (solid curve) and computer-
generated (data points) packing densities for packings of fat crosses
as a function of width parameter w. The structures are labeled as
follows: filled circle = L1, square = L2, triangle = L3, cross = L4.

inform analytical predictions for the structures of the densest
packings; the following details the results of the numerical
simulations and discusses the structures that we find. We also
provide visual representations of some noteworthy cases. A
summary of the densest packing behavior of the noncircular
particle shapes the we obtain is given in Table I.

A. Octagons

Periodic packings of congruent copies of regular octagons
were generated using the ASC algorithm with one-, two-,
three-, and four-particle bases. Some noteworthy computer-

TABLE II. Putative maximum packing densities of congruent
copies of fat crosses for selected values of w.

w φ(w)

0.1 76/125 = 0.608
0.2 9/10
0.3 204/205 = 0.995121 . . .

0.4 64/65 = 0.984615 . . .

0.48 912/925 = 0.985945 . . .

0.55 29/31 = 0.935483 . . .

0.6 21/23 = 0.913043 . . .

0.7 182/191 = 0.952879 . . .

0.8 48/49 = 0.979591 . . .

0.9 198/199 = 0.994974 . . .

generated packings are shown in Fig. 5. The ASC algorithm
finds periodic packings of octagons in accordance with Fejes
Tóth’s well-known theorem that the densest packing of a
centrally-symmetric convex particle shape is realized by a
lattice packing [18]. Moreover, the packing densities found
via numerical simulation are remarkably close to the theoret-
ical optimum: δφ1 = 2.0 × 10−5, δφ2 = 1.35 × 10−4, δφ3 =
2.35 × 10−4, and δφ4 = 2.61 × 10−4, where δφN denotes the
difference in packing density between the analytical optimal
construction and the best numerical result using an N -particle
basis.

B. Pentagons

Periodic packings of congruent copies of regular pen-
tagons were generated using the ASC algorithm with two-
and four-particle bases. Figure 6 shows some noteworthy

(a) (b) (c)

(d) (e) (f )

FIG. 8. (Color online) Computer-generated dense periodic packings of fat crosses for various values of w showing the four structures
observed. The L1 structure is shown for w = 1/10 (a), 1/3 (b), and 2/5 (c); the L2 structure is shown for w = 19/40 (d); the L3 structure is
shown for w = 11/20 (e); and the L4 structure is shown for w = 7/10 (f).
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0.9
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φ

FIG. 9. Analytically-derived and computer-generated packing
densities of curved triangles for various values of k. The solid curve
denotes the density of the optimal double-lattice packing, and the
dashed curve shows the density of the optimal periodic packing
with a four-particle basis; triangle and filled-circle data points denote
densities obtained by computer-generated packings with two- and
four-particle bases, respectively.

numerical findings. These results closely resemble the best-
known packing of pentagons, whose packing density is
φ = (5 − √

5)/3 = 0.921311 . . .; the packings shown in
Figs. 6(a) and 6(b) differed from this by 2.09 × 10−4 and
1.0 × 10−5, respectively. These packings show the structure
conjectured to be the densest packing of pentagons [24–27].
Indeed, it is conjectured that, for a wide class of bodies lacking
central symmetry, the densest packing is realized in a double-
lattice configuration. The regular pentagon is one of these
shapes.

C. Fat crosses

Periodic packings of congruent copies of fat crosses were
generated using the ASC algorithm with four-particle bases
for various values of w. From these simulations, four different
packing behaviors were observed. Figure 7 compares the
packing density of a number of computer-generated cases
against the analytical putative maximum packing density. The
curve contains four piecewise-smooth regimes, corresponding
to four different structures, identified as L1, L2, L3, and L4,
in order of increasing w. Figure 8 shows a few selected

(a () b)

FIG. 10. (Color online) Computer-generated dense periodic
packings of curved triangles with a two-particle basis for k = 2/5
(a) and 4/5 (b); φ = 0.922437 and 0.924589, respectively.

(a () b)

FIG. 11. (Color online) Computer-generated dense periodic
packings of curved triangles with a four-particle basis for k = 3/10
(a) and 7/10 (b); φ = 0.921528 and 0.921460, respectively.

packings to show these different configurations. Notice that
at w = 1/3, 1/2, and 1, the packing becomes a tiling. It
is interesting to note that, though this shape is concave, all
of the densest packings found are lattice packings. Another
interesting property of these packings is that, in the limit case
w = 0, the fat cross is equivalent (up to a scaling constant)
to the limit case of a superdisk, limp→0{(x,y) ∈ R2 : |x|2p +
|y|2p � 1}, and the analytical packing structure matches this
superdisk’s already-known densest packing [36]. The fat
crosses’ putative maximum packing density is tabulated for
several representative values in Table II; see the Supplemental
Material for mathematical details about the various packing
structures.

D. Curved triangles

Periodic packings of congruent copies of convex curved
triangles were generated using the ASC algorithm with two-
and four-particle bases for various values of k. Using a method
of Kuperberg and Kuperberg [25], the densest double-lattice
packing of convex curved triangles was derived as a function
of the curvature parameter k. This function is plotted as
a solid curve in Fig. 9, and computer-generated packings
with a two-particle basis are plotted as triangular marks;
it was observed that the results predicted by the stochastic

FIG. 12. (Color online) A computer-generated densest packing
of curved triangles with an eight-particle basis (k = 0.62), showing
a structure that is a degenerate case of the best-known four-particle
basis.
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A0 B0

C0 D0

A1 B1

D1

A2 B2

C2 D2

FIG. 13. (Color online) A portion of the analytical packing
without any applied rotation (k = 0.65). Notice that a gap exists
between B1 and C2 (and their periodic images). Applying the rotation
closes this gap and maximizes the packing density.

search method using a two-particle basis closely matched the
optimal double-lattice packing for all of the chosen values
of k.

Figures 10 and 11 show a few of the packings that were
generated by the ASC algorithm with two- and four-particle
bases, respectively. Notice that the densest packings with
a two-particle basis are double-lattice packings, implying
a centrally-symmetric basis. However, in all of the cases
where 0 < k < 1/

√
3, it was observed that the triangles do

not line up such that their vertices touch. Instead, the two
adjacent triangles are rotated slightly so that the vertex of
one contacts the arc of the other. Indeed, when determining
the optimal double-lattice structure by a method of Kuperberg
and Kuperberg [25], it was found that this small perturbation
actually increases the packing density when 0 < k < 1/

√
3,

meaning that this characteristic of the numerical results is
not due to numerical inaccuracies, but, on the contrary,
showcases the sensitivity of the stochastic search in finding
dense packings.

Numerical results using a four-particle basis showed that,
for sufficiently large k, a packing structure exists whose density

is significantly higher than the best double-lattice packing;
below this point, the four-particle basis’ optimal configuration
is a degenerate case of the two-particle basis, as shown in
Fig. 11(a). An example of the non-degenerate four-particle
basis structure is given in Fig. 11(b). Numerical results using an
eight-particle basis, an example of which is shown in Fig. 12,
provide additional evidence that the four-particle basis is in
fact the densest configuration. These results were verified
by determining the analytical structure of the four-particle
basis that is currently the best-known packing structure for
this shape. The densities of computer-generated packings of
curved triangles using a four-particle basis are plotted as filled
circles, and the corresponding analytical packing density is
displayed as a dashed line in Fig. 9. Though periodic tilings
of convex particles have been shown that exhibit more than
a two-particle basis [37–39], we do not know of any other
convex, nontiling shapes that have been observed to exhibit this
behavior [40].

In order to create this four-particle packing structure, the
particles in the FC, denoted A0, B0, C0, and D0, are placed
facing straight up and straight down, where particles A0 and
D0 are both in contact with all of the other particles in the
basis, as shown in Fig. 13. The lattice vectors λ1 and λ2 are
found by finding the positions of shapes A1 and A2 (both
of which are periodic images of A0) relative to A0. All of
the bodies in the basis are rotated by the same angle θ : A

and D are rotated anticlockwise, and B and C are rotated
clockwise. Doing this causes B1 and C2 (and their periodic
images) to come into contact. Once this contact is established,
the packing achieves its maximum density; this result is shown
in Fig. 14. The curved triangles’ putative maximum packing
density is tabulated for some representative values of k in
Table III; see the Supplemental Material for details of the
analytical construction of this packing. In addition, computer-
generated packings of concave curved triangles are provided
in the Appendix without analytical constructions; all of these
packings appear to be double-lattice packings.

A0 B0

C0 D0

A1 B1

C1 D1

A2 B2

C2 D2

A0 B0

C0 D0

(a () b)

FIG. 14. (Color online) The analytically-derived packing of curved triangles (k = 0.65) with the applied rotation (a); a zoomed-in view is
provided in (b). Triangles A0 and D0 are rotated anticlockwise by θ , and triangles B and C are rotated clockwise by θ , where θ = 0.057 rad.
φ = 0.928473 . . . .

031302-8



MAXIMALLY DENSE PACKINGS OF TWO-DIMENSIONAL . . . PHYSICAL REVIEW E 86, 031302 (2012)

TABLE III. Putative maximum packing densities of congruent
copies of convex curved triangles for selected values of k.

k φ(k)

0.1 0.967582 . . .

0.2 0.944761 . . .

0.3 0.930217 . . .

0.4 0.922458 . . .

0.5 0.922458 . . .

0.6 0.927362 . . .

0.7 0.928415 . . .

0.8 0.925249 . . .

0.9 0.918262 . . .

E. Moonlike shapes

Periodic packings of congruent copies of moonlike shapes
were generated using the ASC algorithm with two- and four-
particle bases for various values of k. The densest computer
generated packings are plotted as data points along solid curves
denoting three different analytical constructions in Fig. 15.
The first structure observed was a double-lattice packing
shown in Figs. 16(a) and 16(d). This structure is indicated
in Fig. 15 by triangular data points and will be referred to
as the D1 structure. The second structure observed was a
non-double-lattice periodic packing with a two-particle basis,
shown in Fig. 16(b); it is indicated in Fig. 15 by square
data points and will be referred to as the B structure. The
third structure observed was a second double-lattice packing,
shown in Fig. 16(c). This structure is indicated in Fig. 15 by
filled-circle data points and is denoted as the D2 structure. The
putative densest packings of moonlike shapes are tabulated as
a function of k in Table IV.

The B structure is a unique structure in that its fundamental
basis possesses no inherent symmetries. Furthermore, its
discovery underscores the utility of the ASC algorithm in
determining the densest packings that are not obvious by
inspection.

−1 −0.5 0 0.5 1
0.9

0.92

0.94

0.96

0.98

1

φ

k

FIG. 15. Putative maximum packing densities for congruent
copies of moonlike shapes as a function of k. The three different struc-
tures are denoted as follows: triangle = D1, square = B, dot = D2;
the solid curve shows the analytical densities.

(a () b)

(c () d)

FIG. 16. (Color online) Computer-generated dense periodic
packings of moonlike shapes for various values of k, display-
ing the three different packing structures observed. (a) k = −0.8
(D1 structure, crescent instance). (b) k = −0.2 (B structure).
(c) k = 0.6 (D2 structure). (d) k = 0.9 (D1 structure, gibbous
instance).

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we implemented a two-dimensional im-
plementation of the Torquato-Jiao adaptive shrinking cell
scheme using a stochastic search with simulated anneal-
ing to study the dense packing behavior of a variety of
well-known and nontrivial particle shapes. We confirmed
the utility of the algorithm by reproducing the well-known
densest packings of regular pentagons and octagons. Next,
we applied the algorithm to several nontrivial particle shapes
to find their densest packing behavior. It is especially
worth noting that the ASC scheme correctly and accurately
predicted subtle perturbations in the two-particle packings
of curved triangles that are not immediately intuitively
apparent.

TABLE IV. Putative maximum packing densities of congruent
copies of moonlike shapes for selected values of k.

k φ(k) k φ(k)

−0.9 0.928125 . . . 0.1 0.936131 . . .

−0.8 0.916116 . . . 0.2 0.935451 . . .

−0.7 0.910371 . . . 0.3 0.933966 . . .

−0.6 0.907259 . . . 0.4 0.931709 . . .

−0.5 0.911837 . . . 0.5 0.928675 . . .

−0.4 0.921385 . . . 0.6 0.924819 . . .

−0.3 0.928392 . . . 0.7 0.920053 . . .

−0.2 0.932303 . . . 0.8 0.915055 . . .

−0.1 0.933906 . . . 0.9 0.914783 . . .

0 0.935931 . . . 0.95 0.913563 . . .
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(a () b) (c)

FIG. 17. (Color online) Computer-generated dense periodic packings of concave curved triangles for k′ = 1/20 (a), 27/100 (b), and 9/20
(c). The packing densities are φ = 0.019141, 0.446702, and 0.896363, respectively. All of these packing suggest double-lattice structures.

The packing characteristics of the curved triangle shape
class are unlike anything studied before because its optimal
packing density is not achieved using a double-lattice packing
for sufficiently high curvature. In addition, the B structure
that achieves the densest packings of certain moonlike shapes
is a counterintuitive finding for its lack of symmetry in its
fundamental basis. These discoveries underscore the utility
of the stochastic search implementation of the ASC scheme
because of its ability to accurately predict these structures up
to the small details inherent in them.

The packing structures discussed in this work offer in-
sights towards the organizing principles for three-dimensional
particles in Ref. [1]. For example, the densest packings
of regular polygons, as two-dimensional analogs of convex
polyhedra, show similar behavior in that the densest packings
of regular polygons possessing central symmetry are given by
their corresponding densest lattice packings; and the densest
packings of those lacking central symmetry are nonetheless
given by packings that possess a point of inversion symmetry.
Furthermore, the densest packings of fat crosses are given
by their corresponding densest lattice packings, in much the
same way that the densest packings of three-dimensional,
centrally-symmetric polyhedra are conjectured to be given
by their corresponding densest lattice packings. One final
interesting remark is that the B structure of moonlike shapes
possesses no points of inversion. This is in contrast to the
proposition in three dimensions that the densest packings
of concave polyhedral particles are composed of centrally-
symmetric compound units. It seems intuitively true that, by
approximating the appropriate moonlike shape as a polygon
with sufficiently many edges, some structure similar to the B

structure will achieve the densest packing (which has no points
of inversion).

It will be desirable in future work to determine the analytical
packing behavior of the concave instance of the curved triangle
(for which computer-generated results are provided in the
Appendix) for the sake of completeness. More generally, the
algorithm used in this work may be adapted to generate both
packings of hard particles in closed containers. By altering
the shrinking behavior of the domain, it may be possible to
study both densest packings and disordered jammed packings.
Furthermore, the algorithm may be readily adapted to study
packings of particles with a polydispersity in size and shape.
Finally, the stochastic search solution to the ASC scheme may

readily be adapted to investigate the dense packing behavior
of concave solids in higher dimensions.
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APPENDIX: MAXIMALLY DENSE PACKINGS OF
TWO-DIMENSIONAL CONVEX AND CONCAVE

NONCIRCULAR PARTICLES

Figure 17 shows a collection of computer-generated dense
periodic packings of concave curved triangles with two- and
four-particle bases. A double-lattice structure was observed
for all particle shapes that we tried. The packing densities
of the computer-generated cases are plotted in Fig. 18 as a
function of an alternative parameter k′, defined as the ratio
of the inradius of the particle to its circumradius. According
to this alternative parameter, the k′ = 0 limit is equivalent
to the k = −∞ limit (“Mercedes-Benz limit”), and k′ = 1/2
describes an equilateral triangle (k = 0).

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

k

φ

FIG. 18. (Color online) Densities of computer generated packings
of concave curved triangles for various values of k′.
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