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Balance between absorbing and positive fixed points in resource consumption models
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The effect of resource usage on economic growth has been studied in multiple models. However, the generic
effect of improving resource usage efficacy through improved technical skills has not been studied in detail.
We here analyze a model incorporating resource usage by capital and the parallel production of technical skill
in order to study the effect of improving the efficacy of resources usage with advanced technologies. We show
that a practically inevitable result of such a model is that improving the resource usage efficacy leads to a
lower steady-state level of resources. A surprising conclusion from ordinary differential equations realization of
the model is an extreme sensitivity to parameters, where a small parameter change can lead to an irreversible state
through a hysteresis mechanism between a scenario of a collapse of the economy and a scenario of sustainable
economy. This sensitivity is lost when spatial stochastic simulations are performed. In the stochastic regime
the two scenarios coexist, with different fractions of the lattice residing in each state. Changing parameters
smoothly changes the fraction of lattice sites in each state. The transition between the collapsed economy and the
sustainable one is not symmetrical. Escape from the collapsed situation can only occur through diffusion from
neighboring sustained lattice sites. On the other hand, the collapse can occur even in the absence of diffusion.
This difference leads to diffusion dependent capital growth, where an optimal capital is obtained for middiffusion
values. Such a transition may actually be generic phenomena in ecological and economic systems.
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I. INTRODUCTION

A central debate in the effect of economic growth on re-
source usage revolves around the possible role of technological
change [1]. One often encounters the idea, especially among
economists, that technological improvements allow a better
use of resources and substitution among different resources for
the same purpose [2–5]. The alternative and contrasting view is
that we are facing an unprecedented ecological crisis and that
technological progress only accelerates resource depletion [6].
Thus, a central open question at the interface between ecology
and economics is the role of scientific and technical progress
on the ecological system. A related issue is the equity among
world regions: Would a stable world exhibit a narrower wealth
distribution than our present growing economies? As discussed
in Bairoch [7] and followers, the industrial revolution strongly
increased economic disparities between different regions
(in contrast with the disparity within a given region, which is
not studied here). Before the industrial revolution, the average
wealth of the western world circa 1750 was comparable
to the average wealth of Asian countries, while this ratio
was increased by a 10-fold factor at the end of the 20th
century. Thus, one can ask if technical skills and technological
knowledge are the source of disparity.

The parallel development of technical skills, inequality,
and resource depletion can be understood through a pair of
coupled feedback loops. The positive feedback loop between
technical skill and capital and the negative feedback loop
between capital growth and resource depletion. The first
loop has been extensively studied, through the two parallel
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processes of the effect of the technical skill on growth [8]
and the parallel increase in technical skill and knowledge
as a function of capital investment [9–11]. The second loop
describes a negative feedback between capital growth and
resource depletion. The effect of capital on resource depletion
has also been extensively studied and modeled [12–14]. We
here show that the coupling of these two feedback loops leads
to surprising conclusions.

We use a discrete time stochastic simulation on a lattice
to study the stochastic dynamics of the above-mentioned
feedback loops. We extend a simulation methodology that
we have used in a wide variety of models [15–20] to the
current resource depletion analysis and show that the proposed
feedback loops do indeed lead to unequal wealth distribution
through a novel mechanism of jumps between two stable
fixed points. The model presented here is highly simplified.
We do not claim that this model is a precise description of
the economic reality. Instead, we propose a general approach
based on the generic properties of the different fixed points.
The results presented here are not sensitive to the details of
the model and, as such, represent a more general claim about
a sustainable economy.

A simple version of these opposing feedback loops via
three ordinary differential equations is given in Sec. III A.
The mean-field approximation of this model is discussed in
Sec. III B. In Sec. III C the bifurcation properties of the model
are described. We then study the stochastic counterpart of the
ordinary differential equations (ODEs). The stochastic model
is discussed in Sec. III D, and the simulations results are
examined in Sec. III E. The explanations of the results are
described in Sec. III F. A simpler model with a same behavior
is presented in Sec. III G. In Secs. III H and III I, we analyze
the effect of the diffusion and the effect of the dimensions in
the first model.
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II. METHODS

A. ODE and PDE

The ODEs were solved numerically using the Matlab
fourth-order Runge Kutta [21], as applied in the MATLAB

[22] ode45 function assuming nonstiff equations. The partial
differential equations (PDEs) were solved using a fourth-order
Runge Kutta. The diffusion scheme that was used was a
second-order leapfrog scheme [23].

B. Simulation

Monte Carlo simulations of the systems studied have been
performed on one- and two-dimensional lattices. We initiated
the reactants at random positions and enacted each reaction
separately. We computed at each lattice point the probability
of each reaction and performed reactions according to the
prescribed probabilities. At high reaction rates, we used a
Poisson approximation [24]. The simulation updating was
synchronous. The dynamics were simulated for different
parameter values. The lattice size used was 100 × 100 in the
two-dimensional lattice and 1000 × 1 in the one-dimensional
lattice, unless otherwise noted. The simulation was described
in detail in previous publications [15].

III. RESULTS

A. Model description

In order to study the feedback between resource consump-
tion and technical skill, we present a simple model containing
three elements: technical skill (denoted by A), capital (denoted
by B), and resources (denoted by C). Capital, skill, and re-
sources interact through the following schematic interactions:

(a) Investment of capital in research and development
increases the technical skill (technical coefficient).

(b) Knowledge has a natural creation and a natural decay.
For example, some knowledge can lose its relevance after some
time.

(c) Capital has a natural decay (e.g., inflation).
(d) Production consumes resources and requires existing

capital and technical skills. In parallel, production uses
resources and thus decreases the total amount of available
resources.

(e) Resources have a natural creation, and a natural decay.
This is obviously not true for all types of resources, but we
here focus on renewable resources.

These interactions can be schematized by the following
mass action based reactions:

(a) ∅
βA→ A (A has a natural creation rate of βA)

(b) A
δA→ ∅ (A decays with a rate of δA)

(c) B
αA→ B + A (A is created by B with a rate of αA)

(d) A + B + C
βB→ A + 2B + C (B is created by A, B, and

C with a rate of βB)

(e) B
δB→ ∅(B decays with a rate of δB)

(f) ∅
βC→ C (C has a natural creation rate βC).

(g) A + B + C
kβB→ A + B (C is used by A, B, and C with

a rate of kβB)

(h) C
δC→ ∅ (C decays with a rate of δC).

B. Mean-field approximation

This seemingly simple system leads to nontrivial con-
clusions about the relations between technical skill, capital,
and resources. We first study an ODE model with three
variables that does not take into account possible spatial
inhomogeneities or the possible discrete aspect of the in-
teractions (e.g., capital investments are performed in large
sums, and technical skills are acquired through the presence
of specialists). The mass action approximation of the expected
population dynamics is

dA

dt
= βA − δAA + αAB

dB

dt
= βBABC − δBB (1)

dC

dt
= βC − kβBABC − δCC.

This system can have up to three non-negative fixed points
that we denote by Eqs. (A3), (A4), and (A5) (see Appendix A
for a detailed analysis of their properties). Equation (A3) is the
B = 0 fixed point that exists for all the parameters. One or two
of the other fixed points exist in different parts of the phase
space. When positive fixed points exist, the steady state values
of A and C are always inversely correlated. In this formalism,
every mechanism used to increase A will automatically
decrease C. In other words, A acts as a “superpredator” on
C, while B only serves from a dynamical point of view as
an intermediate between A and C. For example, increasing
the basal rate of knowledge production will actually decrease
resources. If A represents technical skills and C represents
resources, the implication from this model is that while the
capital growth depends on a large number of parameters, the
technical skills are always the inverse of the resources. Increas-
ing technical skills automatically increases the possibility of
using resources, which leads to lower steady-state values of
the resources. This is obviously a claim about the steady state,
and long transients can emerge. Such a correlation is clearly
observed where most resources are concentrated in countries
with limited technology [25,26]. Note, however, that the ob-
served correlation can be the result of many other mechanisms.

A similar phenomenon is observed for the parameter k. k

represents the number of C’s that are used to create a single
B. The leading idea behind a green economy is that fewer
resources will be used per unit of production [27–29]. This is
translated in the current schematic model to a low value of k.
The basic notion behind this idea is that lowering the usage
rate of resources will keep more resources available. However,
this idea fails when one reaches a steady state. In steady state
smaller values of k lead to lower values C. The result (pre-
sented in detail in Appendix B) is the opposite result of what
sustainable economy scientists are trying to reach. The differ-
ence between the green economy theory and this model is that
a green economy looks at transients, while here we study the
steady state. As will be further shown, these conclusions are not
specific to this model but apply to a wide range of similar ones.

C. Bifurcation properties

As mentioned above, the ODE system in Eq. (1) can have
three possible combinations of fixed points (Fig. 1): a single
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FIG. 1. The number of the fixed points in system (1) according to
βA and k when δA = 0.05, αA = 0.01, βB = 0.01, δB = 0.1, βC =
0.5, and δC = 0.05. The system has three transitions: from three
fixed points to one fixed point (as a function of k), three fixed points
to two fixed points, and one fixed point to two fixed points (as a
function of βA).

stable fixed point [Eq. (A3) in Appendix A], two fixed points
[Eqs. (A3) and (A5)], or three fixed points. One can study the
bifurcation properties of this system through three possible
parameter variations, as described by the arrows in Fig. 1:
The transition between three and one fixed point happens
when the resource utilization efficacy is decreased (higher
k values). Beyond some level, the efficacy is too low and
the entire system collapses (to the zero capital steady state).
The transition from three to two fixed points happens when
the technical skill production rate is increased and the central
fixed point reaches zero. In such a case, the zero fixed point
becomes unstable, and the only remaining stable fixed point is
the high capital fixed point. The third bifurcation happen when
the technical skill production rate is increased and the resource
usage efficacy is low (high k), a high fixed point appears, and
the zero capital fix point becomes unstable. The bifurcations
occurring following the three different transitions in Fig. 1
are described in Fig. 2. This system has a hysteresis [30]
for all the parameter variations but not for all values of the
parameters (e.g., no hysteresis occurs when k is high and βA is
changed). Economically, this means that if a state is stabilized
around the high fixed point, and this country slightly reduces
its resource utilization efficiency, the whole country can lose
its capital in a short time and stabilize around the zero capital
fixed point. If this country wants to increase the capital back,
it would have more efficient resource utilization, yet the state
cannot go back to the high capital fixed point.

The inverse relation between A and C, the reduction in the
resources steady state following an increased efficacy, and the
hysteresis are not artifacts of our specific model (model 1).
These results are obtained in a quite general model as
follows:

dA

dt
= βA − δAA + f (B)

dB

dt
= g(A,C)B − δBB (2)

dC

dt
= βC − kg(A,C)B − δCC,
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FIG. 2. (a) The fixed points as a function of k with δA = 0.05,

αA = 0.01, βB = 0.01, δB = 0.1, βC = 0.5, δC = 0.05, and
βA = 0.035. The solid line is stable fixed points, and the dashed
line is unstable fixed points. (b) The fixed points according
to βA when δA = 0.05, αA = 0.01, βB = 0.01, δB = 0.1, βC =
0.5, δC = 0.05, and k = 1.1. (c) The fixed points according to βA

when δA = 0.05, αA = 0.01, βB = 0.01, δB = 0.1, βC = 0.5, δC =
0.05, and k = 0.3. The solid line is a stable fixed points, and the
dashed line is an unstable fixed points. The system exhibits hysteresis
for all the parameter variations.
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where f (B) and g(A,C) are increasing monotonic concave or
linear functions of B and A,C, respectively, that have a value
of zero when the appropriate variables are zero (Appendix C).
We show for that the same phenomena occur in a set of systems
than described by Eq. (2) in Appendices D and E.

While the first-order transition occurring in the model may
be realistic, and, indeed, dramatic changes in the economical
state and in the resource usage of countries are observed [31],
the question remains whether this phenomenon is indeed the
direct conclusion of the model or whether it is an artifact of the
specific formalism used. To test this, we simulated the same
reactions with a stochastic system, which takes into account
the effect of space and the quantization in the value of the
different agents (e.g., technical skill is represented by skilled
workers and capital is invested in relatively big chunk). We
have used a simulation formalism that we have extensively
used and tested in the past [15,17,18,32].

D. Stochastic model

We run stochastic simulations on one- and two-dimension
lattices. The simulations include diffusion between the cells
(for all agent types A, B, and C) and stochastic fluctuations.
These fluctuations originate from the fact that the reactions in
the simulation are treated as independent random events and
that each lattice site has a discrete number of agents (and not
a continuous number as in the ODE).

An interesting aspect of the simulation is the interaction
between regions that are in the different steady states of the
ODE system through diffusion. In the economic interpretation
of this model, there are two stable states: either a country is rich
in money and poor in resources or vice versa. The simulation
provides an insight into the interaction between the two steady
states (through diffusion).

E. Simulation results

We first run one- and two-dimensional stochastic simula-
tion. This stochastic simulation stabilizes around a different
average from the ODE. Figure 3 shows the mean of the B
agent density in the stochastic simulation, when k is varied.
The transition between one fixed point and three fixed points
occurs for different values of k in the stochastic simulation
and the ODE. The same occurs for the variation in all other
parameters.

However, the more important difference is that the first-
order transition between the numbers of the fixed points
in the ODE is replaced by a continuous transition between
the numbers of the fixed points in the stochastic simulation.
Another difference between the ODE and the stochastic
simulation is that in the simulations, in contrast with the ODE
results [33], the initial conditions have a very limited effect on
the steady state reached (except obviously when all sites are
initialized at the absorbing state).

The lattice size has no effect on our results (see
Appendix F). Beyond a minimal size, all lattice based
simulations behave similarly.

The difference between the ODE and the stochastic simu-
lation could be the result of multiple elements: The inclusion
of diffusion and a spatial distribution of A, B, and C or the
effect of replacing the deterministic interactions by stochastic
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FIG. 3. The averages of B as a function of k with parameters
δA = 0.005, αA = 0.001, βB = 0.001, δB = 0.01, βC = 0.05, δC =
0.005, and βA = 0.00333 with diffusion rates of 0.001 for A, B, and
C, and initial conditions of A = 2, B = 5, C = 6 on a 100 × 100
lattice. The solid line is stable fixed points in the ODE. The dashed line
is unstable fixed points in the ODE. The square line is the equilibrium
in the stochastic system. The results of the stochastic simulation are
continuous, and the transition point in the stochastic simulation occurs
at higher k values than in the ODE.

ones. In order to show that the stochastic effects are the origin
of the difference, we analyzed a spatial deterministic system,
using a system of PDEs. The interactions and the parameters in
this system are completely equivalent to the parameters in the
ODE. The only difference is the addition of diffusion. When
starting from a nearly uniform distribution, the ODE and PDE
results are similar. However, when a split grid approach is
used, where half the grid is initiated in the higher fixed point
and the other half in the lower fixed point, a slow yet consistent
transition to one of the fixed points occurs, through an invasion
wave. Such a behavior has been shown to be generic for system
with two possible stable fixed points [34]. Note, however, that
the PDE maintains the hysteresis of the ODE. In steady state,
either the entire space will be in the higher or in the lower fixed
point. Thus, the smooth transition between the states must be
the result of the stochastic interactions.

F. Nonsymmetrical transfer between two states

The effect of stochasticity in this system can be understood
via a simple schematic drawing. Figure 4 describes the tran-
sition between two fixed points, in a simplified two-variable
system that will be described in the next section. This system
has two stable fixed points: an absorbing state and a positive
fixed point and one unstable fixed point in between (precisely
like the current system). After a short time, all the values of
the cells in the lattice go to the line that connects these three
fixed points. Stochastic fluctuations can then transfer lattice
sites from one stable fixed point to the other. This transfer
is, however, nonsymmetrical since the low fixed point is an
absorbing state. If in a given lattice site the B population is
extinct [i.e., it goes to the low fixed point (A3)], it cannot leave
this point purely through stochastic fluctuations. The only way
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FIG. 4. Absolute value of gradient as a function of A and B

values. Darker colors are closer to zero. One can clearly see that the
gradient rises sharply beyond the thin line connecting the three fixed
points. The two extreme fixed points are stable (large circles), while
the intermediate fixed point (small circle) is not stable.

that this lattice point can be reoccupied by B agents is through
diffusion from neighboring lattice sites. In contrast, a lattice
site that goes to the high fixed point can jump to the other side
of the schematic line through loss to its neighbors induced by
diffusion or following stochastic fluctuation.

G. Simpler toy model AB with competition (C only mediates
competition between A and itself and B and itself)

In order to study this transition, we developed a simpler
model that contains the same inherent feedback loops. A first
simplification of the original model [Eq. (1)] is to assume a
quasi steady state (QSS) on C (i.e., to assume that the dynamics
of C are so rapid that we can assume that C has reached a local
equilibrium between every time step of A and B).

The QSS model of Eq. (1) is model (3),

dA

dt
= βA − δAA + αAB,

dB

dt
= βBβCAB

kβBAB + δC

− δBB; (3)

C = βC

kβBAB + δC

.

A second possible simplification is to take into account
that C serves as a competition mechanism of the B and the
A agents over themselves, leading to the following simplified
model:

dA

dt
= βA − δAA + αAB − μA2,

(4)
dB

dt
= (βBA − δB) B − εB2.

The results of both models are similar. We report the QSS
model result in Appendix G and the simpler model with
competition on A and B in the following sections. Note that
simplified models, with competition over only A or only B

Two fixed
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One fixed
point

Three fixed 
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FIG. 5. The number of the fixed points as a function of βA and ε

for model (4). The transitions in the system are three fixed points to
one fixed point (by changing ε), three fixed points to two fixed points,
and one fixed point to two fixed points (by changing βA).

[e.g., Eq. (5)] have different bifurcation properties and, thus,
are not studied here.

dA

dt
= βA − δAA + αAB,

(5a)
dB

dt
= (βBA − δB)B − εB2,

dA

dt
= βA − δAA + αAB − μA2,

(5b)
dB

dt
= (βBA − δB)B.

As is the case in the original ABC model [Eq. (1)], system
(4) has a positive feedback between A and B. High technical
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FIG. 6. The average of B as a function ε with the parameters δA =
0.02, αA = 0.01, βB = 0.002, δB = 0.01, μ = 0.00005, and βA =
0.005, with diffusions of A and B at 0.001, initial conditions of
A = 30, B = 10, on a 100 × 100 lattice. The solid line is the
stable fixed points in the ODE. The dashed line is the unstable fixed
points in the ODE. The square line is the fixed point in the stochastic
system. The results of the stochastic simulation are continuous, and
the transitions in the stochastic simulation are shifted compared with
the ODE.
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skills increase the capital growth rates, and capital can be used
to produce new technical skills. The system in Eq. (4) has
three possible combinations of fixed points (Fig. 5), and the
bifurcation types of system (4) and system (1) are equivalent
when all the parameters of C (δC,k and βC) in system (1) are
translated to μ and ε [the competitions of A and B in system
(4)]. Finally, the stochastic realizations of system (4) produced
transition similar to the ones of the full ABC model in one and
two dimensions (see Fig. 6 for a two-dimensional simulation).

We split the one dimensional lattice into two regions, each
in a different stable fixed point. Half the lattice was initialized
at the higher stability fixed point, and the other half at the lower
stability fixed point (the absorbing state). In this split network
analysis, a new division of the parameter space emerges. When
the transition probability from the lower to the higher fixed
point is higher than the opposite transition probability, a fisher
wave is observer [35], where the high-density region converts
the low-density region at a constant speed [see linear increase
in the total A population in Fig. 7 lower-right and the step by
step growth of the region occupied by the higher fixed point in
Fig. 7 upper-right]. If, on the other hand, the transition proba-
bility from the upper to the lower fixed point is higher, a natural
decay occurs simultaneously over the entire region that is in
the upper fixed point, as can be seen in the approximately ex-
ponential decrease in the total A population [Fig. 7 lower-left]
and in the local collapse of the A population [Fig. 7 upper-left].

To summarize, the simple two variable model shows that
the difference between the hysteresis expected from the
ODE model and the stochastic simulation is the result of
the nonsymmetric transition between the upper fixed point
and the absorbing state. In intermediate regions, the balance
between these two mechanisms produces an inhomogeneous
distribution that has a stable average, which is based on
a constantly changing spatial distribution of the A and B

concentrations (Fig. 8).

H. Survival depends on intermediate values of the diffusion

The results of the two variable model show that diffusion
plays a crucial role in these models. If, indeed, the transition
to the upper fixed point is purely diffusion dependent while
the opposite transition does not require diffusion, then the
total B (and A) population is expected to increase as we
increase the diffusion rate. At a zero diffusion rate, the only
possible transition is to the absorbing state, and the system
will always collapse to this state. On the other hand, if the
diffusion is very high, the system converges to its mean-field
approximation. Thus, we expect two regimes. When the
mean-field approximation leads to a single positive fixed point,
we expect the system to have a high B population for all
high-enough nonzero diffusion rates, while when the system
has two stable fixed points, we expect the B population to
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FIG. 7. Snapshot after 200 000 iterations of the simulation with the parameters δA = 0.002, βA = 0.005, βB = 0.002, δB = 0.01, αA =
0.01, μ = 0.00005, ε = 0.002, and ε = 0.0041, diffusion of A and B of 0.001, on a 1000 × 1 lattice. The black line is the initial distribution,
the dark gray line is the distribution after 100 000 iterations, and the light gray line is after 200 000 iterations. The lower figures are the averages
of A as a function of time. When the system goes to the higher steady state, all the lower points (absorbing state) go to the high steady state in
order, and the average of the system goes linearly to the higher steady state, since the absorbing state goes to higher value through diffusion.
When the system goes to the lower steady state, all the lattice sites residing in the high steady state can transfer in parallel to the low steady
state, and the average of the system is decreasing approximately exponentially.
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FIG. 8. (Upper) The correlation between the B agents spatial
distribution as a function of time, with the following parameters:
δA = 0.002, βA = 0.005, βB = 0.002, δB = 0.01, αA = 0.01, μ =
0.00005, and ε = 0.0041. (Lower) Average B concentration as a
function of time. The average B concentration is constant over time,
while the correlation goes to zero.

increase with diffusion and then collapse when we approach
the mean-field approximation. We have tested that this is
indeed the case (in the full ABC model), by varying βA and the
diffusion rates (Fig. 9). One can clearly see a rapid increase in
B as the diffusion is increased until it collapses back to zero
when the diffusion is too high.

I. Dimension effect

Another direct conclusion from the proposed mechanism
is the clear effect of the dimension. If the transition between
the absorbing state and the upper fixed point is induced by
diffusion, we expect its probability to grow, as we increase
the dimension. Figure 10 shows the difference between one-
and two-dimension simulations and the simulation without
diffusion. In one dimension, each lattice site has two neighbors,
and, in two dimensions, four neighbors. As expected, the
region in parameter space where the system is mostly in the
upper fixed point grows as we increase the dimension (Fig. 10).

IV. DISCUSSION

We have presented here a model describing the relationship
among capital, knowledge, and resources. In this model, we
took into account the effect of improved technical skill on the
resources usage efficacy. A surprising result of this model (that
seems to be in accordance with reality) is that improving the
resources usage efficacy only reduces the steady-state value
of the resources. This is a direct result from the feedback
loops within the model and not a specific result of the precise
formalism used.

Simply stated, since the capital reaches a steady state
that is affected by the product of the technical skill and
the resources, the resources and the technical skill must be
inversely proportional in steady state.
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FIG. 9. (Color online) (Upper) The ratio between the average of
B in the simulation and the expected high B fixed point, in the ODE as a
function of βA and the diffusion, with the parameters δA = 0.05, αA =
0.01, βB = 0.01, δB = 0.1, βC = 0.5, δC = 0.05, and k = 0.3 on a
100 × 100 lattice. The diffusion and growth rate are given in arbitrary
units. The diffusion is equal in A, B, and C. When the diffusion =
0 the system collapses for all βA. For low positive diffusions, the
system survives for a wide range of βA values. For high diffusions,
the survival range in βA is smaller. When the diffusion is very high,
the simulation is equal to the ODE and the βA values that the system
survives are limited to the ones expected in the ODE (Lower).

Another interesting aspect of the deterministic description
of this model is the emergence of hysteresis for all the
parameters. In other words, the total capital (and following
it the resources and the technical skill) exhibit a discontinuous
steady-state value as a function of a small change in a
given parameter. The discontinuous transitions are irreversible,
where a small parameter change leads to a drastic change in
the capital, but the opposite change does not return the system
to the initial capital values.

Since a sharp transition is surprising, we checked whether
the stochastic counterpart of the same system has a similar
behavior. In the stochastic model, the transitions are contin-
uous. This raises the question of the mechanism leading to
the smooth transition between the two sides of the expected
hysteresis. We introduced a simpler system that has only two
variables but similar feedback loops. This system describes the
relationship between knowledge and capital only, with compe-
tition between A and itself and B and itself. The phase diagram
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FIG. 10. The average of B as a function of βA with the param-
eters δA = 0.05, αA = 0.01, βB = 0.01, δB = 0.1, βC = 0.5, δC =
0.05, and k = 0.3, diffusion rates of A, B, and C at 0.01, initial
conditions of A = 1, B = 1, C = 9.4 on a 100 × 100 lattice. The
solid line is the stable fixed points in the ODE. The dashed line is
the unstable fixed points in the ODE. The squares are the equilibrium
values in a two dimensional stochastic system with a diffusion rate of
0.01. The triangles are the equilibrium values in a one-dimensional
stochastic system with a diffusion rate of 0.01. The circles are the
equilibrium value with no diffusion.

of the AB model is similar to the ABC model, and it has similar
bifurcations and a similar behavior in the stochastic realization.
In the simplified system, the dynamics is limited to the narrow
path between the two stable fixed points and is characterized by
the transition probabilities between the two states. This transi-
tion is not symmetrical. The low stable fixed point (A3) is an
absorbing state, while the positive high stable fixed point is not.
Thus, in order to move from the lower fixed point to the upper
one, diffusion is required. This asymmetry makes the model re-
sults sensitive to the diffusion rate and to the dimension, where
escape from the absorbing state can only occur for midterm dif-
fusion values and for high-enough dimensions. Similar simpler
models with a mean-field hysteresis replaced by a continuous
transition in the stochastic simulation have been studied
[16,36]. However, this paper presents, to the best of our
knowledge, the first systematic analysis of this transition in
the current context.

The proposed model has clear implications for the effect of
efficacy on resource depletion; mainly that resource conser-
vation should be performed by directly preserving resources
and not by increasing the efficacy of their usage. Moreover,
we show that the effect of resource depletion is reversible in
contrast with the ODE expectations. This model is obviously
an extreme simplification of the economic reality, and the
diffusion process does not resemble the economic transition
between regions. Similarly, the simple mass action formalism
does not take into account the intricacies of economics. How-
ever, our conclusions are not the result of any specific detail in
the model but, rather, from the feedback loop structure and the
difference between the two types of fixed points. One can, thus,
assume that the qualitative conclusions from the model hold in
reality.
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APPENDIX A

In this Appendix, we find the fixed points of system (1).
System (1) can be scaled as follows:

dA

dt̃
= β̃A − δ̃AA + B̃,

dB̃

dt̃
= AB̃C̃ − B̃, (A1)

dC̃

dt̃
= β̃C − k̃AB̃C̃ − δ̃CC̃.

Through the following parameter and variable rescaling:

t̃ = δBt, C̃ = βB

δB

C, δ̃A = δA

δB

, k̃ = kβB

αA

,

(A2)
B̃ = αA

δB

B, β̃A = βA

δB

, β̃C = βCβB

(δB)2 , δ̃C = δC

δB

.

Equation (A1) has three fixed points,

A = β̃A

δ̃A

, B̃ = 0, C̃ = β̃C

δ̃C

, (A3)

B̃ = (β̃C − k̃β̃A) −
√

(̃kβ̃A + β̃C)2 − 4̃kδ̃Aδ̃C

2̃k
,

(A4)

A = β̃A + B̃

δ̃A

, C̃ = 1

A
,

B̃ = (β̃C − k̃β̃A) +
√

(̃kβ̃A + β̃C)2 − 4̃kδ̃Aδ̃C

2̃k
,

(A5)

A = β̃A + B̃

δ̃A

, C̃ = 1

A
.

The (A5) fixed point is always stable when it exists, and it
is positive. The (A4) fixed point is unstable (again as long as
it exists and is positive). The only fixed point whose stability
is sensitive to the parameters is (A3). In all regions of the
parameter space, where all three fixed points exist, the values
of A and B are larger in (A5) than in (A4), which, in turn,
has higher values than (A3). The values of C are inversely
proportional to A and, thus, follow an opposite order.

APPENDIX B

In this Appendix, we explain the effect of k on the resources
steady state. k represents the number of C’s that are used to cre-
ate a single B. The leading idea behind green economy is that
fewer resources will be used per unit of production [27–29].
This is translated in the current schematic model to a low
value of k. The basic notion behind this idea is that lowering
the usage rate of resources will keep more resources available.
We show that this idea fails when one reaches a steady state.

According to system (1), in steady state the following
equation is obtained,

C2(αAβBδC) + C(−kβAβBδB − αAβBβC) + (
kδAδ2

B

) = 0.

(B1)
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The high solution of Eq. (B1) is

C1 =
kβAβBδB + αAβBβC +

√
(kβAβBδB + αAβBβC)2 − 4αAβBδCkδAδ2

B

2αAβBδC

. (B2)

This solution obeys dC1
dk

> 0 for any k that has three fixed points, since

dC1

dk
= βAβBδB

2αAβBδC

+ 2 (kβAβBδB + αAβBβC) βAβBδB − 4αAβBδCδAδ2
B

4αAβBδC

√
(kβAβBδB + αAβBβC)2 − 4αAβBδCkδAδ2

B

= βAδB

2δCαA

⎡
⎣1 + (kβAβBδB + αAβBβC) βB − 2αAδCδAδB/βA√

(kβAβBδB + αAβBβC)2 − 4αAβBδCkδAδ2
B

⎤
⎦ . (B3)

The nominator of the last term is positive when three
solutions exist, and all other parts of the expression are always
positive.

In other words, smaller values of k induce lower C
steady-state values. The more efficiently the resources are used
(either through better technical skills or through more green
technologies), the lower the steady-state value of the resources
will be. This is exactly the opposite result of what sustainable
economy scientists are trying to reach.

APPENDIX C

In this Appendix, we prove that the general model (model 2)
exists for the following properties:

(a) There is inverse relation between A and C;
(b) There is reduction of the C value in the high steady

state as we reduce k;
(c) The bifurcation tables of model (2) are similar to the

ones in system 1,
where f (B) and g(A,C) are monotonic increasing concave or
linear functions of B and A,C respectively that have a value
of zero when the appropriate variables are zero.

In steady state, model (2) leads to

βA − δAA + f (B) = 0,

g(A,C)B − δBB = 0, (C1)

βC − kg(A,C)B − δCC = 0.

Equations (C1) have two sets of solutions: If B = 0, then A

and C are stable around there equilibrium. The second solution
is where B �= 0. In this case, the following relation holds:

f −1(δAA − βA) = B,

g(A,C) = δB, (C2)

βC − kδBf −1(δAA − βA) − δCC = 0.

These equations should be written as an equilibrium
between A and C, when B does not play a role,

(a)g(A,C) = δB,
(C3)

(b)C = βC

δC

− k
δB

δC

f −1(δAA − βA).

(a) f (B) is a monotonic increasing function of B, so
f −1(δAA − βA) is a monotonic increasing function of A. Thus,
C is a monotonic decreasing function of A in equation (C3b).
So there is an inverse relation between A and C.

(b) Decreasing k reduces the slope of C(A) in equation
(C3b). The steady state is at the intersection of (C3a) and (C3b).
In addition, we assume that g(A,C) is an increasing monotonic
concave or linear function of A and C, thus, equation (C3b)
must be concave. Increasing k leads to a lower value of A and,
thus, a higher value of C at the intersection for the high fixed
point (Fig. 11). So there is a reduction of the C value in the
high steady state as we reduce k.

(c) The bifurcation table of this function is influenced by
two parameters: k and βA. For low βAand high k, there is no
intersection between equations (C3a) and (C3b), thus there is
only one fixed point (B = 0). Decreasing k leads to a transition
from no positive solutions to two positive solutions (Fig. 11).
Namely, for low βA, decreasing k leads to a transition from
one fixed point to three fixed points. In addition, increasing
βA leads to two positive solutions for equations (C3). One
of the solutions is obtained at a very low value of A and a
high value of C. The appropriate value of B in this fixed
point is B = f −1(δAA − βA). This is an increasing function,
so for a high value of βA and a low value of A the value of
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FIG. 11. The behavior of equations (C3) for high and low k and
high and low βA. The black solid line is an example for equation (C3a)
AC = 1. An example for equation (C3b) is C = 5 − k(A − βA). The
gray solid line is the equation (C3b) while k = 8, βA = 5

8 , the black
dashed line is equation (C3b) with low k: k = 6, βA = 5

8 , and the
gray dashed line is equation (C3b) with low βA: k = 8, βA = 1

8 .
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B will be negative. Thus, for any k, increasing βA leads to a
transition from one or three fixed points to two fixed points.
These transitions are equal to the bifurcation table of system 1
(Fig. 1).

APPENDIX D

We here present one possible extension of model (2):

dA

dt
= βA − δAA + αAB,

dB

dt
= βB

A

A + v
BC − δBB, (D1)

dC

dt
= βC − kβB

A

A + v
BC − δCC,

and show that
(a) The inverse relation between A and C holds.
(b) The reduction in the C value steady state as we reduce

k also holds.
(c) The bifurcation tables are similar to the one in system 1.
This system is a specific application of system (2), where

f (B) = αAB and g(A,C) = βB
AC
A+v

.
The functions f (B),g(A,C) are monotonic concave or

linear functions of B and A,C respectively, and they have
a value of zero when the appropriate variables are zero, thus,
according to Appendix C, all three properties exist.

APPENDIX E

We here present one possible extension of model (2),

dA

dt
= βA − δAA + αAB

B + v
,

dB

dt
= βBABC − δBB, (E1)

dC

dt
= βC − kβBABC − δCC,

and show that
(a) The inverse relation between A and C holds.
(b) The reduction in the C value steady state as we reduce

k also holds.
(c) The bifurcation tables are similar to the one in system 1.
This system is a specific application of system (2), where

f (B) = αAB
B+v

and g(A,C) = βBAC.
The functions f (B),g(A,C) are monotonic concave or

linear functions of B and A,C respectively, and they have
a value of zero when the appropriate variables are zero, Thus,
according to Appendix C, all three properties exist.

APPENDIX F

In this Appendix, we show that the lattice size has no effect
of the stochastic results. We run the same stochastic simulation
on larger lattice size and smaller lattice size.

The size of the small lattice that we analyzed is 25 × 25.
The results of this simulation are similar to the results of the
simulation on 100 × 100 lattice size, as shown in Fig. 12(a).
Similarly, the results obtained in a large lattice (400 × 400) are
equal to the results in 100 × 100 lattice size [see Fig. 12(b)].
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FIG. 12. (a) The average of B as a function k with the parameters
αA = 0.001, δA = 0.005, βA = 0.00333, βB = 0.001, δB = 0.01,

δC = 0.005, βC = 0.05, with diffusions of A and B at 0.001, with
initial conditions of A = 2, B = 5, C = 6, on a 25 × 25 lattice.
The solid line is the stable fixed points in the ODE. The dashed line
is the unstable fixed points in the ODE. The square line is the fixed
point in the stochastic system. (b) The average of B as a function k

with the parameters αA = 0.001, δA = 0.005, βA = 0.00333, βB =
0.001, δB = 0.01, δC = 0.005, βC = 0.05, with diffusions of A and
B at 0.001, initial conditions of A = 2, B = 5, C = 6, on a 400 × 400
lattice. The solid line is the stable fixed points in the ODE. The dashed
line is the unstable fixed points in the ODE. The square line is the
fixed point in the stochastic system.

In both cases the results of the stochastic simulation are
continuous, and the transitions in the stochastic simulation
are shifted compared with the ODE. Note that beyond the
larger lattice sizes used, the diffusion time from one part of
the lattice to the other parts approaches the time scale of the
simulation, and we can treat a very large lattice as an ensemble
of independent lattices. Thus, above a minimal size, the lattice
size has no effect of the results in model (1).

APPENDIX G

In this Appendix, we show that the behavior if the QSS
model (model 3) is similar to the behavior of model (1). The
QSS model is developed through the following steps:
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First, we find the steady-state value of C according to the
third equation of model (1):

βC − kβBABC − δCC = 0,
(G1)

C = βC

kβBAB + δC

.

We set this value of C in the other equations of model (1),

dA

dt
= βA − δAA + αAB,

(G2)
dB

dt
= βBβCAB

kβBAB + δC

− δBB.

Model (G2) is the QSS model of model (1) assumption of
C. The QSS model has three fixed points,

A = βA

δA

, B = 0, (G3)

B = βC − kβA −
√

(βC − kβA)2 − 4k(δAδC − βAβC)

2k
,

A = βA + B

δA

, (G4)

B = βC − kβA +
√

(βC − kβA)2 − 4k(δAδC − βAβC)

2k
,

A = βA + B

δA

. (G5)

k

Two fixed 
points

One fixed 
point

Three fixed 
points

0.05

0.252

FIG. 13. The number of the fixed points of the QSS model
according to βA and k when δA = 0.05, αA = 0.01, βB = 0.01, δB =
0.1, βC = 0.5, and δC = 0.05 .The system has three transitions: from
three fixed points to one fixed point (as a function of k), three fixed
points to two fixed points, and one fixed point to two fixed points (as
a function of βA). The bifurcation table of the QSS model is equal to
the bifurcation table of model (1).

The bifurcation table of the QSS model is equal to the
bifurcation table of model (1). This table is shown in Fig. 13.
Thus, the behavior of the QSS model is equal to the behavior
of model (1).
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