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Referring to the social performance promotes cooperation in spatial prisoner’s dilemma games
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We propose a new pairwise Fermi updating rule by considering a social average payoff when an agent copies
a neighbor’s strategy. In the update rule, a focal agent compares her payoff with the social average payoff of the
same strategy that her pairwise opponent has. This concept might be justified by the fact that people reference
global and, somehow, statistical information, not local information when imitating social behaviors. We presume
several possible ways for the social average. Simulation results prove that the social average of some limited
agents realizes more significant cooperation than that of the entire population.
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I. INTRODUCTION

The emergence and maintenance of cooperation have
attracted considerable attention from natural and social disci-
plines [1,2]. In order to understand the survival of cooperation,
a theoretical framework that has shed light onto this long-
standing issue is the evolutionary game theory [3,4]. In
particular, one of the most fascinating models is the prisoner’s
dilemma game where two players simultaneously decide to
adopt one of two strategies: cooperation (C) and defection
(D). When a population of players has interaction in the
well-mixed case, cooperation soon disappears. Over the past
few decades, a great number of scenarios has been identified
that can offset an unfavorable outcome of social dilemmas
and can lead to the evolution of cooperation [5–9]. Whereas,
Nowak attributed all these to five mechanisms: kin selection,
direct reciprocity, indirect reciprocity, network reciprocity, and
group selection [10], these mechanisms can be somewhat
related to the reduction of an opposing player’s anonymity
relative to the so-called well-mixed situation.

Among the five mechanisms, network reciprocity, where
players are arranged on the spatially structured topology
and interact only with their direct neighbors, has attracted
the greatest interest (for comprehensive reviews refer to
Refs. [11–16]) because cooperators can survive by means of
forming compact clusters, which minimize the exploitation
by defectors and protect those cooperators that are located
in the interior of such clusters. In addition, the strategy
updating rule and dynamics on spatial topology also play a
key role in the evolution of cooperation. Typically, players
can alter their strategies according to pairwise Fermi, pairwise
linear, imitation max, roulette selection, or others [17–21]. To
understand what creates the influence of network reciprocity,
Yamauchi et al. [17,18] and Wen et al. [22] performed a full
factorial design of experiments for a comprehensive factorial
analysis focusing on network reciprocity and qualitatively
found that strategy update rules as well as update dynamics
(synchronous or asynchronous) possessed more influence on
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network reciprocity than that of network topology alone.
Following these seminal papers, Tanimoto attempted to answer
the question of what is substantially important when we say
network reciprocity [23]. He implied that allowing strategy
adaptation speed slower than gaming speed can be considered
as the substance of network reciprocity. For example, Tanimoto
showed that, when the prisoner’s dilemma game on the
scale-free (SF) network with a spatial distribution of the
strategy updating the time scale was assumed, a negative
correlation between degree and strategy updating speed caused
an extremely large cooperation-enhancing effect. This occurs
because a cooperative hub agent, who is insensitive to strategy
adaptation, can protect herself from copying neighboring
defection for several initial time steps of each simulation
episode, leading to survival and growth of the cooperators’
cluster (C cluster).

Concerning the most studied pairwise-Fermi (PW-Fermi)
process where a focal player adopts the strategy of a randomly
chosen neighbor based on the difference of accumulated
payoffs, Wang and Perc [24], Perc and Wang [25], and
Tanimoto et al. [26] found a significant enhancement effect for
cooperation when assuming the simple rule in which a higher
payoff neighbor was chosen as a pairwise opponent instead of
random selection. This framework makes a cooperator (who is
on the border of cooperation and defection clusters) insensitive
to copy defection because the richer pairwise opponent (per-
haps one of neighboring cooperators who collects a high payoff
through mutual cooperation with her cooperative neighbors)
prevents him from changing from C to D. Meanwhile, other
scholars [27–29] reported that when the copying probability
directly attenuated through the so-called “letting learning
activity level decrease,” the evolution of cooperation could be
guaranteed. Evidently, the factor that improves cooperation in
those models is that the slower strategy adaptation speed rather
than gaming speed causes less frequent copies of defection.

Observing the social learning attitude in human society,
we know that the individual becomes reluctant to learn other
attitudes when he is satisfied with his current situation. With
respect to this point, we previously proposed a model for the
PW-Fermi adaptation process considering copy resistance [30]
and reported that it enhanced cooperation more significantly
than the usual PW-Fermi update rule. The model took account
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of both payoff differences between a focal player and the
randomly selected opponent and between the focal player and
the social average. The central idea of that model is that a
focal player obtaining a relatively richer payoff than the social
average has less incentive to copy her opponent’s strategy.

Incidentally, in the usual PW Fermi, a focal agent compares
her payoff with that of one of her neighbors, which has
been widely accepted and unquestioned. Observing realistic
human social networks, we can find many proofs that people
refer to not local information but the global and, perhaps,
statistical information, provided by media, for example. Here,
we demonstrate a plausible model to reproduce this concept.
Simulation results reveal that our model, based on the revised
PW-Fermi principle, significantly enhances cooperation in the
prisoner’s dilemma game.

II. MODEL

We evaluate network reciprocity in the prisoner’s dilemma
game played on a static network with the assumption of
pairwise strategy adaptation, described as follows.

A. The 2 × 2 game

We consider a 2 × 2 game as an archetype. Each player can
adopt one of the two strategies cooperation (C) or defection
(D). Players are rewarded (R) for mutual cooperation and are
punished (P ) for mutual defection. If one player chooses C

and the other D, the latter receives a temptation payoff (T ),
and the former is labeled as a saint (S). According to the
seminal idea [31], we define the stag-hunt-type dilemma as
Dr = P − S and the chicken-type dilemma as Dg = T − R,
and the payoffs can be rescaled such that R = 1 and P = 0. In
this situation, the payoff matrix can be given as

(
R S

T P

)
=

(
1 −Dr

1 + Dg 0

)
, (1)

where the elements are assumed to satisfy T > R > P > S

and 2R > T + S. We limit the prisoner’s dilemma game class
by assuming 0 � Dg � 1 and 0 � Dr � 1.

B. Network

As the interaction network, we use either a regular lattice
with a periodic boundary condition and four nearest neighbors
or the SF network with an average degree of 4 (i.e.,〈k〉 = 4)
generated via the Barabási-Albert algorithm [32]. The total
number of agents is N = 4900.

C. Strategy updating

The game is iterated forward in accordance with the
sequential simulation procedure comprising the following
elementary steps. First, player i acquires its payoff πi by
playing the game with all its neighbors. Then, in the same
way, we evaluate the payoffs of all the neighbors of player i.
Last, player i randomly selects a neighbor j and adopts the
strategy sj of neighbor j with the probability (dependent on

the difference of payoffs),

Psi→sj
= 1

1 + exp
[

πi−〈π〉
κ

] , (2)

〈π〉 =
{ 〈πC〉, if sj = C,

〈πD〉, if sj = D,
(3)

where 〈πC〉 and 〈πD〉 indicate average payoffs of all the
cooperators and defectors in a defined sample set, respectively,
and κ denotesthe amplitude of noise. κ = 0 and κ → ∞
denote the completely deterministic and completely random
selections of the neighbor’s strategy, whereas, for any finite
positive values, κ incorporates the uncertainties in the strategy
adoption. As a previous setting [28], we simply fix the value
of κ to be κ = 0.1 in the present paper. Moreover, it is evident
that the focal player i refers to the average payoff of the
strategy of his opponent rather than his accumulated payoff.
This seems acceptable that the average payoff can show a
better social performance at the current moment. With respect
to the definition of the sample set, one may think that the
entire population is the simplest idea, which implies 〈πC〉 and
〈πD〉 represent the total average of all the cooperators and
defectors, respectively. In practice, however, it is difficult to
obtain accurate statistical data covering the entire population
in the real world. Thus, we presume two types of ways:
One is the “neighborhood case,” and the other is the “limited
sample case.” The first idea is to take averaged 〈πC〉 and 〈πD〉
among the immediate neighborhood, the second neighbor-
hood, or the third neighborhood. Especially, when determining
the social average payoffs of cooperators and defectors
with the second and third neighborhoods, all individuals,
until the second (or third) neighbors, are involved in the
simulations. This idea comes from actual situations where we
are able to obtain statistical information about people who live
in our neighborhood. As the second idea, we take randomly
sampled agents for drawing 〈πC〉 and 〈πD〉. For example, we
can take 10%, 1%, or an arbitrary sample ratio of the entire
population. This might be justified because we can know some
statistical information for “typical people,” who are randomly
selected from a mother population.

D. Simulation setting

Initially, an equal percentage of strategies cooperation (C)
and defection (D) are randomly distributed among players
allocated on different vertices of the network. Then, several
generations are run until the frequency of cooperation arrives
at quasiequilibrium. If the frequency of cooperation continues
to fluctuate, we obtain it for the final 1000 generations over
the total 10 000 generations. From the viewpoint of statistical
robustness, we take 100 ensemble averages where 100 simu-
lation realizations give the average value for each parameter
setting. In the simulation, the agents update their strategies
synchronously. We focus primarily on the cooperation fraction
in the following discussion.

III. RESULTS AND DISCUSSION

A. Enduring and expanding periods

For the sake of the following discussion, we define the
terminology as the enduring (END) period and the expanding
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FIG. 1. (Color online) Schematic for the evolution of the spatial prisoner’s dilemma game with the concept of END and EXP of the fraction
of cooperators PC. END period: initial cooperators are rapidly plundered by defectors, which cause only a few cooperators to be left through
forming compact C clusters. EXP period: C clusters start to expand since a cooperator on the clusters’ border can attract a neighboring defector
into the cluster.

(EXP) period as shown in Fig. 1. In a typical evolution process
where the initial value of the cooperation fraction is 0.5,
there usually are two periods: The first one features the rapid
decrease in cooperation, whereas, the following period is along
the increasing cooperation level as long as the evolutionary
trail is not absorbed by the all-defectors state during the
initial period. In our paper, the first is the so-called END
period because cooperators try to endure defectors’ invasion
(or cooperators avoid copying defection from neighbors).
Correspondingly, we call the other the EXP period since
cooperators who successfully survive in the END period by
forming cooperative clusters (C clusters) expand their area by
converting defectors into cooperators.

B. Result of the fundamental case

Figure 2 shows the average cooperation fraction in the
entire region of the prisoner’s dilemma game on the lattice
network (A,B) and the scale-free network (C,D) where the
traditional pairwise-Fermi process (B,D) and the proposed
model (A,C) are taken into account. In this section, we assume

that 〈πC〉 and 〈πD〉 are social averages for all the cooperators
and defectors over the whole population. Figure 3 illustrates
the time evolution of the cooperation fraction. It is clearly
shown, compared to the case of the traditional version, that the
frequency of cooperators in the proposed model is higher on
the lattice network.

We can explain the cause of this enhancement mechanism
on the lattice network as follows. In the proposed model,
the agent compares his own payoff with the social average
payoff of cooperators or defectors, which implies that the
strategy updating speed may largely differ by the strategy of a
selected pairwise opponent. When the pairwise opponent is a
cooperator and lies on the C clusters, he obtains R through each
interaction with other cooperators. As a result, the cooperator
agents’ social average payoff increases, which makes the
defectors among the cooperator neighborhood tend to change
the current strategy. On the contrary, when the pairwise
opponent is a defector and lies on the defective clusters, he can
only get P from mutual defection. This makes the defectors’
social average payoff decrease. Thus, cooperators within the
neighborhood of defectors find it impossible to copy defection.

FIG. 2. Average cooperation fraction for the traditional model (A,C) and proposed model (B,D) within the limit of Dg ∈ [0,1], Dr ∈ [0,1].
Games are played on a lattice network (A,B) and a scale-free network (C,D) with 〈k〉 = 4.
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FIG. 3. Time evolution of the cooperation fraction when assum-
ing (a) the lattice network Dg = Dr = 0.1, (b) the scale-free network,
weaker dilemma Dg = Dr = 0.1, and (c) the scale-free network,
stronger dilemma Dg = Dr = 0.3. Black solid lines show the
traditional model, and gray dashed lines show the proposed model
case, respectively. Each of the time evolution curves indicates an
ensemble average of 100 realizations. We confirmed small standard
deviations for each of those ensemble averages. This means the
proposed case in (c), for example, has a polymorphic equilibrium
where the cooperators and defectors coexist, not bistable equilibrium.

Those two situations jointly lead to the fact that constructing
clusters brings more benefits to cooperators than defectors,
namely, C clusters can easily survive and expand. Observing
the time evolution of the cooperation fraction in Fig. 3(a), we
note that cooperators in the traditional model cannot escape
from the defectors’ invasion during the END period. On the
other hand, cooperators, who successfully construct compact
C clusters in the proposed model, can survive in the END
period and can show a rapid increase in the cooperation level
during the EXP period. By the way, when the asynchronous
update rule is assumed, the cooperation level is lower than
that of the synchronous update rule. We can explain the cause
of this deterioration mechanism on the lattice network with an
asynchronous update as follows. In a typical evolution process,
it is important to expand the C clusters after the END period.
In the EXP period with stochastic update rules, so to speak,
the asynchronous update boundaries between C clusters and
D clusters are disturbed. These irregular boundaries help D

agents to get T . Hence, when the synchronous update rule is
assumed, C clusters are able to expand in unison, on the other

hand, the asynchronous update rule is assumed, and C clusters
cannot expand in unison.

Next, let us examine the results on the scale-free network.
The proposed strategy adaptation process shows less cooper-
ation than the traditional model does in the weaker dilemma
region, although there exists more cooperation in the relatively
stronger dilemma area (that indicates the proposed model
brings a larger critical dilemma strength than the traditional
model). This seems slightly different from the tendency of the
homogeneous network (lattice) case [see Fig. 3(a)]. By means
of our proposed PW-Fermi process, the adaptation speed of the
agents who obtain more payoff than the social average of the
opponent’s strategy becomes slow, which makes the change
in the strategy more difficult. When the game is implemented
on a heterogeneous network (such as, a scale-free network),
highly linked agents (hub agents) earn more than the social
average because they engage in more games. Therefore, hub
cooperators hardly copy defection, which means a reasonable
number of cooperators around those hub cooperators can
survive even in a stronger dilemma environment [Fig. 3(c)].
Similarly, hub defectors hardly copy cooperation, which means
that large numbers of defectors do not convert to cooperators
even in a weaker dilemma situation where the traditional
PW-Fermi model can convert all the defectors into cooperators
[Fig. 3(b)].

C. Result of neighborhood cases

Figure 4 shows the average cooperation fraction in the entire
region of the prisoner’s dilemma for the neighborhood cases.
On the lattice network, it is noteworthy that the increase in
neighborhood cases exhibits a significant enhancement for
cooperation, despite less sensitivity on the scale-free network.

When presuming the immediate neighborhood on the lattice
network, a cooperator with defective neighbors tends to change

FIG. 4. Average cooperation fraction for the neighborhood case.
From A to C (and from D to F ), the neighborhoods are varying from
first, second, and third within the limit of Dg ∈ [0,1], Dr ∈ [0,1].
Games are played on a lattice network (A,B,C) and a scale-free
network (D,E,F ) with 〈k〉 = 4.
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his strategy because the defectors around this cooperator take
a relatively higher payoff by obtaining T and imposing S

on him. This inevitably comes to an end with a meager
cooperation level. In more than the second neighborhood
cases, the neighborhood area on a cooperator-defector border
contains several cooperators who construct a C cluster with
obtaining R as well as several defectors who gain P . This
particular situation is beneficial for emerging cooperation
because cooperators hardly copy defection and defectors easily
copy cooperation. In the scale-free network, the irregularity of
the topology usually cannot produce regular clusters, such
as the lattice network case. Therefore, although C clusters
are made, these members are not only C agents, but also
D agents, which makes the boundaries of C clusters and D

clusters not legible enough. In such a case, C agents existing
in the C cluster cannot get only R, and D agents existing in
the D cluster get both T and P . Naturally, there is not a big
difference between the first neighbors’ social average payoff
and the second (third) neighbors’ case.

Moreover, we think that clustering coefficients are related to
the cooperation fraction when determining the neighborhoods.
In general, low connectivity cases are an advantage to
cooperation enhancement, although in this case, this statement
does not always apply to the range of strategy updating.
Hence, spreading the scope of updating, that is, increasing
the clustering coefficient, plays an important role in coop-
eration enhancing, especially in the homogeneous network
case.

D. Result of limited sample cases

Figure 5 shows the average cooperation fraction in the
entire region of the prisoner’s dilemma game for the limited
sample cases. Compared with the cases of the lattice network,

we note that lower sampling ratios (such as, 0.05 and 0.01)
exhibit significant enhancement for cooperation, although a
too small ratio looks slightly counterproductive. Moreover,
some stronger dilemma regions (highlighted by the circle)
singularly exhibit higher cooperation than the region with a
relatively weaker dilemma.

Let us first discuss why the relatively lower sampling ratio
enhances cooperation. Figure 6(a) shows the time evolution of
the cooperation fraction, average payoffs of cooperators and
defectors for the sampling ratio 0.05 (〈π〉C 0.05 and 〈π〉D 0.05)
as well as the entire population (〈π〉C all and 〈π〉D all) when
assuming Dg = 0.8, Dr = 0.2. We see that, after the END
period, 〈π〉C 0.05 significantly oscillates. When this oscillation
makes 〈π〉C 0.05 exceed 〈π〉C all, the defector possessing
cooperative neighbor’s C agent tends to change his strategy. At
the same time, the oscillation does not produce any influence
on the cooperator with defective neighbors because what the
cooperator refers to is 〈π〉D 0.05 rather than 〈π〉C 0.05. That is,
cooperator agents are not affected under smaller 〈π〉C 0.05.
Thus, this asymmetric effect gives chances of converting
defection to cooperation.

Next, we discuss why more cooperation can be observed in
the stronger dilemma than in the weaker dilemma environment.
Figure 7 presents some typical snapshots for sampling ratio
0.05 when assuming Dg = 0.2, Dr = 0.7 (upper panel) and
Dg = 0.2, Dr = 0.8 (bottom panel). During the END period,
obviously, there is more C clusters’ survival in the weaker
dilemma case (Dr = 0.7) than in the stronger dilemma case
(Dr = 0.8). But concerned with the EXP period, we see that,
in the case of the weaker dilemma, the surviving C clusters
stop growing and finally reach a relatively meager cooperation
level [Fig. 7(d)], whereas, in the stronger dilemma case, the
surviving C clusters (despite the lower number) can expand
and can even reach a higher cooperation level at equilibrium

FIG. 5. (Color online) Average cooperation fraction for the limited sample case. From A to D (and from E to H ), the sampling ratios are
0.1, 0.05, 0.01, and 0.001 within the limit of Dg ∈ [0,1], Dr ∈ [0,1]. Games are played on a lattice network (A, B, C, and D) and a scale-free
network (E, F , G, and H ) with 〈k〉 = 4.
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FIG. 6. (Color online) The time evolution of the black solid line:
cooperation fraction; blue dotted line: sampled cooperators’ average
payoff; red dashed-dotted line: sampled defectors; orange dashed
line: average payoff of all the cooperators; and gray solid line: all the
defectors when presuming (a) the stronger dilemma Dr = 0.8, Dg =
0.2 and (b) the weaker dilemma Dr = 0.7, Dg = 0.2, respectively.
We assume the sampling ratio of the total population to be 0.05.

[Fig. 7(h)]. Returning to Figs. 6(a) and 6(b), we also notice
that the oscillation of 〈π〉C 0.05 of the stronger dilemma case
(A) instantaneously exhibits higher values around the ten steps
than that of the weaker dilemma case (B). This is because a
relatively smaller number of C clusters, with a larger size in the

FIG. 8. (Color online) (a) Black solid line PC: the time evolution
of the cooperation fraction; gray solid line: sampled D agents’ average
payoff; and red dashed line: all defectors. (b) Blue dashed line: the
average degrees of both sampled cooperators and red solid line:
defectors when presuming Dg = Dr = 0.2.

case of the stronger dilemma case, can make more cooperators
belong to the C clusters where they have less opportunities to
be exploited by defectors.

Lastly, it is interesting to explore why we see a higher
cooperation fraction with the smallest sampling ratio on the
scale-free network [Fig. 5(h)]. In the case of the sampling
ratio being 0.001, the number of selected agents is less than 5
(4900 × 0.001 = 4.9), implying the statistical sampling size is
very small. Meanwhile, the scale-free network has a power-law
distribution of degree, which makes the majority of agents have
smaller degrees. Therefore, sampled agents can only gain a
limited payoff with a high possibility. Figure 8(a) illustrates the
time evolution of the cooperation fraction and average payoffs
of defectors (〈π〉D 0.001 and 〈π〉D all), and Fig. 8(b) shows

FIG. 7. White: snapshots of cooperators and black: defectors for two different dilemma strengths. From A to D, the corresponding time
steps are 0, 10, 100, and 1000 steps (Dr = 0.8 and Dg = 0.2), respectively. From E to H , we show consistent time steps with the upper panel
(Dr = 0.7, Dg = 0.2). The sampling ratio is 0.05 on a 70 × 70 lattice.
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the time evolution of the average degrees of both sampled
cooperators and defectors. In the END period, the cooperation
fraction shows the bottom, which indicates defectors play
games with defectors and obtain P . This situation makes
〈π〉D 0.001 quite small (nearly equaling zero). As a result, the
few cooperators who successfully construct the C cluster can
obtain R. However, the trend will alter in the subsequent EXP
period. The defectors have smaller degrees, and cooperator
neighbors gradually change their strategies, which makes the C

clusters expand. This is why we can see both average degrees of
sampled defectors and 〈π〉D 0.001 coherently increase with an
increase in cooperation fraction. After hundreds of time steps,
the remaining defectors are relatively large degree agents. In
this manner, a smaller sampling ratio with a scale-free network
realizes a high cooperation level.

IV. CONCLUSION

To emulate a more plausible strategy adaptation mechanism
observed in human society, we established a new concept for
the PW-Fermi process where a focal agent refers to the social
average payoff of the strategy that her opponent has instead
of her opponent’s payoff. A series of simulations reveals that
the proposed model creates an evident effect on the evolution
of cooperation, especially when the lattice is assumed as an
underlying topology.

In a heterogeneous network, however, only limited en-
hancement can be observed because the proposed model works
counterproductively under a weaker dilemma by producing
many stubborn defectors who reduce the cooperation level at
a coexisting equilibrium.

Furthermore, we studied two possible ways to consider
the social average: taking the average of relatively close
agents in her neighborhood (neighborhood case) and taking
the average of a limited number of randomly sampling
agents from the whole population (limited sample case). For
the neighborhood case on the homogeneous network, it is
noteworthy that more than the second neighborhood settings
exhibit significant enhancement for cooperation, although the
heterogeneous network shows less sensitivity to the range of
neighborhoods. As for the limited sample case, it is notable
that the lower sampling ratio exhibits significant enhancement
for cooperation.
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