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Heat conduction in systems with Kolmogorov-Arnold-Moser phase space structure
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(Received 30 April 2012; revised manuscript received 8 August 2012; published 25 September 2012)

We study heat conduction in a billiard channel formed by two sinusoidal walls and the diffusion of particles in
the corresponding channel of infinite length; the latter system has an infinite horizon, i.e., a particle can travel an
arbitrary distance without colliding with the rippled walls. For small ripple amplitudes, the dynamics of the heat
carriers is regular and analytical results for the temperature profile and heat flux are obtained using an effective
potential. The study also proposes a formula for the temperature profile that is valid for any ripple amplitude.
When the dynamics is regular, ballistic conductance and ballistic diffusion are present. The Poincaré plots of
the associated dynamical system (the infinitely long channel) exhibit the generic transition to chaos as ripple
amplitude is increased. When no Kolmogorov-Arnold-Moser (KAM) curves are present to forbid the connection
of all chaotic regions, the mean square displacement grows asymptotically with time t as t ln(t).
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I. INTRODUCTION

Much attention has been paid in the past decade to the
study of heat conduction in one-dimensional (1D) and 2D
systems via their underlying dynamics. The main question
to be answered is how the Fourier law of heat conduction
is related to the microscopic dynamics of the system. On
the one hand, a convergent conductivity has been shown in
the ding-a-ling model [1] (where oscillators exchange energy
via intermediate hard spheres), which is chaotic, and in the
Lorentz channel (a channel with circular scatterers placed
periodically) which is fully hyperbolic [2]. On the other hand,
for the Fermi-Pasta-Ulam chain, where oscillators are coupled
to nonlinear terms, heat conductivity is abnormal even above
the chaotic threshold [3], while the serpent billiard, a channel
with parallel semicircular walls, exhibits marginally normal
diffusion even under conditions of global chaos [4]. Since
normal diffusion is at the root of normal heat transport and
abnormal diffusion leads to abnormal heat transport [5], the
latter system cannot obey Fourier’s law. Thus, the positivity of
the Lyapunov exponent is neither a sufficient nor necessary
condition for inducing normal transport properties, since
there are billiard gas models (polygonal channels) with linear
dynamical instability and yet they exhibit normal transport
properties [6–10]. In addition, it seems that for chaotic systems
a strong degree of chaos, which translates into a global chaotic
dynamics, is required to obtain normal transport properties.

Although the precise conditions behind the onset of
Fourier’s law remain unknown despite decades of intensive
studies, many interesting properties of the heat mechanism
have been discovered, including the possibility of controlling
heat flux: for example, there are 1D chains that act as thermal
rectifiers [11–13], billiard models where particle interactions
(or an external magnetic field) produce thermal rectification
[14,15], and graded systems in which rectification does not
decay with system size [16,17]. Moreover, a temporally alter-
nating bath temperature can be used to generate a steady heat
flow against a thermal bias [18], while an important increase of
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the thermoelectric efficiency is reported in billiardlike systems
[19]. Another interesting, related issue is the possibility of
controlling the stochastic transport of particles (in the absence
of a thermal gradient) which can be achieved in systems
possessing spatial or dynamical symmetry breaking with the
aid of external unbiased input signals [20].

Much attention has been paid to billiard systems when
they exhibit strong chaos (global chaos), but few studies
have focused on the relation between the degree of chaos
in the system and their transport properties [21,22], despite
the importance of this issue, as in many systems chaotic and
regular dynamics coexist. In addition, the system introduced in
Ref. [21] is a peculiar chaotic system whose phase space does
not have the typical KAM structure of generic Hamiltonian
systems. While diffusion in systems (quasi-1D cosine billiard)
with KAM phase space structure is studied in Ref. [22], no
connection with the thermal transport properties is probed.
Therefore, the main purpose of our study is to analyze the
effect of the degree of chaos on the thermal transport properties
of systems with KAM phase space structure.

In this paper, we consider a two-dimensional billiard model
formed by two sinusoidal walls. The two ends of the channel
are connected to Gaussian-type thermal baths (see Fig. 1)
and the corresponding infinite length channel has an infinite
horizon. The average width of the channel chosen is much
smaller than its length in order to keep kinetic excitation in the
transverse direction frozen. The study of thermal properties
in this system is interesting because it exhibits Poincaré
sections with a KAM structure typical of generic Hamiltonian
systems [23]. In addition, at small ripple amplitudes, we obtain
an estimation of the temperature profile and heat flux by
means of an effective potential. The result of our estimation is
corroborated by numerical calculations.

The paper is organized as follows. In Sec II we introduce
the model and discuss the dynamic properties of the system.
Section III focuses on the study of the thermal transport
properties of the channel when ripple amplitude is small.
For this case, we use the effective potential mentioned in the
previous section to obtain analytical results for the stationary
heat flux and temperature profile. Section IV examines how
the degree of chaos affects the thermal transport properties
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FIG. 1. (Color online) Geometry of the channel in contact with
two thermal baths.

in the channel, focusing on the point at which the transition
from regular dynamics to chaotic dynamics occurs. When the
ripple amplitude is sufficiently large, the results are compared
to those obtained for the Lorentz channel and for the system
introduced in Ref. [21]. Finally, concluding remarks are
presented.

II. SYSTEM MODEL AND DYNAMICS

We considered an infinite channel formed by two sinusoidal
walls; the profiles of the upper and lower walls, respectively,
are determined by

y1 = b + a sin(2πx), y2 = −b + a sin[2π (x + r)], (1)

where a is the amplitude of the ripples, r denotes the phase
difference between the upper and lower walls, and b is half of
the average width of the channel. All quantities are rescaled
to the length l of one period. In this study, we consider the
following fixed values: b = 0.1 and r = 1/2. When we take
other values for r , the main conclusions of this paper remain
essentially the same.

The dynamics of a particle that collides specularly with the
rippled walls can be described qualitatively by the Poincaré
section [xn,pn = cos(θn)], where xn is the x coordinate of the
particle and θn is the angle that the trajectory of the particle
forms with the positive x axis just after the nth collision with
any wall. To obtain all possible orbits in the Poincaré section
(PS), several initial conditions (x0,y0,θ0) must be taken into
account. Here, (x0,y0) is a point in the configuration space that
corresponds to the initial x and y coordinates of the particle,
while θ0 is the angle that the initial trajectory of the particle
forms with the positive x axis at the departure point (x0,y0).
Due to the periodicity of the channel, the structure of the
PS is periodic; therefore, we may choose the x domain in
the interval [0,2], which corresponds to two ripple periods,
so as to obtain a complete panorama of the dynamics of
the system. Poincaré plots for four different values of a are
shown in Fig. 2. When the ripple amplitude is small, the
dynamics of the system is regular and Poincaré sections
resemble the phase space of a one-dimensional pendulum
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FIG. 2. (Color online) Poincaré plots for r = 1/2 and b = 0.1. (a) a = 0.001, (b) a = 0.02, (c) a = 0.04, and (d) a = 0.09.
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[see Fig. 2(a)]. The elliptical orbits correspond to particles
trapped in the channel that move adiabatically backwards
and forwards around a stable fixed point. The trajectories
outside the librational region represent a particle traveling to
the left (pn < 0) or right (pn > 0) of the channel (rotational
motion). When a is increased, the dynamics is still regular up
to a � 0.015, and the region of librational motion occupies a
larger size. For the interval 0.015 � a � 0.025 the separatrix
becomes chaotic with some sizable width [see Fig. 2(b)] that
increases as the ripple amplitude becomes larger. There are two
Kolmogorov-Arnold-Moser (KAM) curves (KAM barriers)
that forbid the connection of all chaotic regions. They are
found in the limits between the red region (light gray) and
the blue region (dark gray) shown in Fig. 2(b). Therefore,
motion is unidirectional for initial conditions lying outside
both the librational region and the chaotic separatrix (we refer
to this situation as unidirectional mixed chaos). There is a
critical value of ripple amplitude (a ≈ 0.025) at which all
chaotic regions are connected due to the destruction of the
KAM curves. In this case, we found a first order resonant
island surrounded by a chaotic sea [see Fig. 2(c)] and the
reversal of the travel direction, for initial conditions falling
outside the librational region, is now possible (we refer to this
situation as bidirectional mixed chaos). As the ripple amplitude
is increased further, the size of the region of librational motion
becomes smaller, as shown in Fig. 2(d).

For sufficiently small ripple amplitudes, a particle executing
librational motion, or rotational motion whose corresponding
orbit in the PS lies near the separatrix, will collide with the
walls almost perpendicularly, as Fig. 2(a) shows. Under this
circumstance, we can estimate the critical angle θ0 = θc for
which the particle executes the largest librational motion. In
this case, the reversal of travel direction occurs at a point that is
arbitrarily close to the nearest hyperbolic fixed point xh

f to the
right of x0 if cos θc > 0. Since the average width of the channel
is small, θc is virtually independent of the initial condition y0

(this is corroborated by our numerical results), and we can
set the departure point at (x0,y2(x0)) to estimate θc. Therefore,
(x0, cos θc) is an initial condition in the PS. In order to estimate
θc, the condition of adiabatic invariance is used,

D(xn) |sin θn| = D(xm) |sin θm| , (2)

written for two arbitrary points (xn,θn), (xm,θm), with D(xn)
as the separation between the rippled walls at the point of
collision xn. Setting xn = x0, θn = θc, then xm ≈ xh

f and θm ≈
π
2 . Upon expanding through a Taylor series expression (2),
but maintaining the terms of order a/b and β2

c , where βc =
π/2 − θc, we obtain

(βc)2 ≈ a

b

{
sin

[
2π

(
xh

f + r
)] + sin(2πx0)

− sin
(
2πxh

f

) − sin[2π (x0 + r)]
}
. (3)

Using the conservation of the energy and taking into account
the condition of adiabatic invariance, which implies that the
quantity C(xn) = v0D(xn)| sin θn| remains constant, and with
v0 representing the speed of the particle, we obtain

1
2 (ẋ)2 = E − V (x), (4)

where E is the energy of the particle (with unit mass) and
V (x) = 1

2 ( C
D(x) )

2; which can be interpreted as an effective

potential that explains why the Poincaré plots for a small ripple
amplitude resemble the phase space of a simple pendulum.
The hyperbolic fixed points can be computed by obtaining the
maxima of V (x). In our specific model (r = 1/2), xh

f = 3/4
if x0 = 0 and cos θc > 0. In this case, expression (3) is
reduced to

βc �
(

2a

b

)1/2

. (5)

The condition of adiabatic invariance and the critical angles
have been used previously to arrive at estimates of the
electronic transport properties in rippled channels when the
Poincaré plots of the associate dynamical system exhibit a
pendulumlike phase space [23,24].

III. THERMAL PROPERTIES OF THE CHANNEL
AT SMALL RIPPLE AMPLITUDE

This section considers a finite version of the channel
discussed in the previous section. This channel consists of N

replicas (a replica is a fundamental cell formed with the rippled
walls and the vertical dashed lines, as shown in Fig. 1) of length
l = 1. One end of the channel is at xL = 0, so the other one
is at xR = N . To induce heat transport, the channel is placed
between two heat baths at temperatures TL and TR (TL > TR ,
see Fig. 1), modeled by stochastic kernels of Gaussian type by

P (vx) = |vx |
T

exp

(
− v2

x

2T

)
, P (vy) = 1√

2πT
exp

(
− v2

y

2T

)
,

(6)

where P (vx)P (vy) is the probability distribution of the
velocities for the particles emerging from the baths. The values
of N are such that N � b; hence, the number of particles that
can cross the channel without colliding with the rippled walls
is much lower than that of those which will have collisions.

Due to the fact that the particles do not interact among
themselves, the motion of a single particle is considered
over a long time period as it collides with the rippled walls
and thermal baths. Collisions with the rippled boundaries are
specular, and the velocity of the particle just after a collision
with a thermal bath is determined by the distribution given
by Eq. (6). Following the ideas from Ref. [2], we divide the
configuration space into slices {Ci} (eventually a slice will be
taken as a fundamental cell). The time that the particle spends
in the slice in the j th visit is denoted by tj , and the total number
of times that the particle crosses Ci is M . The temperature of
the slice Ci is defined by

TCi
=

∑M
j tjEj (Ci)∑M

j tj
, (7)

where Ej (Ci) is the kinetic energy of the particle at the j th
visit of the slice Ci . The heat flux of one particle can be defined
by

j1(tc) = 1

tc

Nc∑
k=1

(�E)k, (8)

where (�E)k is the energy change of the particle at the
kth collision with a thermal bath, and tc is the total time
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that the particle takes to collision Nc times with a thermal
bath. The correct way to obtain the thermodynamic limit is to
keep the number of particles per cell fixed as the size N of
the channel increases. For instance, if a single particle per cell
is considered, then the heat flux in a channel of N length is
jN (tc) = Nj1(tc). The thermal conductivity κ is determined by

κ = N2j1(N )

TL − TR

∼ N2j1(N ), (9)

where we have defined the thermal conductivity through the
Fourier law of heat conduction. The next step is to obtain
an expression of the temperature profile and heat flux in the
stationary regime for the case of a small ripple amplitude. In
the interests of simplicity, but without losing generality, the
slices {Ci} are assumed to be equal to the fundamental cells.
For sufficiently small ripple amplitudes, the librational orbits,
or rotational orbits near the separatrix, represent a particle
bouncing off the walls almost perpendicularly. Thus, the time
in the j th visit that the particle spends within the slide C1

(which is in direct contact with the hot bath) for these rotational
orbits is given, approximately, by

t
(r)
j =

∑
C1

∣∣∣∣x
(j )
k+1 − x

(j )
k

ẋ
(j )
k

∣∣∣∣ ≈
∫ 1

0

dx√
Ej − Vj (x)

=
∫ 1

0

D(x)dx

v
(j )
0

√
D2(x) − D2(0) sin2

(
θ

(j )
0

) , (10)

while for the librational orbits, we have

t
(l)
j =

∑
C1

∣∣∣∣x
(j )
k+1 − x

(j )
k

ẋ
(j )
k

∣∣∣∣ ≈ 2
∫ xc

0

dx√
Ej − Vj (x)

= 2
∫ xc

0

D(x)dx

v
(j )
0

√
D2(x) − D2(0) sin2

(
θ

(j )
0

) . (11)

ẋ
(j )
k (x(j )

k ) denotes the velocity in the x-direction just after the
kth collision with any wall (the x coordinate of the particle
at the kth collision with any wall) during the j th visit to
cell C1. ẋ

(j )
k as a function of x

(j )
k is determined using the

effective potential given by Eq. (4), while the trajectory of the
particle becomes known once the random initial conditions
v

(j )
0 , θ

(j )
0 are determined just after a collision with a thermal

bath. When the particle collides with a thermal bath again,
we continue computing its trajectory once the new initial
conditions v

(j+1)
0 , θ

(j+1)
0 are known. Here θ

(j )
0 , v

(j )
0 , Ej , Vj (x)

have the same meaning as θ0, v0, E, V (x), introduced above,
respectively. D(x) is the distance between the rippled walls at
point x, which in our specific model is given by

D(x) = 2 [b − a sin(2πx)] .

Expressions (10) and (11) are obtained using Eq. (4), where we
set C(j ) = D(0)v(j )

0 | sin θ
(j )
0 |. The factor 2 in Eq. (11) derives

from the fact that the time that the particle takes to execute
librational motion before being reinjected into the same bath
is twice the time it spends going from the thermal bath to
the returning point xc, where the particle changes its direction
of travel and the corresponding x velocity is approximately
zero. Then, xc is determined by the nearest positive root of

E − V (x) = 0 to x0 = 0. In the case of the slice CN , we find
similar expressions, but xc is now the nearest root to the left
of x0 = N (note that, due to the system periodicity, this is
equivalent to take the absolute value of the nearest negative
root to x0 = 0) that we denoted as xcN . Particles emerging
from the thermal baths cannot have access to librational orbits
in Ci cells with i = 2,3, . . . N − 1, thus the motion in these
cells is rotational.

Rotational orbits that do not lie near the separatrix are
almost flat as shown in Fig. 2(a); so t

(r)
j ≈ (v(j )

0 cos θ
(j )
0 )−1. A

rotational orbit near the separatrix means that its corresponding
initial condition satisfies cos θc � (a/2b)1/2 � cos θ

(j )
0 . For

rotational orbits that do not lie near the separatrix, t
(r)
j can

also be approximated by Eq. (10), since upon developing it
in power series of a/b, we obtain t

(r)
j = (v(j )

0 cos θ
(j )
0 )−1 +

O(a2/(b2 cos4 θ
(j )
0 )) + O(a2/(b2 cos2 θ

(j )
0 )). Due to the pe-

riodicity of rotational motion, the time that the particle
takes to cross any cell while executing librational motion is
approximated by Eq. (10).

Equation (10) can be developed in power series of
(a/(b cos2 θ

(j )
0 ) + a2/(b2 cos2 θ

(j )
0 )), but we decide not to

present the expansion because as we approached an initial
condition that falls near the separatrix, it became necessary
to include more terms of the expansion, while for an initial
condition that falls exactly on the separatrix all terms of the
expansion must be included. When we consider librational
motion, another expansion is necessary, so we found it more
convenient to keep Eqs. (10) and (11) in their integral form.

Now we can establish the behavior of tj as a function of
both the cell number and of t

(r)
j and t

(l)
j , which is given by

tj (Ci) =
{

t
(r)
j , if θ0 < θc i = 1, . . . N,

t
(l)
j , if θ0 � θc i = 1,N,

(12)

where θc is the critical angle defined in Eq. (5). Expression (12)
is derived using the arguments that follow. The particles that
come from the thermal baths at an angle θ0 � θc execute
librational motion in the cells i = 1 or i = N , depending on the
thermal bath from which they come. Those particles are then
reinjected into the same heat reservoir, then t

(l)
j is only defined

in the cells i = 1,N . θc is the same for particles coming from
any heat bath because the spatial separation of the baths is
equal to an integer number. When θ < θc, particle motion is
rotational and therefore periodic; thus the time required for a
particle to cross cell Ci is independent of the i index.

To compute the temperature profile, we divide the particles
in two types: those that come from the bath at temperature
TL and those that come from the bath at temperature TR at
the moment they cross the slice Ci . In this way, definition (7)
reads

T (Ci) = 〈tE〉(i)
L + 〈tE〉(i)

R

〈t〉(i)
L + 〈t〉(i)

R

, (13)

where 〈· · ·〉(i)
L denotes the time average at cell Ci using

probability distribution (6) with T = TL; 〈· · ·〉(i)
R has the same

notation, but with T = TR . By expressing the probability
distribution (6) in polar coordinates (v0,θ0), and substituting
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FIG. 3. (Color online) (a) Temperature profile for three different amplitudes; a = 0.001, a = 0.003, and a = 0.01. Continuous lines
represent the theoretical prediction (14)–(16), while the different styles of dots represent the numerical data. The inset presents a zoom of the
numerical temperature profile in the central part of the channel to show the accuracy of the theoretical prediction (14). (b) Heat flux of one
particle as a function of ripple amplitude. The inset uses dots to show the numerical data, while the continuous line represents the theoretical
prediction for one particle heat flux for the amplitude interval [0,0.01]. In both figures, TL = 10, TR = 1, and channel length is N = 10.

Eq. (12) into Eq. (13), we have

T (Ci) �
√

TLTR for i = 2,3, . . . ,N − 1, (14)

T (C1) �
√

TLTR

√
TLI1(θc) + (

√
TL + √

TR)I2(θc)√
TRI1(θc) + (

√
TL + √

TR)I2(θc)
, (15)

T (CN ) �
√

TLTR

√
TRI3(θc) + (

√
TL + √

TR)I2(θc)√
TLI3(θc) + (

√
TL + √

TR)I2(θc)
. (16)

Here,

I1,(3)(θc) = 2
∫ βc

0

∫ xc(β0),(xcN (β0))

0

D(x) sin(β0)dxdβ0√
D2(x) − D2(0) cos2(β0)

,

I2(θc) =
∫ θc

0

∫ 1

0

D(x) cos(θ0)dxdθ0√
D2(x) − D2(0) sin2(θ0)

,

with β0 = π
2 − θ0. The numerical results support our theoret-

ical results for the temperature profile predicted by Eqs. (14)–
(16), as shown in Fig. 3(a), where it is clear that the temperature
of the cells that are not in direct contact with the thermal
baths is the geometric average of the temperatures of those
baths. Deviations from this flat profile occur at the cells
that are in direct contact with the heat reservoirs due to the
librational motion of the particles in those cells. The theoretical
predictions for these deviations agree with the numerical
simulation. In the case of a flat channel (a = 0) θc = π

2 and
the temperature profile is completely flat with value

√
TLTR ,

this result is exact and can be corroborated directly using
definition (13).

Using a similar procedure that made it possible to obtain
analytical results for the temperature profile, we obtain the
following expression for heat flux:

jN (N ) =
1
2N

(〈
v2

0

〉
L

− 〈
v2

0

〉
R

)
〈t (l)〉L + 〈t (l)〉R + N (〈t (r)〉L + 〈t (r)〉R)

� 3N
√

π sin θc

(
T

3/2
L

√
TR − T

3/2
R

√
TL

)
23/2[

√
TRI1(θc) + √

TLI3(θc) + N (
√

TL + √
TR)I2(θc)]

, (17)

where the resulting factor N in the denominator comes from
the periodicity of the rotational motion, and from the fact that
a particle executing this kind of motion must travel through
N cells of unit length before colliding with the other thermal
bath. At the limit N � 1, heat flux becomes independent of
system size and thermal conductivity scales as κ ∼ N . We
have corroborated numerically that the latter scaling behavior
is valid as long as the system exhibits regular dynamics. In the
latter case, ballistic diffusion is also present.

Our theoretical prediction (17) is confirmed by the numer-
ical results, as the inset in Fig. 3(b) shows. We should point
out an unexpected behavior of increasing heat flux when a

is increased to a maximum value at a ≈ 0.015, when chaotic
behavior appears. This behavior can be explained as follows:
the particles executing librational motion do not contribute
to heat flux because they never reach the other side of the
channel. This fact is associated with the term sin θc in the
numerator of Eq. (17), which decreases as ripple amplitude is
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increased. However, the average time that the particle takes to
travel from one thermal bath to the other becomes smaller as
ripple amplitude increases, because only particles with larger
velocity components in the x direction can reach the other side
of the channel. The reduction of the average time is associated
with the term I2 in the denominator of Eq. (17), thus, we
have two competing mechanisms and the strongest one is that
associated with the term I2 when N � 1.

The behavior of the temperature profile predicted by
Eqs. (14)–(16) is similar to the corresponding one for a
homogeneous harmonic chain between two Langevin heat
baths [25], while the scaling behavior of the thermal conduc-
tivity of the homogeneous chain and our model is identical.
The main difference between the two systems comes from
the fact that the bulk temperature of the harmonic chain is
the arithmetical average of the temperatures of the two heat
reservoirs. However, in both systems, deviations from a flat
profile occur in those parts of the systems that are in direct
contact with the reservoirs. Another system that presents
the same size-scaling behavior in heat flux and thermal
conductivity is the harmonic chain, with specific long-range
correlation of the isotopic disorder, attached to Langevin heat
baths [26].

IV. LARGER RIPPLE AMPLITUDE

We consider four channels, with different values of a

that produce different degrees of chaos in the system, in
order to study their thermal transport properties. In case I,
a = 0.02 and unidirectional mixed chaos is present [see
Fig. 2(b)]. Case II corresponds to a = 0.04, where the system
exhibits bidirectional mixed chaos [Fig. 2(c)]. Cases III and IV
correspond to a = 0.07 (not shown) and a = 0.09 [Fig. 2(d)],
respectively; bidirectional mixed chaos is presented as well,
but with a smaller region of librational motion due to stronger
chaotic behavior.

We are interested in studying two different but related
quantities: first, the scaling behavior of thermal conductivity
in relation to the system size; and, second, the mean square
displacement 〈�x2〉 = 〈[x(t) − x(0)]2〉, where 〈· · ·〉 denotes
an average over different initial conditions and x(t) is the x

coordinate of the particle position at time t . For our numerical
simulations of heat conduction, we choose TL = 10 and
TR = 1. It is important to note that the scaling of j1(N ) with
system size does not depend on the properties of the thermal
baths, but exclusively on the geometry of the channel [6].
Thus, the thermal conductivity defined by Eq. (9) gives the
same scaling behavior regardless of the temperature difference
between the reservoirs. At the channel lengths explored in
the numerical simulation, the thermal conductivity can be
approximated by κ = ANβ (A and β constants) for sufficiently
long channels [see Fig. 4(a)]. In the case of unidirectional
mixed chaos, the exponent β is close to 1; ballistic behavior
as reported in Ref. [22] is not present due to the presence of
particles whose initial conditions fall in the chaotic separatrix
and therefore their motion is not unidirectional. As soon as
bidirectional mixed chaos appears, an abrupt decay occurs in
exponent β from β ≈ 1 to β ≈ 0, because there are no more
particles with unidirectional motion. As ripple amplitude is
increased, the exponent β approaches zero. The diffusion of
particles in the corresponding channel of infinite length is also
studied, and within the time interval explored in Fig. 4(b), the
growth of the mean square displacement can be approximated
by Dtα , for a sufficiently long time period. In reference to
the scaling behavior of the thermal conductivity and mean
square displacement, we say “can be approximated,” and not
“scale as,” because exponent β exhibits a small change in
relation to system size, and exponent α presents a small change
in relation to time t . This means that these two exponents
remain practically constant for relatively long channel interval
lengths and long time periods, respectively. The origin of the
size-dependent and time-dependent exponents is discussed in
the following paragraph. The numerical simulations of particle
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FIG. 4. (Color online) (a) Heat flux of one particle as a function of system size N in log-log scale. (b) Mean square displacement 〈�x2(t)〉
against time t . 105 particles are used to obtain the diffusive properties of the system. Particles are initially at x = 0, initial velocities obey the
Maxwell-Boltzmann distribution at temperature T = 1. In both figures, case I is (×), case II (�), case III (©), and case IV (�).
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diffusion concord with the corresponding simulation of heat
flux, in that exponents β and α [see Figs. 4(a) and 4(b)] satisfy
the relation β = 2 − 2/α, derived in Ref. [5]. It is interesting
to note that for bidirectional mixed chaos, exponent α is close
to 1 and exponent β is close to 0.

In any model with an infinite horizon, there are particles that
can travel arbitrary distances without suffering any collision
with the boundaries at time t . These particles make a contribu-
tion to the velocity autocorrelation function that scales as 1/t ,
and is the leading term if the corresponding contribution of the
rest of the particles (i.e., those that do collide at time t) decays
faster than 1/t [27]. The algebraic decay 1/t of the velocity
autocorrelation function has been confirmed numerically for
the Lorentz gas with an infinite horizon [28–30], and for a
polygonal channel with an infinite horizon [10]. Therefore,
in our model, the mean square displacement must grow as
ct ln(t) + dt (the diffusion constant is related to the velocity
autocorrelation function by the Einstein-Green-Kubo formula)
if the degree of chaos is strong enough; such a correction will
appear in Fig. 4(b) as a small change in the α exponent and,
therefore, a curvature in the mean square deviation will be
visible for longer times. To observe the logarithmic correction,
we plot (〈�x2〉/t) against ln(t), as shown in Fig. 5, and found
that for cases II, III, and IV, 〈�x2〉 = ct ln(t) + dt with 0 � c

and d � c (in general, we find this behavior for bidirectional
mixed chaos). For case I, the scaling law ct ln(t) + dt is
incorrect; in fact, we do not know the correct asymptotic
scaling law for unidirectional mixed chaos. However, 〈�x2〉 =
Dtα (with α and D constants) is a good approximation at the
time period explored in the numerical simulations. The ratio
c/d decreases as ripple amplitude is increased, this is simply
a consequence of the reduction of the number of particles that
can travel arbitrarily far without colliding with the walls, as
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FIG. 5. (Color online) f (t) = (〈�x2〉/t) as a function of ln(t).
Figures from top to bottom correspond to cases II, III, and IV,
respectively. Solid lines represent the best fit of the numerical
data. The fit gives the following values: case II, c = 0.18 ± 1.9 ×
10−2, d = 10.00 ± 0.2; case III, c = 9.24 × 10−3 ± 1.8 × 10−3, d =
0.67 ± 1.4 × 10−2; case IV, c = 6.50 × 10−3 ± 3.47 × 10−4, d =
8.45 × 10−2 ± 1.3 × 10−4. In cases II and III, the statistical errors
are less than the size of the points; in case IV, statistical errors are
represented by the error bars.

ripple amplitude becomes larger. In this sense, we can say
that diffusion approaches normal behavior as ripple amplitude
increases; hence, the same statement is also valid for heat
flux. The marginally anomalous diffusion exhibited by our
system (in the case of bidirectional chaos) provides evidence
that the contribution to the velocity autocorrelation function
from particles having collisions at time t decays faster than
1/t . Then, if the particles that can travel arbitrarily far without
interacting with the walls were not present, diffusion should be
normal. This argument indicates that normal diffusion can take
place in systems with mixed phase space when there are no
KAM curves that preclude connection of all chaotic regions,
and when nonchaotic trajectories do not contribute to heat
transport.

It must be stressed that for cases III and IV, all initial
conditions of the particles coming from the thermal baths
fall on the chaotic sea. However, if we place the thermal
baths such that the initial conditions of these particles can
have access to periodic and quasiperiodic orbits, exponents β

and α should be insensitive to this change because particles
executing periodic or quasiperiodic motion do not contribute
to heat flux for they are reinjected into the same bath from
which they originally came. We have tested the latter statement
numerically by placing the thermal baths at xL = 0.25 and
xR = 0.25 + N . Here, particles have access to regular motion
for all different cases. We find that exponents β and α are
practically the same as the corresponding ones given by Fig. 4.
We report the following values for exponent β: case I, β =
0.995; case II, β = 0.089; case III, β = 0.044, and case IV,
β = 0.023.

The behavior of the temperature profile for four different
cases is shown in Fig. 6. It is clear that in case I the temperature
profiles in the central part of the channel are linear and maintain
a similar shape for different system sizes. This behavior is quite
similar to that presented in Refs. [6,21], when the first system
has no disorder and the second one exhibits regular dynamics.
There are jump discontinuities in the temperature profile for
cases I and II at the ends of the channel. This phenomenon
is the result of boundary heat resistance that usually appears
when there is a heat flux across the interface of two adjacent
materials (see Ref. [31] and references therein). These jumps
are finite size effects because as the system size increases
boundary heat resistance decreases, as the temperature jumps.
This is seen clearly in Fig. 6(b). When β ≈ 0 there are
almost no jumps [see Figs. 6(c) and 6(d)] and the temperature
profile can be approximated by the formula (see Ref. [21] for
details)

T (x) = TLT
α/2
R (1 − x)γ + TRT

α/2
L xγ

T
α/2
R (1 − x)γ + T

α/2
L xγ

, (18)

which is valid for large system sizes. Here x = i
N

,
γ = (2 − α)α3/2 and α is the diffusion exponent (keeping
in mind that the diffusion exponent is not a constant, though
it can be treated as such for relative long periods of time).
For case I, the temperature profile predicted by Eq. (18)
is clearly different from our numerical simulation. The
numerical simulation and temperature profile predicted by
this formula have a similar shape but are displaced [see
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FIG. 6. (Color online) Internal local temperature as a function of the rescaled cell number i/N with TL = 10 and TR = 1. (a) Corresponds
to case I; (b) to case II; (c) to case IV; and (d) also to case IV, but with the thermal baths placed at xL = 0.25 and xR = 0.25 + N . The solid lines
in panels (c) and (d) correspond to the best fits for the numerical temperature profile at N = 192 with Eq. (18), the fit results are the following:
panel (c), α = 1.004; panel (d), α = 1.005. In panel (a), the solid line is the plot of Eq. (18) with α = 1.99 and the dashed line represents the
best fit for the temperature profile at N = 512 with the heuristic formula (19), the result of the fit is α = 1.99. In panel (b), we set α = 1.00
and it is clear that the temperature profile approaches the asymptotic temperature profile (18) as the length of the channel is increased.

Fig. 6(a)]. However, we can see that the heuristic formula

T (x) = TLT
1/2
R (1 − x)γ + TRT

1/2
L xγ

T
1/2
R (1 − x)γ + T

1/2
L xγ

(19)

shows good agreement with the numerical results for case I [see
dashed line in Fig. 6(a)]. Even in the case of the flat channel
(α = 2), there is a discrepancy between formula (18) and (19),
since the former predicts a flat profile given by T (x) = 2TRTL

TR+TL
,

while formula (19) also predicts a flat temperature profile with
the value T (x) = √

TRTL, but the latter flat temperature profile
is an analytical exact result that can be obtained directly from
definition (7). When the formula (18) was derived, a definition
of temperature in terms of the mean density of particles at
the cell Ci was used. Nevertheless, definition (7) is the time
average of kinetic energy at cell Ci ; therefore, these two defini-
tions lead to different temperature profiles that are only equal
when diffusion is normal. This explains the clear discrepancy
between our numerical simulations and Eq. (18) for case I. In
any case, both definitions of temperature lead to temperature
profiles that are closely related to diffusion exponent α for
sufficiently large system sizes. If a system obeys Fourier’s law

(α = 1), then the formula derived in Ref. [2] is recovered. In
addition, when the temperature difference of the reservoirs is
small, the typical linear temperature profile will be obtained.

V. CONCLUSIONS

We analyzed the thermal transport properties of a sinusoidal
channel placed between two Gaussian type thermal baths.
The dynamics of a particle moving in the corresponding
infinite length channel exhibits Poincaré plots with a KAM
structure typical of generic Hamiltonian systems. When the
ripple amplitude is small, the dynamics of the system is regular.
For this case, estimates of the heat flux and temperature profile
were obtained using an effective potential. Specifically, the
temperature profile of the central part of the channel is well
approximated by a flat profile given by the geometric average
of the temperatures of the two reservoirs. Consequently, the
same result is to be expected for other billiard systems with
similar dynamics. In the regime of regular dynamics, the
thermal conductivity scales with the system size as κ ∼ N

for sufficiently large system size and the diffusion of particles
is ballistic. Unidirectional mixed chaos appears as the ripple
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amplitude is increased; and the mean square displacement can
be approximated by Dtα (being α � 2 a constant) for a relative
long time period. When bidirectional mixed chaos appears,
the mean square displacement grows asymptotically as t ln(t),
then diffusion exponent is time dependent, but it remains
practically constant for relative long time periods. Temperature
profiles were also analyzed for different degrees of chaos in

the system, and it was found that the diffusion exponent is
closely related to the temperature profile of the system.
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and E. S. Tututi, Int. J. Mod. Phys. B 25, 683 (2011).
[24] G. A. Luna-Acosta, A. A. Krokhin, M. A. Rodrı́guez, and P. H.

Hernández-Tejeda, Phys. Rev. B 54, 11410 (1996).
[25] Z. Rieder, J. L. Lebowitz, and E. Lieb, J. Math. Phys. 8, 1073

(1967).
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