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Role of the on-site pinning potential in establishing quasi-steady-state conditions of heat transport
in finite quantum systems

Eduardo C. Cuansing,1,* Huanan Li,2 and Jian-Sheng Wang2

1Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Republic of Singapore
2Department of Physics and Centre for Computational Science and Engineering, National University of Singapore,

Singapore 117542, Republic of Singapore
(Received 22 May 2012; published 24 September 2012)

We study the transport of energy in a finite linear harmonic chain by solving the Heisenberg equation of
motion, as well as by using nonequilibrium Green’s functions to verify our results. The initial state of the system
consists of two separate and finite linear chains that are in their respective equilibriums at different temperatures.
The chains are then abruptly attached to form a composite chain. The time evolution of the current from just
after switch-on to the transient regime and then to later times is determined numerically. We expect the current
to approach a steady-state value at later times. Surprisingly, this is possible only if a nonzero quadratic on-site
pinning potential is applied to each particle in the chain. If there is no on-site potential a recurrent phenomenon
appears when the time scale is longer than the traveling time of sound to make a round trip from the midpoint to
a chain edge and then back. Analytic expressions for the transient and steady-state currents are derived to further
elucidate the role of the on-site potential.
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I. INTRODUCTION

In the study of thermal transport in quantum systems, the
conventional setup examined is a scattering region sandwiched
between two infinite leads acting as large heat reservoirs [1].
The leads and the scattering region are initially prepared
to be at their respective thermal equilibriums in canonical
distributions and then are coupled using an adiabatic switch-
on. The long-time steady-state current through the scattering
region can be calculated using the Landauer formula where the
transmission coefficient can be determined using nonequilib-
rium Green’s function techniques [1]. This approach, however,
is not applicable to situations where the system is undergoing
dynamical changes and is far from the steady-state regime. An
example would be the transient behavior of a system where
the coupling between the scattering region and the leads is
not weak and is switched on abruptly [2]. In addition, the
method does not provide any information on how the steady
state is dynamically approached from the initial configuration
of the system. In this work we examine the time evolution
of the thermal current from the transient regime just after an
abrupt switch-on to the intermediate-time quasi-steady-state
regime and then to the long-time recurrent regime, in a system
consisting only of two finite leads that are coupled abruptly
at time t = 0. We examine if, when, and how the onset of
the steady-state occurs. To determine the current, we solve the
quantum equations of motion of the linear system. In addition,
a supplementary second method we employ to verify our
results is an approach using nonequilibrium Green’s functions
that takes into account the full time evolution of the system [2].

We determine the thermal current in a phonon system
consisting of two linear chains abruptly attached together at
time t = 0. Shown in Fig. 1(a) are the two separate linear
chains. The interparticle spring constant is k and the on-site

*eduardo.cuansing@gmail.com

spring constant is k0. The left and right leads contain NL and
NR sites and have temperature TL and TR, respectively. The
chains are initially in their respective thermal equilibrium;
i.e., they are initially attached to heat baths so that they
acquire their corresponding temperatures and then the baths are
subsequently detached. The chains therefore satisfy canonical
distributions. They also follow fixed boundary conditions
wherein particles at the left and right edges are attached to
fixed walls. At time t = 0 the chains are abruptly coupled with
spring constant k, as shown in Fig. 1(b). The composite chain
also satisfies fixed boundary conditions. We then determine the
energy current flowing through the newly formed interleads
coupling. Since the chains are finite, we cannot use the
Landauer formula approach to calculate the current. However,
results from the Landauer formula can be used for comparison
to the infinitely large and long-time limit results of the
approaches we describe.

The probability of extracting work in a system that is
weakly coupled to finite heat baths is found to follow a power
law [3]. In this paper, in comparison, we examine the energy
current flowing between two finite chains whose coupling is
not weak. We find that the presence of a quadratic on-site
pinning potential is necessary in establishing a steady-state
current. Previous studies have found that the on-site pinning
potential plays an important role in how the steady-state
phonon current depends on the system size in disordered
harmonic systems [4]. In this work we further investigate the
role of the on-site potential on the dynamics of the system
and find that, without a quadratic on-site pinning potential, the
current exhibits oscillatory behavior that does not disappear
even for long times. Furthermore, we find that the time period
of oscillation of the current is proportional to the sum of the
length of the finite chains. Studies in systems consisting of
classical harmonic oscillators and classical particles indicate
that the Poincaré recurrence time, i.e., the time for a specific
phase-space configuration of the system, or a configuration that
very closely resembles it, to reappear increases exponentially
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FIG. 1. (Color online) An illustration of how two finite inde-
pendent systems at temperature TL and TR, containing NL and NR

particles, are abruptly combined at t = 0 into a composite system
containing NL + NR particles. The interparticle spring constant is k

and the on-site spring constant is k0.

with the number of degrees of freedom [5,6]. Recurrence of the
wave function is also found to occur in quantum systems with
discrete energy spectrum [7] and systems that are periodically
driven [8]. Our work extends these studies on quantum systems
by examining a physical observable, i.e., the energy current,
in a finite system to see if it displays recurrent behavior and to
determine conditions that dictate the appearance of recurrence.
In Sec. IV our results show that the presence of an on-site
potential is crucial to determine whether the energy current
exhibits a recurrent and oscillatory behavior or a behavior that
decays and settles to a quasi-steady-state value.

In electron systems, the transport of electrons between two
finite leads has previously been studied [9]. When there is a
potential bias between the leads, it is found that a quasi-steady-
state current with a finite lifetime appears, even when there
are no dissipative effects like electron-electron and electron-
ion interactions. In this paper, we supplement this electron
transport study by examining the transport of phonons within
a finite system. We determine the dynamical behavior of the
thermal current and find that having on-site pinning potentials
is necessary in establishing the quasi-steady-state current.

II. THE EIGENMODE APPROACH

We model the left and right chains by the harmonic
Hamiltonian

Hα = 1
2 (pα)T pα + 1

2 (uα)T Kαuα, α = L or R, (1)

where uα is a column vector whose elements are the renormal-
ized displacements of the sites in chain α, pα is the conjugate
momentum, and Kα is the tridiagonal spring constant matrix
consisting of 2k + k0 along the diagonal and −k along the two
off-diagonals. k is the nearest-neighbor spring constant and
k0 is the spring constant of the on-site pinning potential. The
spring potentials we consider in this work are all quadratic.
The equations of motion of particles in the left chain are

u̇L = pL and üL = ṗL = −KLuL − V LRuR, (2)

where V LR is the coupling matrix between the left and right
chains. Particles in the right chain satisfy a similar set of
equations of motion. The current flowing out of the left chain
can be calculated from the chain’s average rate of decrease in

energy,

IL = −〈Ḣ L〉 = 〈pL(t)T V LRuR(t)〉
=

∑
jk

〈
pL

j (t)V LR
jk uR

k (t)
〉
, (3)

where the equations of motion in Eq. (2) are used. The average
is taken with respect to the initial product state density matrix.
To calculate the energy current out of the left chain, therefore,
we need to determine the dynamics of uR(t) and pL(t).

Consider an isolated finite linear chain consisting of N sites
and satisfying fixed boundary conditions. Since it is isolated,
the equations of motion of its constituent particles are

u̇ = p and ü = ṗ = −K u, (4)

where K is the spring constant matrix of the whole chain. The
solution is

u(t) = cos(
√

Kt) u0 + 1√
K

sin(
√

Kt) p0,

(5)
p(t) = −

√
K sin(

√
Kt) u0 + cos(

√
Kt) p0,

where u0 and p0 are determined from the initial condition.
Since the system is linear, quantum Heisenberg operators
and classical variables have identical solutions. To make the
solution numerically amenable, we construct a transformation,
using eigenmodes, that diagonalizes the matrix K . Let un be
the nth eigenmode of K , i.e., K un = �2

n un, where �2
n is the

eigenvalue associated with un, i.e.,

�2
n = 2k(1 − cos qn) + k0, (6)

where qn = πn/(N + 1) and n = 1,2, . . . ,N . Because of the
fixed boundary conditions, the j th element of the eigenmode
is un

j = An sin(qn j ), where An can be fixed by an appropriate
normalization. Let S be a matrix consisting of the eigenmodes
of K , i.e., S = (u1,u2, . . . ,uN ). We can then fix An by
normalizing SST = ST S = 1. We get

An =
√

2

N + 1
. (7)

The matrix K is diagonalized by the similarity transformation

ST KS = diag
(
�2

1,�
2
2, . . . ,�

2
N

) ≡ �2, (8)

where the right-hand side is a diagonal matrix consisting of
elements �2

1, �2
2, . . . , �2

N . The coefficients involving K

in Eq. (5) can now be calculated with the aid of the above
similarity transformation. We are then left with the unknowns
u0 and p0 and their correlations. To determine these unknowns,
we write u0 in normal mode coordinates, i.e., u0 = SQ,
where Q contains the normal modes. In a harmonic oscillator
with Hamiltonian Hho = ∑

j h̄�j (a†
j aj + 1/2), the j th normal

mode is

Qj =
√

h̄

2�j

(aj + a
†
j ),

(9)

Pj = Q̇j = −i�j

√
h̄

2�j

(aj − a
†
j ),

where aj (t) = aj (0)e−i�j t and its complex conjugate are the
time-dependent lowering and raising ladder operators. These
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ladder operators satisfy expectation values 〈a†
j ak〉 = δjkfj ,

〈aja
†
k〉 = δjk(fj + 1), and 〈a†

j a
†
k〉 = 〈ajak〉 = 0, where fj =

(exp(h̄�j/kBT ) − 1)−1 is the Bose-Einstein distribution func-
tion. Using these expectation values, we get

〈QjQk〉 = h̄

2�j

(2fj + 1)δjk,

〈QjPk〉 = ih̄

2
δjk,

(10)

〈PjQk〉 = − ih̄

2
δjk,

〈PjPk〉 = �j

h̄

2
(2fj + 1)δjk.

Using S and the above expectation values, we can write

〈u0ju0k〉 =
∑
m

Sjm

h̄

2�m

(2fm + 1)Skm,

〈u0jp0k〉 =
∑
m

Sjm

ih̄

2
Skm,

(11)

〈p0ju0k〉 = −
∑
m

Sjm

ih̄

2
Skm,

〈p0jp0k〉 =
∑
m

Sjm

h̄

2
(2fm + 1)�mSkm.

For the composite chain in Fig. 1(b), we label the sites
consecutively from 1 for the leftmost site to NL + NR for
the rightmost site. Thus, the labels of the sites where the
newly formed interleads spring appears are NL and NL + 1. In
Eq. (3) therefore, the indices are j = NL and k = NL + 1. The
expectation value in Eq. (3), using the solutions in Eq. (5), can
then be written as

〈
pL

NL
(t) uR

NL+1(t)
〉 =

NL∑
j,k=1

ϒL
jk +

NL+NR∑
j,k=NL+1

ϒR
jk, (12)

where

ϒα
jk = Cj Ak

〈
uα

0ju
α
0k

〉 + Cj Bk

〈
uα

0jp
α
0k

〉
+Dj Ak

〈
pα

0ju
α
0k

〉 + Dj Bk

〈
pα

0jp
α
0k

〉
(13)

and α = L or R. The 〈up〉 and 〈pu〉 terms cancel exactly
and only the 〈uu〉 and 〈pp〉 correlations contribute to the
currents. Note also that correlation between the left and right
regions vanishes and each region has its own initial temperature
Tα . The coefficients are the symmetrized version of those in
Eq. (5):

Ak =
N∑

m=1

SNL+1,m cos(�mt)Skm,

Bk =
N∑

m=1

SNL+1,m

sin(�mt)

�m

Skm,

(14)

Cj = −
N∑

m=1

SNL,m�m sin(�mt)Sjm,

Dj =
N∑

m=1

SNL,m cos(�mt)Sjm,

where N = NL + NR. The current can therefore be calculated
using Eqs. (3), (12), (13), (11), and (14). In addition, Eq. (12)
can be further simplified into two terms. One of the terms is
proportional to (fL − fR). This term leads to the steady-state
value in the limit N → ∞. The other term is proportional to
(fL + fR + 1/2) and produces the transient current. See the
Appendix.

The expression for IL(t) in Eq. (3) is the current flowing
through the rightmost site of the left lead, i.e., at the site labeled
NL. At any site n in the composite lead, a general expression
for the current flowing through it can be written as

I n(t) = Vnm 〈pn(t) um(t)〉

= Vnm

⎧⎨
⎩

NL∑
j,k=1

ϒL
nm,jk +

NL+NR∑
j,k=NL+1

ϒR
nm,jk

⎫⎬
⎭ , (15)

where Vnm is the coupling between sites n and m = n + 1 and

ϒα
nm,jk = CnjAmk

〈
uα

0ju
α
0k

〉 + CnjBmk

〈
uα

0jp
α
0k

〉
+DnjAmk

〈
pα

0ju
α
0k

〉 + DnjBmk

〈
pα

0jp
α
0k

〉
, (16)

where α = L or R. Equation (16) is in the same form as Eq. (13)
but generalized to include the current flowing through any site
n in the composite chain. Similarly, the coefficients Amk , Bmk ,
Cnj , and Dnj are the generalized forms of those in Eq. (14).

III. NONEQUILIBRIUM GREEN’S
FUNCTIONS APPROACH

An alternative approach is to use nonequilibrium Green’s
functions (NEGF) techniques to calculate the time-dependent
energy current [2]. The retarded Green’s function for a finite
collection of harmonic oscillators in a chain in equilibrium can
be written as [10]

gr (t) = −Sθ (t)
sin(�t)

�
ST , (17)

where S is the matrix in Eq. (8) and � is the diagonal matrix
of the square root of the eigenvalues in Eq. (6). The advanced,
lesser, and greater equilibrium Green’s functions can then
be determined from the above retarded Green’s function.
From these equilibrium Green’s functions, the time-dependent
nonequilibrium Green’s functions and the energy current can
be calculated following the procedure described in Ref. [2].
With the eigenmode approach in Sec. II and the NEGF
approach discussed in this section, we can therefore calculate
the energy current in two different and independent ways. We
find that both methods produce the exact same results, up to
double-precision accuracy.

IV. NUMERICAL RESULTS AND DISCUSSION

The energy current can be calculated using either the
eigenmode approach discussed in Sec. II or the NEGF
approach described in Sec. III. However, the NEGF calcu-
lation is computationally intensive because of the presence
of several multiple integrals whose numerical convergence
must be carefully determined. In contrast, calculations in the
eigenmode approach involve, as the most complicated part,
fast and straightforward matrix manipulations. After verifying
that our results are the same for several sets of data from both
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FIG. 2. (Color online) Plots of (a) the steady-state current
and (b) the conductance as functions of the average temperature
between the two leads and with a temperature bias of α = 0.1. The
values of the on-site spring constants are k0 = 0 (black line), k0 =
0.01 eV/Å

2
u (red dash line), k0 = 0.1 eV/Å

2
u (green dash-dot line),

and k0 = 1 eV/Å
2
u (blue dash-double-dot line). The interparticle

spring constant is k = 1 eV/Å
2
u.

approaches, we proceed and acquire most of our data using
the eigenmode approach.

We first determine the steady-state heat current and conduc-
tance of an infinite linear chain using the Landauer formula
with unit transmission for frequencies within the phonon
band [11]. The value of the nearest-neighbor spring constant
we use is k = 1 eV/Å2u. We examine the steady-state current
for on-site pinning potentials k0 = 0, 0.01, 0.1, and 1 eV/Å

2
u.

Shown in Fig. 2 are the plots of the steady-state thermal current
and conductance as a function of the temperature. We use these
results for comparison to the quasi-steady-state values arising
in finite leads.

The dynamical energy currents are determined for various
lengths and initial temperatures of the finite leads and the
strengths of the on-site spring potential. Shown in Fig. 3 are
plots of the current flowing out of the left lead when there is
no on-site spring potential. The length of the leads are NL =
NR = 100 in Fig. 3(a) and NL = NR = 50 in Fig. 3(b). The
left lead initially has temperature TL = (1 + α)T , where α =
0.1, while the right lead has initial temperature TR = (1 −
α)T . The plots in Fig. 3 correspond to T = 10 K, 100 K, and
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FIG. 3. (Color online) Plots of the current as a function of time
when the left and right chains are finite with lengths (a) NL = NR =
100 and (b) NL = NR = 50. The average temperatures between the
leads are T = 10 K (black line), T = 100 K [red (gray) line], and
T = 300 K [blue (dark gray) line]. The temperature bias between the
leads is α = 0.1. There is no on-site potential.
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FIG. 4. (Color online) A closeup view of the current when the
average temperature of the leads is T = 10 K. The darker (blue) line
is when NL = NR = 100 while the lighter (orange) line is when NL =
NR = 50. The dashed line is the value of the steady-state current
calculated using the Landauer formula.

300 K. The leads are attached at time t = 0. Just after the
switch-on, the current initially shoots down towards negative
values. Since we are calculating the current flowing out of
the left lead, a negative current value implies that energy is
flowing into the left lead. For the right lead, we also find the
same initial negative current values, i.e., energy is also flowing
into the right lead. This result is the same as that found in
systems with semi-infinite leads [2]. The reason is because
an external input energy is required to make the interleads
coupling between the two previously unattached leads. After
the leads are connected, the extra energy that is applied to
make the connection then flows into the leads, thus initially
producing negative current values just after the switch-on. This
phenomenon also occurs for the leads-center system and is
explained by a small t expansion [12].

On longer time scales, the current rises almost linearly and
then suddenly drops. The overall behavior is roughly periodic
with a period proportional to the full length of the chain. A
ringing current can also be observed in Fig. 3. This ringing
current also appears in systems containing infinite leads [2].
Such a behavior has also been observed previously in NEGF
calculations in electronic transport [13]. In Fig. 3, notice that
the current does not stabilize to a quasi-steady-state value, even
when the leads have the low average temperature T = 10 K,
as shown in Fig. 4.

We next examine what happens to the current in the
presence of a small on-site quadratic potential with on-site
spring constant k0 = 0.001 eV/Å

2
u. Shown in Fig. 5 are plots

of the current as it evolves in time. Compared to the cur-
rent shown in Fig. 3, although there is still the initial overshoot
to a negative value, the current appears to approach a quasi-
steady-state value. However, the value of the on-site potential
is still not enough to suppress the large current oscillations,
especially when the temperature is high.

Based on our results for the small on-site k0, we expect
the current to show a more prominent approach to a quasi-
steady-state value when we increase the value of the on-site
k0 further. Shown in Fig. 6 are plots of the current when
k0 = 0.1 eV/Å

2
u, i.e., at 10% of the value of k. Also shown

in the figure are dashed lines representing the steady-state
current calculated using the Landauer formula. We now see
that the current approaches a quasi-steady-state value and
that this quasi-steady-state lasts longer for longer leads. Note,
however, that the quasi-steady-state lasts for more than 2tm
(tm is defined to be the time when sound waves travel the
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FIG. 5. (Color online) Plots of the current as a function of time
when the on-site spring constant is k0 = 0.001 eV/Å

2
u. The left and

right chains have lengths (a) NL = NR = 100 and (b) NL = NR = 50.
The average temperatures between the chains are T = 10 K (black
line), T = 100 K [red (gray) line], and T = 300 K [blue (dark gray)
line]. The temperature offset α = 10%.

left or right chain). After time 2tm, the waves or disturbances
that have been reflected back at the hard walls at the edges
of the leads have returned back to the interleads coupling and
interfere with the other waves there. This results in the current
beginning to oscillate wildly.

We next set the leads to have the same temperature and,
therefore, according to the Landauer formula, we should not
expect to have current flowing in the long-time steady-state
limit. We do want to know if we get a nonzero transient
current and, if so, how would it behave even when there is
no temperature bias. Shown in Fig. 7 are plots of the current
flowing out of the left lead when the leads have the same
temperature and there is no on-site potential. Also shown are
plots of the total energy that has flowed out of the left lead.
The total energy at time t is calculated by taking the area
under the curve for the current up to time t . Since the leads are
indistinguishable, the current plots for the left and right leads
are exactly the same.
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FIG. 6. (Color online) Plots of the current when the on-site spring
constant is k0 = 0.1 eV/Å

2
u. The left and right chains have lengths (a)

NL = NR = 100 and (b) NL = NR = 50. The average temperatures
between the chains are T = 100 K [green (lowest gray) line], T =
300 K [red (middle gray) line], and T = 500 K [blue (upper gray)
line]. The temperature offset α = 10%. The dash lines are the values
of the steady-state current, corresponding to T = 100 K, 300 K, and
500 K, calculated independently from the Landauer formula.
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FIG. 7. (Color online) Plots of (a) the current and (b) the energy
as functions of time when k0 = 0. The left and right chains have the
same temperature, i.e., α = 0, with temperatures T = 10 K (black
line), T = 100 K [red (gray) line], and T = 300 K [blue (dark gray)
line]. The chains have length NL = NR = 50.

Energy is added to the system when the leads are initially
attached. This energy flows into both the left and the right
leads. So even when there is no temperature bias, because of
the externally added energy, a thermal current appears in the
system. However, because there is no on-site pinning potential,
the current does not settle into a quasi-steady-state value. The
phonons are elastically bouncing back and forth between the
fixed walls at the edges of the two leads.

Shown in Fig. 8 are plots of the current and total energy
when a small on-site potential with k0 = 0.001 eV/Å

2
u is

present in the system. The presence of the on-site pinning
potential suppresses the current to a quasi-steady-state value.
The total energy shown in Fig. 8(b) also displays a tendency
to settle down to a quasi-steady-state value.

Shown in Fig. 9 are plots of the current and total
energy when the on-site potential has spring constant k0 =
0.1 eV/Å

2
u. The value is large enough for the current to settle

into a quasi-steady-state value. However, since the leads are
finite, the system only has limited time before the reflected
phonons begin to arrive and interfere with the other phonons
moving through the interleads coupling.
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FIG. 8. (Color online) Plots of (a) the current and (b) the energy
as functions of time when the on-site spring constant is k0 =
0.001 eV/Å

2
u. The left and right chains have the same temperature

of values T = 10 K (black line), T = 100 K [red (gray) line],
and T = 300 K [blue (dark gray) line]. The chains have length
NL = NR = 50.

031132-5



EDUARDO C. CUANSING, HUANAN LI, AND JIAN-SHENG WANG PHYSICAL REVIEW E 86, 031132 (2012)

0 50 100 150 200 250 300 350 400

time [10
-14

 s]

-200

-100

0

100

cu
rr

en
t [

nW
]

0 50 100 150 200 250 300 350 400

time [10
-14

 s]

-18

-12

-6

0

en
er

gy
 [

m
eV

]

FIG. 9. (Color online) Plot of the energy as a function of time.
The inset shows the plot of the current as a function of time. The
left and right chains have the same temperature T = 300 K and the
on-site spring constant is k0 = 0.1 eV/Å

2
u. The chains have length

NL = NR = 50.

We can also calculate the current at sites away from
the midpoint of the composite system where the sudden
attachments occurred using Eq. (15). For a composite lead
containing NL = 100 and NR = 100 sites, we determine the
current at sites n1 = NL + 50 and n2 = NL + 75. Shown in
Figs. 10 and 11 are plots of the current at those locations. In
Fig. 10 the spring constant is 1 eV/Å

2
u and there is no on-site

potential. Because n1 and n2 are away from the midpoint, the
current is going to take some time, depending on how fast
phonons travel in the chain, to reach them. Defining a time
unit [t] ≡ 10−14 s, it takes 50 [t] for the current to reach n1 and
75 [t] to reach n2, therefore implying a speed of 1 site per [t].

In Fig. 11 a quadratic on-site potential with spring constant
k0 = 0.1 eV/Å

2
u is added to the system. The two leads have

the same temperature T = 300 K. For the midpoint where
the sudden connection at t = 0 occurs, upon connection the
current immediately drops and then oscillates and decays until
it reaches a quasi-steady-state value which, for this case, is
zero. Away from the midpoint, the current takes some time to
reach the site and so initially we see a flat line at zero. Since
k0 is not zero, the speed of the current is not exactly 1 site per
[t] as we found in Fig. 10.
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FIG. 10. (Color online) Plots of the current at various locations
on the right lead. The lengths of the left and right leads are NL =
NR = 100. The darker (black) lines in both panels (a) and (b) are the
current at NL. The current at n1 = NL + 50 [blue (dark gray) line in
panel (a)] and n2 = NL + 75 [red (gray) line in panel (b)] are also
shown. The on-site spring constant is k0 = 0 and the temperature
T = 300 K.

-200

-150

-100

-50

0

50

0 50 100 150 200 250 300

time [10
-14

 s]

-200

-150

-100

-50

0

50

cu
rr

en
t [

nW
] (a)

(b)

FIG. 11. (Color online) Plots of the current at different locations
on the right lead when NL = NR = 100, T = 300 K, and on-site
spring constant k0 = 0.1 eV/Å

2
u. The darker (black) lines in both

panels (a) and (b) are the current at NL. The current at n1 [blue (dark
gray) line in panel (a)] and the current at n2 [red (gray) line in panel
(b)] are also shown.

V. SUMMARY AND CONCLUSION

We examine the energy current in a quantum system
consisting of two finite chains that are abruptly attached at time
t = 0. We calculate the current using an eigenmode approach
that makes use of a similarity transformation extending the
normal modes of a single harmonic oscillator into a many-
particle, but finite, chain of harmonic oscillators. In addition,
we use a nonequilibrium Green’s function approach to verify
some of the results from our normal mode calculations. We
find that the presence of a quadratic on-site pinning potential is
crucial in establishing a quasi-steady-state current. In a finite
system where there is no such on-site potential, the current
does not settle to a quasi-steady-state value, even when the
two original chains have the same temperature at a value as
low as 10 K. The phonons would simply bounce back and
forth elastically between the two fixed walls at the edges of
the chains. In the presence of the on-site pinning potential,
we find a tendency for the current to establish a quasi-steady
state (also, see the Appendix). This crucial role of the on-
site pinning potential in establishing a steady-state current
should also be present even when the leads are semi-infinite.
Computationally, the presence of the quadratic on-site pinning
potential renders well-behaved Green’s functions. The form
of the time evolution of the current depends on the interplay
between the strength of the potentials, the chain length, and
the initial chain temperatures. A quasi-steady-state current
is established earlier when the on-site pinning potential is
stronger. Furthermore, when the quasi-steady-state current is
established, its value turns out to be the same as the steady-state
value calculated using the Landauer formula. Although in the
standard modeling of bosonic heat baths infinite systems are
usually employed, we show here that integrable finite systems
also behave like an infinite system but only within short
time scales proportional to the system size N and provided
that a small on-site pinning potential is present. At time
scales longer than N , we have recurrent and quasi-periodic
behavior. It is interesting to investigate what happens if
the chains are nonlinear; however, the eigenmode expansion
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technique discussed in this paper is unable to handle nonlinear
systems.
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APPENDIX: RECOVERING THE LANDAUER FORMULA

In this Appendix, we simplify the formula for the current
based on Eqs. (12) to (14) and derive the Landauer formula
in the large-size limit. We first introduce a new notation and
then group the terms into two parts. The first part involves
terms that are proportional to the difference between the Bose
distributions of the left and right leads. The rest of the terms

constitutes the other part and are interpreted to be the transient
contribution to the current. We assume that each chain has
length N and, therefore, that the total size of the composite
chain is 2N . Define

〈k|k̃〉L ≡
N∑

n1=1

〈k|n1〉〈n1|k̃〉,

〈k|k̃〉R ≡
2N∑

n1=N+1

〈k|n1〉〈n1 − N |k̃〉, (A1)

where 〈n|k̃〉 = 〈k̃|n〉 ≡
√

2
N+1 sin(k̃n), k̃ = πj̃

N+1 , 〈k|n〉 =
〈n|k〉 ≡

√
2

2N+1 sin(kn), and k = πj

2N+1 . Notice that 〈k|k̃〉R =
〈k|k̃〉L (−1)j+j̃ and 〈k̃|k2〉L〈k2|N + 1〉 = 〈k̃|k2〉L〈k2|N〉
(−1)j2+1. The expression for the current IL(t) can be
separated into two parts, IL

trans(t) and IL
stdy(t), where the

transient contribution is

IL
trans(t) = h̄ω2

0

∑
k̃

(
f L

k̃
+ f R

k̃
+ 1

) ∑
k1 odd

(
ωk1

ωk̃

− ωk̃

ωk1

)
sin(ωk1t) 〈N |k1〉〈k1|k̃〉L

∑
k2 odd

cos
(
ωk2 t

) 〈k̃|k2〉L〈k2|N〉

− h̄ω2
0

∑
k̃

(
f L

k̃
+ f R

k̃
+ 1

) ∑
k1 even

(
ωk1

ωk̃

− ωk̃

ωk1

)
sin

(
ωk1 t

) 〈N |k1〉〈k1|k̃〉L
∑

k2 even

cos
(
ωk2 t

)〈k̃|k2〉L〈k2|N〉 (A2)

and the steady-state contribution is

IL
stdy(t) = h̄ω2

0

∑
k̃

(
f L

k̃
− f R

k̃

) ∑
k1 even

(
ωk1

ωk̃

+ ωk̃

ωk1

)
sin

(
ωk1 t

) 〈N |k1〉〈k1|k̃〉L
∑
k2 odd

cos
(
ωk2 t

)〈k̃|k2〉L〈k2|N〉

− h̄ω2
0

∑
k̃

(
f L

k̃
−f R

k̃

) ∑
k1 even

cos
(
ωk1 t

) 〈N |k1〉〈k1|k̃〉L
∑
k2 odd

(
ωk̃

ωk2

+ ωk2

ωk̃

)
sin

(
ωk2 t

) 〈k̃|k2〉L〈k2|N〉. (A3)

In the above, the summation for k̃ extends over all πj̃

N+1 for j̃ = 1, . . . ,N , the summation involving “k1 even” is on k1 ∈ { πj1

2N+1 }2N
j1=1,

j1 is even, and the summation involving “k2 odd” is on k2 ∈ { πj2

2N+1 }2N
j2=1, j2 is odd, and so on. The dispersion relation satisfied is

ωq = √
2k(1 − cos q) + k0, where ω2

0 = k, ω2
1 = k0, f α

k̃
= 1/(eβαh̄ωk̃ − 1), and α = L or R. The sum in Eq. (A1) can be carried

out analytically, resulting in

〈N |k1〉〈k1|k̃〉L = −1

(2N + 1)
√

2(N + 1)
sin(k̃N )

cos k1 − (−1)j1

cos k̃ − cos k1
. (A4)

A similar expression can be derived for 〈k̃|k2〉L〈k2|N〉. Using Eqs. (A2) to (A4), the current can now be calculated in computer
time proportional to O(N2). This is in contrast to NEGF calculations which go as O(N3) in computational complexity.

All of the expressions derived at this point are exact. We now make an approximation in order to extend our calculations for the
steady-state contribution to large N and eventually arrive at the Landauer formula. Notice that in Eq. (A4) and the corresponding
expression for k2 that the terms involving k1 ≈ k̃ ≈ k2 would dominate the summation, especially when N approaches infinity.
Consequently,

IL
stdy(t) ≈ h̄ω2

0
1

N + 1

∑
k̃

(
f L

k̃
− f R

k̃

)
sin4 k̃

{
1

2N + 1

1

2

∑
k2

sin
(
ωk̃ − ωk2

)
t

cos k̃ − cos k2

}

×
{

1

2N + 1

[∑
k1=e

−1

cos k̃ − cos k1
+

∑
k1 odd

1

cos k̃ − cos k1

]}
. (A5)

Let N → ∞ and then followed by t → ∞, we get

1

2N + 1

1

2

∑
k2

sin
(
ωk̃ − ωk2

)
t

cos k̃ − cos k2
≈ − 1

2 sin k̃
. (A6)
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Furthermore, we have

lim
N→∞

1

2N + 1

{ ∑
k1 even

−1

cos k̃ − cos k1
+

∑
k1 odd

1

cos k̃ − cos k1

}
= − 1

sin2 k̃
(A7)

for some k̃ ∈ { πj̃

N+1 }N
j̃=1

. We then recover the Landauer formula

IL
stdy = 1

2
h̄ω2

0
1

N + 1

∑
k̃

(
f L

k̃
− f R

k̃

)
sin k̃

= 1

2π

∫ √
4ω2

0+ω2
1

ω1

dω h̄ω[f L(ω) − f R(ω)]. (A8)

Note in the above that the discrete summation over wave vector k̃ is converted into a continuous integration over the angular
frequency ω. Furthermore, we want to emphasize that although the on-site constant k0 appears in the expressions for both Istdy

and Itrans, its presence in the steady-state contribution Istdy does not prevent the contribution to approach a steady-state value in
the long-time limit. In contrast, the value of k0 is crucial for the transient contribution Itrans to decay away. A zero k0 would result
in Itrans having a strong time-dependent zigzag-like behavior that would dominate the total energy current at all times. There
would be no steady current flow even when N → ∞. However, even a small on-site potential, say k0/k = 0.1, would result in
the transient contribution to decay away in the long-time limit and leave only the contribution from the steady-state term.
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