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Ab initio simulation of transport phenomena in rarefied gases
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Ab initio potentials are implemented into the direct simulation Monte Carlo (DSMC) method. Such an
implementation allows us to model transport phenomena in rarefied gases without any fitting parameter of
intermolecular collisions usually extracted from experimental data. Applying the method proposed by Sharipov
and Strapasson [Phys. Fluids 24, 011703 (2012)], the use of ab initio potentials in the DSMC requires the same
computational efforts as the widely used potentials such as hard spheres, variable hard sphere, variable soft
spheres, etc. At the same time, the ab initio potentials provide more reliable results than any other one. As an
example, the transport coefficients of a binary mixture He-Ar, viz., viscosity, thermal conductivity, and thermal
diffusion factor, have been calculated for several values of the mole fraction.
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I. INTRODUCTION

Intermolecular potentials are an essential part of rarefied
gas dynamics and kinetic theory of gases. The most simple
and widely used potential is the hard sphere model which
does not contain the attractive force. This model provides
the viscosity and heat conductivity proportional to the square
root of gas temperature. Since such a dependence is not
confirmed by experimental data, many other models were
proposed, e.g., Lennard-Jonnes and Stockmayer potentials,
which provide more physical dependence of the transport
coefficient on the gas temperature. The detailed information
about the potentials can be found in many books on kinetic
theory of gases; see, e.g., Refs. [1–4]. These potentials were
successfully implemented into a numerical solution of the
Boltzmann equation [5,6] and into the direct simulation Monte
Carlo (DSMC) method [7,8]. All these potentials have one or
more adjustable parameters extracted from experimental data.
It would be attractive to construct a theory ab initio, i.e., when
all quantities are calculated without any experimental infor-
mation, but calculations are based on the primary principles.

At present, a technique to calculate ab initio potentials is
well elaborated and the corresponding data for monatomic
gases and their mixtures can be found in the open literature;
see, e.g., [9–13]. The data on diatomic gases are still restricted
by the potential energy curve for one molecule; see, e.g.,
Refs. [14,15]. We hope that ab initio potentials for interaction
between two diatomic molecules will appear soon. An imple-
mentation of these potentials into rarefied gas dynamics will
make this theory independent of any experimental data. Since
the Boltzmann equation can be solved for any potential [5,6]
and the DSMC method [4] can be applied with an arbitrary
potential [7], the implementation of the ab initio potential
became possible.

The aim of the present work is to show how to implement
the ab initio potentials into the DSMC method. As an example,
the transport coefficients such as viscosity, heat conductivity,
and thermal diffusion factor are calculated. Since the influence
of the potential on the transport phenomena in mixtures
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is stronger than in a single gas [16,17], we are going to
consider a binary mixture of helium and argon. The transport
coefficient values will be compared with those reported in
Refs. [11,13,18,19]. The paper by Kestin et al. [18] reports
expressions and values of the transport coefficients deduced
from the Chapman-Enskog theory [2,3] of gases. The �

integrals being a part of the expressions were interpolated
using experimental data so that their method can be called
semiempirical. The authors of Ref. [18] estimated the follow-
ing uncertainties of the coefficients for the mixture He-Ar:
viscosity ±0.4%, heat conductivity ±0.7%, and the thermal
diffusion factor ±3%. The authors of Ref. [19] reported
numerical results of viscosity and thermal conductivity for
mixtures also based on the Chapman-Enskog theory [2,3].
The � integrals were calculated using the ab initio potential
given in Ref. [9]. The authors of Ref. [19] did not estimate
the uncertainty of their results, but a deviation of their values
from other results reaches a few percent. The papers [11,13]
contain similar results but only for single gases helium and
argon. The uncertainty of these data is ±0.02%. The DSMC
method employed here cannot provide so high an accuracy,
but our target is the uncertainty of 0.5%, which is enough to
check the reliability of our results.

II. POTENTIAL

As an example, we consider a mixture of helium with argon
at the temperature 300 K. In this case, the potentials calculated
in Ref. [9] can be applied, which read

U (r) = Eh

[
Ae−a1R−a2R

2−
8∑

n=3

C2n

R2n

(
1−e−bR

2n∑
k=0

(bR)k

k!

)]
,

R = r

a0
, (1)

where Eh = 4.359 744 17 × 10−18 J is the Hartree energy,
a0 = 5.291 772 109 2 × 10−11 m is the Bohr radius. The
potential parameters A, a1, a2, and b are taken from the last
columns of Tables III, IX, and XIII of Ref. [9]. The coefficients
Cn are taken from the corresponding Tables in Ref. [9]. The
values of all parameters of the potentials are summarized in
Table I. Moreover, the distance r0 corresponding to the zero
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TABLE I. Parameters for the ab initio potential given by Eq. (1),
Ref. [9].

He-He Ar-Ar He-Ar

A 6.62002 82.9493 23.1693
a1 1.88553 1.45485 1.63329
a2 0.0639819 0.0379929 0.0462008
b 1.85822 1.62365 1.63719
C6 1.46098 63.7520 9.38701
C8 14.1179 1556.46 165.522
C10 183.691 49437.9 3797.16
C12 3.26527 × 103 2.07289 × 106 1.16518 × 105

C14 7.64399 × 104 1.105297 × 108 4.66258 × 106

C16 2.27472 × 106 7.24772 × 109 2.36861 × 108

r0/a0 5.0066 6.3745 5.8921
ε/kB (K) 10.6312 139.5325 29.7296

potential, i.e., U (r0) = 0, and the well depth of the potentials,
i.e., ε = − min{U}, are given in Table I.

III. DEFINITIONS

A chemical composition of mixture is characterized by the
mole fraction defined as

C = n1/(n1 + n2), (2)

where n1 and n2 are number densities of species. The viscosity
μ is defined via the Newton law which in the particular case
uy = uy(x) and ux = uz = 0 reads as

Pxy = −μ(∂uy/∂x), (3)

where Pxy is the shear stress and uy is the bulk velocity of
mixture. The heat conductivity is defined via the Fourier law.
In a particular case when all species of mixture are at rest and
the temperature T (x) depends only on the x coordinate, this
law reads

qx = −κ (∂T /∂x) , (4)

where qx is the x component of the heat flux. If a mixture
being at rest is subject to a temperature gradient ∂T /∂x, then
a mole fraction gradient is established, which is related to the
temperature gradient as

(∂C/∂x) = − (kT/T ) (∂T /∂x) , (5)

where kT is the thermodiffusion ratio coefficient. Instead of this
coefficient one often works in terms of the thermal diffusion
factor defined as

αT = kT/ [C(1 − C)] . (6)

We are going to calculate the transport coefficients μ, κ , and
αT of the mixture He-Ar by the DSMC method [4] applying
the ab initio potential (1).

IV. METHOD OF SOLUTION

In order to calculate the transport coefficients, a one-
dimensional problem is solved. Let us consider a mixture
confined between two infinite parallel plates fixed at x =
±H/2. For our purpose, the equilibrium pressure p0 value

does not matter, but it must be sufficiently large to guarantee
the hydrodynamic regime, i.e., the rarefaction parameter

δ = p0H/ (μv0) , v0 =
√

2kBT0/m (7)

must be high. Here v0 is the characteristic molecular speed
and m = Cm1 + (1 − C)m2 is the mean molecular mass. In
the calculations, the rarefaction parameter was larger than 40.
To reach this value, the calculations were carried out for H = 1
m and for the pressure p0 varied from 0.5 to 1 Pa by varying
the mole fraction from C = 0 (single Ar) to C = 1 (single He).

The DSMC method for an arbitrary potential applied to a
single gas is described in our previous paper [7]. Here, only the
differences for a mixture will be described. To apply a potential
like that given by Eq. (1), it should be cut off, i.e., a maximum
impact parameter bM,αβ when a collision between species α

and β happens must be assumed. Then the total cross section
will be given as σαβ = πb2

M,αβ . Following the no time counter
method [4], the number of pairs to be tested for collisions is
given as

Ncoll = Nα(Nα − 1)Fnσααgm,αα�t/(2Vc), α = 1,2 (8)

for an interaction between the same species, and

Ncoll = NαNβFnσαβgm,αβ�t/Vc, α �= β (9)

for an interaction between the different species. Here, Nα and
Nβ are numbers of model particles of species α and β in a
cell, Fn is the representation of model particle, gm,αβ is the
maximum relative velocity between molecules of species α

and β, �t is the time increment, and Vc is the cell volume.
Among Ncoll of randomly chosen pairs, those satisfying the
condition gαβ/gm,αβ > Rn are selected for collision, where
gαβ is the relative velocity of this pair and Rn is the random
number varying from 0 to 1.

Once a pair of particles is selected for collision, their
velocities are changed according to the classical theory of
binary collision; see Chap. 2 of Ref. [4]. The deflection angle
χ determining the direction of the relative velocity gαβ after
a collision depends on the dimensionless kinetic energy of
collision defined as

Eαβ = mαmβ g2
αβ

2(mα + mβ)εαβ

, (10)

where εαβ is given in Table I for each kind of collisions. Since
the calculation of the deflection angle χ for a binary collision
needs significant computational effort, it is precalculated and
stored in computer memory as was proposed in Ref. [7]. The
regularly distributed values of the energy are considered, i.e.,

Ej,αβ = (j − 0.5)
Em,αβ

NE

, (11)

where 1 � j � NE , Em,αβ is the maximum energy for a α − β

collision and NE is an integer. The impact parameter values
bi,αβ are distributed as

b1,αβ = bM,αβ√
2Nb

, bi,αβ =
√

b2
i−1,αβ + b2

M,αβ

Nb

, (12)

where 2 � i � Nb, bM,αβ is the impact parameter cutoff and
Nb is an integer. To choose the deflection angle χij of a pair
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selected for a collision the following rules are used:

i = NbRn + 1, j = Eαβ

Em,αβ

NE + 1, (13)

where Rn is a random number and Eαβ is the dimensionless
energy of this pair.

For a binary mixture, three matrices of the deflection angle
χij are calculated for the three kinds of collisions, i.e., He-He,
Ar-Ar, and He-Ar, applying the potential (1) with the data given
in Table I and using the following parameters: Em,αβ = 600,
NE = 600, bM = 3r0, Nb = 900. The values of r0 are given
in Table I for each kind of collisions. It was verified that the
fraction of collisions having the energy Eαβ > Em,αβ is about
10−8. Further increases of Emax and bM,αβ do not change the
results within 0.5%.

To calculate the viscosity coefficients, the mixture is
perturbed by a motion of the plates, i.e., the plate at x = −H/2
moves with a speed Uw/2 in the y direction, while the other
plate moves in the opposite direction with the same speed.
The temperatures of the plates are kept constant and equal to
T0. The speed of the plate should be small enough in order to
maintain the equilibrium temperature in the middle between
the plates. An analysis showed that the speed Uw = 0.2v0

does not affect the temperature within 0.2%. According to
the definition (3), to calculate the viscosity coefficient the
shear stress Pαβ and the bulk velocity gradient ∂uy/∂x are
needed. The shear stress Pxy is calculated for each cell during
the simulation of the free motion of model particles, i.e.,
the momentum of all particles crossing a cell is counted
and summed. The velocity gradient was calculated in the
middle of the gap for the range −0.25H � x � 0.25H . This
range does not include the Knudsen layers near the plates. To
reduce the statistical scattering of the viscosity up to the
desirable uncertainty 0.5% the number of samples was 105.

To calculate the heat conductivity coefficients, the mixture
is perturbed by a temperature deviations of the plates, i.e., the
plate at x = −H/2 is maintained at a temperature T0 + �T/2,
while the other plate is maintained at a temperature T0 −
�T/2. The temperature difference �T should be small enough
in order to avoid a nonlinear term contribution into the heat
flux qx . An analysis showed that the temperature difference
�T = 0.2T0 satisfies this condition. The heat conductivity
was extracted from Eq. (4). The heat flux qx is calculated
for each cell during the simulation of the free motion, i.e.,
the energy of all particles crossing a cell is counted and
summed. The temperature gradient is calculated in the range
−0.25H � x � 0.25H excluding the Knudsen layer. The
thermal diffusion factor αT is calculated from Eqs. (5) and
(6). In this case only the gradients of the mole fraction and
of the temperature are needed which are calculated also in the
range −0.25H � x � 0.25H . The number of samples 5 × 104

guarantees the statistical scattering of the heat conductivity and
thermal diffusion factor less than 0.5%.

In calculations of both viscosity and heat conductivity, the
gap between plates was divided in 400 cells. The number of
model particles was 40 000, i.e., about one hundred per cell.
The time increment was �t = 0.002H/v0. Test calculations
with larger numbers of cells and particles and with a smaller
time increment showed that the above given values guarantee
the numerical error less than 0.5%.

TABLE II. Viscosity μ of mixture He-Ar vs mole fraction C.

μ (μPa s) �μ/μ (%)

C DSMC [11,13] [18] [19] [11,13] [18] [19]

0. 22.68 22.669 22.83 22.772 0.05 0.7 0.4
0.25 23.22 23.33 23.169 0.5 0.2
0.5 23.53 23.67 23.420 0.6 0.5
0.75 23.18 23.30 23.057 0.5 0.5
1. 19.91 19.910 20.04 20.172 <0.02 0.7 1.3

V. RESULTS

The calculations were carried out for the mole fraction C

equal to 0, 0.25, 0.5, 0.75, and 1 at the temperature 300 K. The
values of the viscosity μ and heat conductivity κ are reported
in the second columns of Tables II and III, respectively. The
results of Refs. [11,13] and Refs. [18] and [19] are given in the
third, fourth, and fifth columns of these tables, respectively.
The deviations of the values obtained in the present work
from those reported in the previously published papers are
given in the sixth, seventh, and eighth columns. First, the
comparison with the most exact results Refs. [11,13] available
in the literature shows that the viscosity was calculated with
the quite high accuracy, i.e., 0.05%. The accuracy of the heat
conductivity is slightly worse but it is still high 0.2%, i.e., it is
within the planed uncertainty 0.5%. If one compares the results
obtained in Refs. [11,13] with those reported in Ref. [18] for
single gases He and Ar, one concludes that the uncertainty
0.3% of the viscosity declared in Ref. [18] is not confirmed,
but the uncertainty of both viscosity and heat conductivity
is 0.7%. Thus, if we compare the present results with those
reported by Kestin et al. [18], we conclude that they are in
agreement with the results of Ref. [18] within the accuracy
0.7%. The deviation of the present data on the viscosity from
the results by Song et al. [19] is within our numerical error
0.5% for all values of the mole fraction except C = 1. The
disagreement of the present results on the heat conductivity
with those reported in Ref. [19] is significant and reaches
2.5%. Since the results by Song et al. diverges significantly
with those reported in Refs. [11,13,18], we conclude that their
uncertainty is about 2.5%.

The thermal diffusion factor αT has not been calculated for
the ab initio potential previously. Thus, the ab initio results
on this quantity presented in Table IV are reported. They are
compared only against data reported in Ref. [18] obtained by
the semiempirical method with the uncertainty 3%. It can be

TABLE III. Heat conductivity κ of mixture He-Ar vs mole
fraction C.

κ (mW/m K) �κ/κ (%)

C DSMC [11,13] [18] [19] [11,13] [18] [19]

0.0 17.74 17.709 17.83 17.789 0.2 0.5 0.3
0.25 32.60 32.71 31.797 0.3 2.5
0.5 54.34 54.36 52.976 0.04 2.5
0.75 89.63 89.28 88.284 0.4 1.5
1.0 155.52 155.66 156.66 157.71 0.1 0.7 1.4
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TABLE IV. Thermal diffusion factor αT of mixture He-Ar vs mole
fraction C.

αT

C DSMC [18] �αT/αT (%)

0.25 0.3222 0.3144 2.4
0.5 0.3849 0.3865 0.4
0.75 0.4887 0.5026 2.8

seen that the present results are in agreement with those
reported in Ref. [18] within the accuracy of 3% declared in
that paper.

VI. CONCLUSION

The ab initio potential has been implemented into the direct
simulation Monte Carlo method. Such an implementation
allows us to calculate gas flows at any rarefaction ab initio,
i.e., no parameter usually extracted from experimental data is
needed. The implementation of the ab initio potential requires
practically the same computational effort as an application

of the widely used molecular models such as hard spheres,
variable hard sphere, variable soft sphere, etc. Thus, if ab
initio potentials for a specific gas or for a specific mixture are
known, the other models of potential can be dispensed.

As an example of the implementation, the viscosity, heat
conductivity, and thermal diffusion factor were calculated
with the uncertainty of 0.5% for a helium-argon mixture. The
viscosity and heat conductivity were calculated with a higher
accuracy than that in the previously published paper [19] based
on the Chapman-Enskog method applying the same potential.
The values of the thermal diffusion factor have been calculated
on the basis of the ab initio potential. The reported numerical
results can be used for verification of model kinetic equations
and new methods to solve the Boltzmann equation. In the
future, the benchmark problems for rarefied gas dynamics
formulated in Ref. [20] will be solved by the method elaborated
in the present work.
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