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Diffusive and subdiffusive dynamics of indoor microclimate: A time series modeling
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The indoor microclimate is an issue in modern society, where people spend about 90% of their time indoors.
Temperature and relative humidity are commonly used for its evaluation. In this context, the two parameters are
usually considered as behaving in the same manner, just inversely correlated. This opinion comes from observation
of the deterministic components of temperature and humidity time series. We focus on the dynamics and the
dependency structure of the time series of these parameters, without deterministic components. Here we apply
the mean square displacement, the autoregressive integrated moving average (ARIMA), and the methodology
for studying anomalous diffusion. The analyzed data originated from five monitoring locations inside a modern
office building, covering a period of nearly one week. It was found that the temperature data exhibited a transition
between diffusive and subdiffusive behavior, when the building occupancy pattern changed from the weekday
to the weekend pattern. At the same time the relative humidity consistently showed diffusive character. Also
the structures of the dependencies of the temperature and humidity data sets were different, as shown by the
different structures of the ARIMA models which were found appropriate. In the space domain, the dynamics and
dependency structure of the particular parameter were preserved. This work proposes an approach to describe
the very complex conditions of indoor air and it contributes to the improvement of the representative character
of microclimate monitoring.
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I. INTRODUCTION

In industrialized countries people spent about 90% of
their time indoors. Despite efforts to create an appropriate
indoor microclimate, complaints about discomfort and health
problems have increased during recent years. This in partic-
ular refers to air-conditioned spaces. Nowadays, more and
more office workers are employed in such conditions. They
often experience sick building symptoms and building-related
illnesses, which result in low performance and absenteeism.
On the other hand, a suitable indoor environment leads to
improved productivity in the workplace. Therefore, estimation
of indoor air quality and thermal comfort inside enclosed
spaces is of paramount importance [1].

Indoor air is a complex system. It is affected by numerous
factors, e.g., the outdoor environment (e.g., meteorological
conditions), the structure and construction of the building,
the internal spatial arrangement, heating, ventilation, and
air-conditioning (HVAC) systems, and patterns of occupant
activity [2]. It is difficult to quantify the influence and relative
importance of so many factors of various kinds. Therefore
evaluation of the indoor environment on the basis of their
total effect is justified. The joint influence of these factors is
reflected in the physical, chemical, and microbiological state
of indoor air. Information about the state of the indoor air is
contained in the environmental parameters [3,4].
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The mentioned factors are not only numerous and versatile.
They additionally exhibit spatial and temporal variability in
their own dynamics. As a result of their mutual interactions the
state of indoor air may rarely be considered as steady. Actually,
it is transient most of the time. Because of these circumstances,
valuable knowledge of the environmental parameters should
be based on series of measurements performed in the time
domain in properly selected locations [5,6].

A wide range of information may be obtained as a result of
such data examination. For example, in [7] the autocorrelation
and variability of indoor air quality measurements was ana-
lyzed as a means of improving the representativeness of such
measurements. A similar goal was addressed in [8] but using
cross correlation of time series of different pollutants. The
same tool was applied in [9] for characterizing the time scales
of airborne contaminant transport from outdoors to indoors.
Improved simulation of diurnal time series of pollutants in
residences was achieved by applying a nonstationary Poisson
process for modeling the occurrence of emission events and
including it in indoor air quality (IAQ) models [10]. A more
general study on including stochastic factors in deterministic
models of IAQ was given in [11]. Finally, a time series model
of indoor temperature data was developed with the aim of
controlling plant growth conditions in greenhouses [12].

In our work we focus attention on two basic parameters
of indoor microclimate: temperature and humidity. These
parameters are commonly used to evaluate the air quality
and thermal comfort conditions as well as building energy
consumption. Typically, the central tendency exhibited by
their short-term time series is utilized for that purpose.
This is sufficient in the framework of the most commonly
applied air conditioning strategy, which has been based on the
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concept of maintaining environmental parameters at a constant
level. Currently, more advanced strategies are used, developed
mainly in the context of energy saving requirements [13,14].

The main objectives of this work were to investigate
the dynamics and internal dependencies of microclimate
parameters and to model their variability. The dynamics
of these parameters considerably affects the perception of
microclimate conditions by the occupants.

In our approach we do not plan to use the results of time
series analysis as inputs for an automatic system for IAQ
control. In practice it is impossible, because this equipment
requires input data in real time. Instead, we would like
to address the problem of IAQ evaluation. Based on our
working experience this problem remains unsolved in a
satisfactory manner. This fact inspired us to find methods and
tools (analytical and computational) which can be used for
diagnostic tasks. At this stage of our work, we do not intend to
propose guidelines for HVAC system design and control. We
would like to exploit a different source of information for the
purpose of identifying different factors which affect indoor air
quality. In this sense we propose a generic approach.

To reach the goal of this study, the work incorporates
the analysis of multiple time series of temperature and
relative humidity using stochastic methods. We investigate the
dynamics of the data using the mean squared displacement
(MSD). Moreover we model the time series that exhibit
diffusive behavior using autoregressive integrated moving
average (ARIMA) systems. For data sets with no observable
MSD linear in time, we propose to use methodology presented
in [15–17] where anomalous diffusion systems were examined.
We show that our approach is a proper way to evaluate the
very complex conditions of indoor air and to improve the
representativeness of microclimate studies.

The rest of the paper is organized as follows: In Sec. II
we give a complete description of the examined data sets.
Section III contains the diffusion and anomalous diffusion
methodology that is used here in the stochastic analysis of
the examined time series. In Sec. IV we present and discuss
the main results obtained for the analyzed humidity and
temperature. The last section contains our conclusions.

II. DATA

We analyzed time series of temperature and humidity
measurements in a typical modern office building. Its in-
dividual floors host spacious, open plan offices for several
dozen workers each. The building is equipped with a HVAC
system which provides a central air supply at a controlled
temperature and flow rate for heating or cooling various zones
in the building. The occupancy pattern was determined by
the periods of presence of office workers and the associated
activity (approx. 7 a.m. to 9 p.m.) as well as by the intervals
of their absence (approx. 9 p.m. to 7 a.m.).

The temperature and relative humidity were monitored at
five measurement points. Points 1 and 2 were located at two
opposite ends of an open space several meters long, while
points 3, 4, and 5 were distributed in separate offices. The
elevation of all sampling points was approx. 1.8 m above the
floor level. The microclimate parameters were continuously
measured for a period of 5 days, in August 2010 from

Friday 13th to Tuesday 17th. During this week, the weather
was quite warm (18–25 ◦C during the day and 14–21 ◦C at
night) and very humid (66%–80% relative humidity during
the day and 88%–98% at night). Wireless sensors AR435
were used for the measuremnts. They offered measurement
accuracy of relative humidity ±3% and temperature ±0.5 ◦C.
The data were recorded at 30 s intervals. In this work we use
the abbreviation si to indicate the sensor located at the ith
measurement point.

We used stochastic methods to study the temporal and spa-
tial aspects of the indoor microclimate parameters temperature
and humidity. In principle the variability which occurred in the
time domain was addressed with these methods. The space
dimension was considered by comparing the data analysis
results for the different locations of monitoring points.

The scope of the temporal analysis of the microclimate
conditions was defined by grouping the measurement data
into categories. A generic principle of creating subdivisions
was applied, which consisted in utilizing the knowledge about
the most important factors influencing indoor air quality in the
investigated object. For our method of analysis those periods of
time are of interest in which different combinations of factors
act in a particular manner. This problem has to be addressed
on an individual basis. In that sense, the subdivisions in this
work are arbitrary.

There are also other possibilities for approaching the
problem of time interval selection. In principle, they are
data driven. An example of a method that can be useful in
decomposition of the examined nonstationary time series is the
empirical mode decomposition technique [18]. It is based on
a Hilbert spectral analysis applied to intrinsic mode functions
that describe a given data set. However, we did not apply this
approach at the current stage of our work.

It was proposed to distinguish between the working part
of the week and the weekend and additionally between the
daytime (7 a.m. to 9 p.m.) and the nighttime (9 p.m. to
7 a.m.). Four categories of data were obtained, called weekday,
weeknight, weekend day, and weekend night. The time series
of humidity and temperature were investigated within these
categories. The data from separate days were collected to form
a single time series. The scope of the analysis in the spatial
domain was defined by four distinct open plan offices where
the measurement data were collected.

The categories were defined by the occupation patterns and
HVAC system operation regimes which are encountered during
24-h cycles of building exploitation. These two factors together
with the natural day-night rhythm were considered as setting
a sort of framework for indoor microclimate formation. The
presence of people was certainly associated with an increased,
chaotic indoor air mixing. This was due to thermal phenomena
taking place at the human-air interface, heat release by the
office equipment, computers in particular, as well as random
movement of people. They were all counteracted by the
HVAC system operation. It is usually aimed at keeping the
temperature and humidity within the limits of thermal comfort.
With the absence of office workers, the HVAC system was also
operating at defined, but different, temperature and humidity
values. In these periods its task was to balance the influence
of weather conditions mainly. During the night and on the
weekends, wide scale, undisturbed, air motion patterns could
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be established as determined by the spatial structure and
operation parameters of the HVAC system.

III. METHODS

In this section we present the main tools used in the analysis
of the real data sets described in the previous section. The
stochastic analysis is concentrated on many aspects, such as
identification of the dynamics of the time series, the structure of
the dependence, time series modeling, and advanced methods
used in analysis of subdiffusive processes. The main tool
that allowed us to recognize the stochastic dynamics of the
examined time series is the time-averaged mean squared
displacement.

Let {Xi, i = 1, . . . ,n} be a stationary sample of length n.
The sample MSD was introduced in [19] as

Mn(τ ) = 1

n − τ

n−τ∑

k=1

(Xk+τ − Xk)2. (1)

The sample MSD is a time-averaged MSD on a finite
sample regarded as a function of the difference τ between
observations. It is a random variable, in contrast to the
ensemble average, which is deterministic [20].

If the sample comes from an H -self-similar process with
stationary increments belonging to the domain of attraction of
the Lévy α-stable law, then for large n

Mn(τ ) ∼ τ 2D+1, (2)

where D = H − 1/α and ∼ indicates similarity in distribu-
tion. More precisely, if α = 2, then for large n and small τ ,
Mn(τ ) ∼ τ 2D+1E(X2

1), where D = H − 1/2. If α < 2, then
for large n/τ , Mn(τ ) ∼ C(n)τ 2D+1Uα/2, where C(n) = n2/α ,
D = H − 1/α, and Uα/2 is an α/2-stable random variable with
the skewness parameter β = 1 [19,21].

As a by-product, the sample MSD can serve as a method
of estimating D. The method is well defined for the general
α-stable case and the estimator has a very small variance. In
order to apply it, first, the sample MSD is calculated for the
partial sum process {Yn = ∑n

i=1 Xi, n = 1,2, . . . ,n}:

Mn(τ ) = 1

n − τ

n−τ∑

k=1

(Yk+τ − Yk)2 .

Next, applying (2), a linear regression line is fitted
according to

ln[Mn(τ )] = ln(C) + (2D + 1) ln(τ ), τ = 1,2, . . . 10,

where C is assumed to be constant.
As a consequence, we see that the memory parameter D

controls the type of anomalous diffusion. If D < 0 (H < 1/α),
and thus in the negative dependence case, the process follows
subdiffusive dynamics; if D > 0 (H > 1/α), the character
of the process changes to superdiffusive. The subdiffusion
pattern arises when the dependence is negative, so possible
large positive jumps are quickly compensated by large negative
jumps, and on average a random walker representing microcli-
mate factors overcomes shorter distances than in light-tailed
Brownian motion.

In order to analyze the dependence in the considered time
series the autocorrelation (ACF) and partial autocorrelation

(PACF) functions are examined. They are major tools in testing
the order of dependence in data sets. The ACF is an empirical
equivalent to the theoretical correlation function and for a
random sample {Xi, i = 1, . . . ,n} is defined as follows [22]:

A(h) =
∑n−|h|

i=1 (Xi − X̄)(Xi+|h| − X̄)∑n
i=1(Xi − X̄)2

, h = 0,1,2,3, . . . ,

(3)

where X̄ = 1
n

∑n
i=1 Xi . The other measure of dependence that

indicates a relationship inside the examined time series is the
PACF. This function plays an important role in data analyses
aimed at identifying the extent of the lag in an autoregressive
model. From the theoretical point of view the PACF at lag h

of the stationary time series {Xt } is defined by

P (1) = Corr(Xt,Xt+1).

For h = 2,3,4, . . . ,

P (h) = Corr(Xt − LXt+1,...,Xt+h−1 (Xt ),Xt+h

−LXt+1,...,Xt+h−1 (Xt+h)),

where LX1,X2,...,Xn
(Xn+1) denotes the best (in terms of mini-

mizing the mean squared error) linear predictor of Xn+1 based
on X1,X2, . . . ,Xn. Therefore it is defined as

LX1,X2,...,Xn
(Xn+1) = a1X1 + a2X2 + +anXn,

where a1,a2, . . . ,an are determined by minimizing

E[(Xn+1 − LX1,X2,...,Xn
(Xn+1)]2.

The ACF and PACF are useful in identifying orders in an
autoregressive moving average–(ARMA-) type time series,
namely, the ACF is zero after lag q for a moving average of
order q (MA(q)) models, while the PACF can help to identify
the value of the order in autoregressive processes (ARs) [23].

In our methodology, the time series that exhibit diffusive
behavior we propose to model using ARIMA processes. An
ARIMA model is a generalization of an ARMA model.
These models are fitted to time series data either to better
understand the data or to predict future points in the series
(forecasting). They are applied in some cases where data
show evidence of nonstationarity, where an initial differencing
step (corresponding to the integrated part of the model)
can be applied to remove the nonstationarity. The model is
generally referred to as an ARIMA(p,d,q) system, where p,
d, and q are non-negative integers that refer to the order
of the autoregressive, integrated, and moving average parts
of the model, respectively [23]. The time series {Xt } is
ARIMA(p,d,q) if the transformed sequence Yt = (1 − B)dXt

is ARMA(p,q). Here B denotes the backward shift operator
defined as BXt = Xt−1. In the above definition {Yt } satisfies
the equation

Yt −
p∑

j=1

bjYt−j = ξt +
q∑

i=1

aiξt−i (4)

for some parameters bj , j = 1,2, . . . ,p, and ai , i =
1,2, . . . ,q. The sequence {ξt } denotes the innovation series,
i.e., the sequence of uncorrelated random variables with the
same distribution. The ARIMA time series were introduced by
Box and Jenkins in [24]. They have been widely used in many
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areas of interest including econometrics [25], energy [26], and
tourism industry [27].

Because in our case only models with d = 1 are considered,
the procedure of estimating parameters of ARIMA model is as
follows: For the differenced series on the basis of the ACF and
PACF, recognize the parameters p and q, and then estimate
the parameters of the ARMA(p,q) time series using the least
squares method.

Some of the examined data sets exhibit subdiffusive
behavior, so in our methodology the advanced techniques
adequate to analysis of such processes are used. Because for
the analyzed time series with subdiffusive behavior we observe
clear constant time periods (also called trapping events), we
propose to use the approach presented in [15–17], where data
with trap behavior were also examined. The methodology
is based on the assumption that the examined time series
can be described in the Langevin picture by the following
process:

Xt = Y (Sα(t)), (5)

where {Y (t)} is a diffusive external process and {Sα(t)} is called
an inverse subordinator, i.e., it is defined as follows:

Sα(t) = inf{τ > 0 : Uα(τ ) > t}, (6)

where {Uα(τ )} is an increasing Lévy process (called a subordi-
nator). The process {Xt } exhibits subdiffusive behavior and the
representation (5) reveals that subdiffusion is a combination
of two independent mechanisms: the first one is based on the
standard diffusion represented by some Itô process {Y (t)}, and
the second one is represented by the inverse subordinator that is
related to the waiting time distribution, [28–32]. Moreover it is
assumed that the processes {Y (t)} and {Sα(t)} are independent

[33]. The process {Xt } is called a time-changed system and
has been analyzed in many applications. For example, the
system (5) with an external process that is a Brownian motion
and α-stable subordinator {Uα(τ )} was examined in [15] for
modeling financial time series, while the tempered stable sub-
ordinator was considered in [20] in the context of microclimate
data.

In our paper to analyze time series with subdiffusive
behavior we propose to use the α-stable subordinator while
the external time series we model with an ARIMA system.
The α-stable subordinator is a Lévy process {Uα(τ )} with the
following Laplace transform:

E(e−zUα (τ )) = e−τzα

, (7)

where 0 < α < 1. More details of α-stable subordinators can
be found in [34].

In order to fit the model given in (5) to real data, according
to the methodology presented in [15], the time series is divided
into two vectors. The first one represents lengths of constant
time series, while the second vector arises after removing the
constant time periods. Because the lengths of trapping events
are independent realizations of the subordinator {Uα(τ )}, to
estimate the α parameter we propose to use the tail behavior
of the α-stable distribution, namely, for this distribution the
right tail behaves like the power function x−α , so this function
is fitted to the empirical tail using the least squares method
[15,17]. The vector that arises after removing constant time
periods represents realizations of the external process; there-
fore in the first step the orders of ARIMA(p,1,q) series are
recognized using the ACF and PACF. Next the parameters are
estimated using the least squares method.
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FIG. 1. (Color online) Humidity data recorded by five sensors: sensor 1 (squares), sensor 2 (diamonds), sensor 3 (crosses), sensor 4 (stars),
and sensor 5 (circles).
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FIG. 2. (Color online) The mean square displacement for humidity recorded by the five sensors in each of four periods (weekday, weeknight,
weekend day, weekend night): sensor 1 (squares), sensor 2 (diamonds), sensor 3 (crosses), sensor 4 (stars), and sensor 5 (circles).

IV. RESULTS AND DISCUSSION

A. Humidity

The time series of relative humidity are shown in Fig. 1 as
examined, in four data categories: weekday, weeknight, week-
end day, and weekend night. The similarities are noticeable
among the analyzed vectors in each data category. The relative
humidity at five monitoring locations exhibited deterministic
patterns, which were alike. Upon comparing data categories, a
distinctive character of the humidity time series in the weekday
periods was observed. It consisted in a significant short-term
variability.

The dynamics of the data was examined using the mean
square displacement, as mentioned in Sec. III. We calculated
the MSD for the humidity time series from the five sensors, in
each data category. The results are presented in Fig. 2.

As we observe in Fig. 2, the MSD indicates the diffusive
behavior of the examined humidity time series in each case.
We confirmed this by estimating the D parameter; see Table I.
The calculated values were close to zero.

TABLE I. The estimated D parameter for humidity recorded by
five sensors.

Sensor Weekday Weeknight Weekend day Weekend night

s1 −0.02 0.01 −0.03 −0.08
s2 −0.04 −0.02 −0.04 −0.05
s3 0.01 −0.03 −0.01 −0.02
s4 0.10 −0.01 −0.07 −0.13
s5 0.03 −0.06 −0.04 −0.12

In order to find the structure of the dependence in
the examined time series, we analyzed the autocorrelation
function and partial autocorelation function. The ACF for
the differenced humidity time series is presented in Fig. 3.
The functions behave similarly for all the data. The same
regularity was observed in the case of PACFs. On the basis
of the ACFs and PACFs we can assume that all examined time
series of humidity can be described by the ARIMA(0,1,2)
model. This assumption was confirmed by constructing the
confidence intervals for the estimated parameters. In Table II
the results are presented for the exemplary sensor s1. The
zero-order AR component together with the second order of
the MA component indicated that the data could be considered
as a linear combination of the innovation series {ξn} given
in (4).

It is notable that ARIMA models of the same order were
adequate for modeling different measurements of humidity.
Hence, a similar structure of dependence was discovered in
time series which were collected at different locations and
which belonged to different data categories. However, the
analysis of model parameters indicated differences among
time series. Overlap between confidence intervals of model
parameters occurs occasionally across sensors in one data
category. It was similar as well as for one sensor in different
data categories. Despite the similar structure of dependence,
the examined time series required separate modeling.

B. Temperature

The time series of temperature recorded by the five sensors
are shown in Fig. 4 in four data categories, as they were ana-
lyzed. Evident diurnal cycles of temperature were observed on
weekdays. Similar but much less regular variability occurred
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FIG. 3. (Color online) The autocorrelation function for differenced humidity recorded by the five sensors in each of four periods (weekday,
weeknight, weekend day, weekend night): sensor 1 (squares), sensor 2 (diamonds), sensor 3 (crosses), sensor 4 (stars), and sensor 5 (circles).

during weekend days. In the nights, the temperature changed
extremely slowly and in a very narrow range. We noticed
similar behavior of the temperature measured by different
sensors, except for the weekend-day data category. As for
humidity, the dynamics of the temperature data was analyzed
using the mean square displacement (see Fig. 5). The MSD
plots indicate different dynamics of the temperature time series
during the week and over the weekend. We supported this
observation by estimating the D parameter, on the basis of the
mean square displacement (see Table III). Low D values were
obtained for the weekend data, especially weekend night, as
compared to week data, in particular weekday. The behavior
of the MSD as well as that of the D parameter both confirm
that the temperature time series exhibited a transition between
two kinds of dynamics. During working days and nights the
temperature showed a diffusive character. The subdiffusive
behavior occurred during the weekends.

Waiting times of a considerable lengths, from 15 up to
284, were found in the subdiffusive process. Thus, in our
opinion, it is very unlikely that we observed a property of
the measurement device and not a physical property.

The week and weekend temperature data were analyzed
using different methodology depending on the diffusive and
subdiffusive behavior which they exhibited. The structure of
dependence in the week data (diffusive) was examined using
autocorrelation and partial autocorrelation functions. On the
basis of the ACF (see top panel in Fig. 6) (as well as the
PACF), we concluded that all the considered time series could
be modeled using the ARIMA(1,1,2) approach. Therefore the
data had the same dependence structure. Let us point out that
the order of the model for temperature is different from that for
the humidity time series (see Sec. IV A). They also exhibited
diffusive behavior and one model structure was sufficient for
modeling them all. In Table IV we demonstrate the estimated
parameters from the ARIMA(1,1,2) time series for sensor 1.

We observed only occasional overlap of the confidence
intervals of the corresponding parameters in different models.
This indicates the need for individual modeling of different
time series for the sake of reproducing the actual values of
the investigated parameter. A similar result was obtained in
Sec. IV A for the humidity time series.

TABLE II. The parameters of the ARIMA(0,1,2) model for humidity recorded by sensor 1. In brackets we present the corresponding
confidence intervals for estimated parameters calculated by using Monte Carlo simulations.

Weekend Weekend
s1 Weekday Weeknight day night

MA(1) −0.06 −0.01 −0.08 −0.16
[−0.08, −0.03] [−0.03, 0.03] [−0.11, −0.05] [−0.19, −0.12]

MA(2) −0.02 −0.01 −0.01 −0.03
[−0.04, 0.01] [−0.04, 0.03] [−0.04, 0.03] [−0.07,0.01]
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FIG. 4. (Color online) Temperature data recorded by the five sensors: sensor 1 (squares), sensor 2 (diamonds), sensor 3 (crosses), sensor 4
(stars), and sensor 5 (circles).

As shown in Fig. 4 as well as in Fig. 5 the temperature
reordered during the weekend exhibited different behavior
from that observed during the week. The estimated D parame-
ters clearly indicate the subdiffusive behavior of the weekend

temperature time series. The procedure presented in Sec. III
was used and the examined time series were divided into two
vectors: lengths of constant time periods and time series that
remained after removing the constant time periods. On the
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FIG. 5. (Color online) The mean square displacement for temperature recorded by the five sensors in each of four periods (weekday,
weeknight, weekend day, weekend night): sensor 1 (squares), sensor 2 (diamonds), sensor 3 (crosses), sensor 4 (stars), and sensor 5 (circles).
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TABLE III. The estimated D parameter for temperature recorded
by the five sensors.

Sensor Weekday Weeknight Weekend day Weekend night

s1 −0.16 0.04 −0.14 −0.32
s2 −0.09 −0.11 −0.27 −0.37
s3 −0.11 −0.12 −0.20 −0.20
s4 −0.02 −0.16 −0.22 −0.46
s5 −0.05 −0.11 −0.14 −0.26

basis of the constant values, which were realizations of stable
distributions, we estimated the index of stability α. The method
based on the empirical tail behavior of the examined time series
was used. The obtained results are presented in Table V. It was
observed that in each considered case very similar values of the
stability index were obtained. This indicates that the waiting
times, represented by the constant time periods, had the same
α-stable distribution for each sensor.

The structure of dependence was examined for the vectors
that represented the temperature time series after removing
the constant time periods, by analyzing the ACF (as well as
the PACF); see the bottom panel of Fig. 6. Based on that,
it was assumed that all time series could be modeled using
ARIMA(2,1,3) structure. The assumption was valid as shown
by the estimates of the model parameters. The obtained results
are presented in Table VI, using sensor 1 as an example.

The temperature with subdiffusive behavior (i.e., at week-
ends) was also analyzed with two-step discretization (i.e., we

TABLE IV. The parameters of the ARIMA(1,1,2) model for
temperature recorded by sensor 1 in days and nights during the week.
In brackets we present the corresponding confidence intervals for
estimated parameters calculated by using Monte Carlo simulations.

s1 Weekday Weeknight

AR(1) 0.72 −0.8558
[−0.49, 0.95] [−0.92, −0.74]

MA(1) 0.39 −0.98
[−0.83, 0.61] [−1.05, −0.87]

MA(2) −0.27 0.17
[−0.34, 0.15] [0.14, 0.20]

take into consideration every second data point). The MSDs for
data selected in this case are presented in Fig. 7. Moreover, the
D parameter was tested for the temperature at weekends with
two-step discretization and the results of the test are presented
in Table VII. The values of the α parameter for the waiting
times in the case of two-step discretization temperature series
that exhibit subdiffusive behavior, i.e., at weekend nights,
were also checked. The estimated parameters are presented
in Table VIII.

For the two-step discretization the temperature after re-
moving constant time periods can be modeled by using the
ARIMA(1,1,4) time series. This model is appropriate for each
sensor.

The interpretation of results provided by the time series
analysis has to take into consideration the properties of
diffusion processes which occur indoors and the performance
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FIG. 6. (Color online) The autocorrelation function for differenced temperature recorded by the five sensors in each of four periods
(weekday, weeknight, weekend day, weekend night): sensor 1 (squares), sensor 2 (diamonds), sensor 3 (crosses), sensor 4 (stars), and sensor 5
(circles). Let us mention that for temperature at the weekends (day and night) we consider the data after removing constant time periods.
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TABLE V. The index of stability α of the inverse stable subordina-
tor estimated for subdiffusive models (temperature at weekends—day
and night) calculated on the basis of constant time periods observed
in appropriate time series.

Weekend Weekend
Sensor day night

s1 0.55 0.54
s2 0.53 0.51
s3 0.59 0.4
s4 0.52 0.62
s5 0.58 0.52

characteristics of the measurement devices. The classical
diffusion models are based upon processes that are local in
space and do not have any memory of the history of the system.
The mean square displacement in this case is proportional to
the diffusion coefficient and it increases linearly with time.
The diffusion equations assume a homogeneous environment
surrounding the diffusing particle. In many systems that
exist, for example, indoors, transport phenomena cannot be
described on this basis. Simple models based on Brownian
motion or Fickian diffusion are likely to fail in explaining
mobility through the interior. Therefore different approaches
are needed.

Diffusion in more complex systems is called anomalous
[35,36]. Indoors, this phenomenon can appear as subdiffusion.
It is hindered and exhibits a nonlinear relationship with
time. The mean square displacement in this process is
proportional to a fractional power of time that is less than
1. Subdiffusion inside rooms can result from several causes. It
is a frequent phenomenon in crowded media. Fundamentally,
subdiffusion arises when slow processes hinder the mobility
of molecules in space and time. Inside rooms, molecules of air
encounter a wide variety of obstacles. The disordered indoor
environment with the heterogeneous, irregular geometry of the
space domain generate conditions where diffusion is hindered
due to collisions of particles and gas molecules with inert,
mobile or immobile obstacles and transient capture of the

TABLE VI. The parameters of the ARIMA(2,1,3) model for time
series that describe the temperature after removing constant time
periods recorded by sensor 1 in days and nights during the weekend.
In brackets we present the corresponding confidence intervals for
estimated parameters calculated by using Monte Carlo simulations.

Weekend Weekend
s1 day night

AR(1) −0.19 0.54
[−0.61, 0.25] [−0.22, 1.73]

AR(2) −0.65 −0.29
[−0.84, −0.24] [−0.89, 0.75]

MA(1) −0.50 −0.07
[−0.95, −0.05] [−0.86, 1.17]

MA(2) −0.23 −0.03
[−0.57, 0.27] [−0.32, 0.33]

MA(3) 0.08 0.06
[−0.14, 0.29] [−0.15, 0.25]

diffusive molecules by traps (e.g., weak binding) with broadly
distributed trapping times. The lifetimes of these cages may
be broadly distributed at high obstacle density [37]. In the
presence of moderate concentrations of obstacles, diffusion
is anomalous over short distances and normal over long
distances. For anomalous diffusion, the measured diffusion
coefficient depends on the size of the obstacles relative to the
size of the observation volume, as well as the observation
time. For instance, if the obstacles are smaller than the
observation volume, then for short observation times the
diffusion generally appears normal as the particles do not
interact with the obstacles. At medium observation times the
diffusion is anomalous as the particle traces are obstructed
by the obstacles. At long times the effect of obstruction
is averaged out, and apparently normal diffusion is again
observed, but the observed diffusion coefficient is lower than
at shorter times. It is expected that the anomalous regime
might be crucially dependent on the dynamics (or the lack
of dynamics) of the obstacles themselves. Indeed, when the
obstacles are allowed to diffuse even at a much slower rate
than the tracked molecule, the transient anomalous regime
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FIG. 7. (Color online) The mean square displacement for temperature series with two-step discretization recorded by the five sensors on
weekend days and weekend nights: sensor 1 (squares), sensor 2 (diamonds), sensor 3 (crosses), sensor 4 (stars), and sensor 5 (circles).
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TABLE VII. The estimated D parameter for temperature series
with two-step discretization recorded by the five sensors on weekend
days and weekend nights.

Sensor Weekend day Weekend night

s1 −0.05 −0.25
s2 −0.1 −0.31
s3 −0.1 −0.13
s4 −0.1 −0.42
s5 −0.06 −0.16

is predicted to disappear rapidly. Additionally, subdiffusion is
caused by complex physical and/or chemical interactions, e.g.,
the (presence of) binding phenomena. Long temporal and/or
spatial correlations might exist due to trapping of particles in
coherent structures like vortices, or due to advection by zonal
flows. In real conditions, indoor air is a turbulent system. A
turbulent flow can be viewed as a nonlinear system out of
thermodynamical equilibrium. Thus, in this medium, unsteady
regular structures like vortices are generated on many different
length scales. Trapping molecules in coherent structures and
the presence of zonal flows will lead to “memory” effects and
to non-Markovian behavior.

It should be noted that the results of this work re-
quired consideration of the performance characteristics of
the measurement devices, because recorded data result from
direct interaction of air molecules with the sensors. Par-
ticular attention must be paid to sensitivity, resolution of
measurements, frequency of sampling, and intervals between
samples. Appropriate sensitivity and resolution are necessary
to detect small temporal changes of temperature and relative
humidity. In this study, the analysis of time series was based
on discrete signals. They were in the form of sequences of
measurement results. The sampling rate during measurements
could be adjusted, but we applied a fixed one. The frequency
of sampling and the time interval between measurements had
to be suitably selected. Turbulent flow, which exists in most
room flow situations, involves a mixture of eddies of widely
different sizes. In order to accurately capture the behavior of
the smallest eddies, fine sampling is required. A high frequency
of sampling allows for the detection of cages with a short
waiting time. A too long time interval between measurements
results in a decrease of subdiffusion events, as observed.

TABLE VIII. The index of stability α of the inverse stable
subordinator estimated for the subdiffusive model from the two-step
discretization (temperature series, weekend night).

Sensor Weekend night

s1 0.49
s2 0.42
s3 0.35
s4 0.54
s5 0.4

V. CONCLUSIONS

In this paper stochastic methods were employed for
studying the dynamics and structure of dependencies in
microclimate data. Temperature and humidity time series were
investigated. The examined data represented indoor conditions
in a modern office building. They were sampled in five open
plan offices over a period of nearly a week.

The first important result of this work was the fact that
all temperature time series exhibited a transition between
diffusive and subdiffusive behavior. At the same time, all
humidity time series consistently showed diffusive character.
The two parameters are usually considered as behaving in
the same manner, just inversely correlated. The change of
dynamics was linked with the switch between the week and the
weekend building operation regimes. It is extremely interesting
that only one of the two parameters confirmed this. The reason
could be a completely different physical nature of the two
quantities.

The second conclusion from our analysis was that all
humidity time series had the same structure of dependencies.
All temperature time series which exhibited the same dynamics
also had the same dependency structure. However, the com-
plexity of adequate ARIMA models increased in the following
manner: ARIMA(0,1,2) for the humidity data, ARIMA(1,1,2)
for the diffusive temperature data, and ARIMA(2,1,3) for the
subdiffusive temperature data where the traps were removed.
This order corresponds to the increasing complexity of the
structure of the dependencies of the investigated microclimate
parameters.

The third major observation was that despite the common
dynamics and structure of dependencies the distinct time
series must be individually modeled, if the actual values of
the investigated parameters are needed. We showed that the
estimated parameters of corresponding models differed and
their confidence intervals seldom overlapped.

The conclusions obtained are important for indoor micro-
climate investigations. The analysis allows us to hypothesize
about the existence of large and small scale factors influencing
conditions in indoor air. Large scale factors would show
consistent characteristics in space and time (across various
locations in the building and over considerable periods of
time). They could be considered responsible for the dynamics
and for the dependence structure of the microclimate parame-
ters. Based on our work, one should remember that physically
different parameters may exhibit distinctive characteristics in
that respect. There are also other, local factors. Their levels,
even their existence, change in space and in time. The influence
of these factors on microclimate parameters would be observed
in terms of the individual character of the time series, as we
have shown that different sets of parameters are required to
represent their variability.
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