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The stochastic analysis of complex reaction networks is a difficult problem because the number of microscopic
states in such systems increases exponentially with the number of reactive species. Direct integration of the
master equation is thus infeasible and is most often replaced by Monte Carlo simulations. While Monte Carlo
simulations are a highly effective tool, equation-based formulations are more amenable to analytical treatment
and may provide deeper insight into the dynamics of the network. Here, we present a highly efficient equation-
based method for the analysis of stochastic reaction networks. The method is based on the recently introduced
binomial moment equations [Barzel and Biham, Phys. Rev. Lett. 106, 150602 (2011)]. The binomial moments
are linear combinations of the ordinary moments of the probability distribution function of the population sizes
of the interacting species. They capture the essential combinatorics of the reaction processes reflecting their
stoichiometric structure. This leads to a simple and transparent form of the equations, and allows a highly
efficient and surprisingly simple truncation scheme. Unlike ordinary moment equations, in which the inclusion
of high order moments is prohibitively complicated, the binomial moment equations can be easily constructed
up to any desired order. The result is a set of equations that enables the stochastic analysis of complex reaction
networks under a broad range of conditions. The number of equations is dramatically reduced from the exponential
proliferation of the master equation to a polynomial (and often quadratic) dependence on the number of reactive
species in the binomial moment equations. The aim of this paper is twofold: to present a complete derivation of
the binomial moment equations; to demonstrate the applicability of the moment equations for a representative
set of example networks, in which stochastic effects play an important role.
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I. INTRODUCTION

Reaction networks appear in many scientific contexts,
including chemistry [1], biology [2–4], and ecology [5]. These
systems are composed of a set of reactants, such as chemical
compounds, proteins, or animal species, which undergo a
set of reactions, such as chemical binding, protein-protein
interactions, and predation. The dynamics of such networks
can be characterized by the time dependent copy numbers or
concentrations of the interacting species. In many cases, the
systems are of macroscopic dimensions and the interacting
species appear in large quantities. Under these conditions,
the law of large numbers applies and fluctuations in the
population sizes or copy numbers are negligible. As a result,
these systems can be analyzed using rate equation models
that incorporate the law of mass-action kinetics within the
mean-field approximation. In this formulation, the discrete
nature of the interacting species and the fluctuations in their
copy numbers are ignored.

Consider a reaction network in a microscopic system,
such as a biological cell or a small accretion surface. The
copy numbers of reactive atoms and molecules in such a
system may be small and exhibit large fluctuations [6–10].
As a result, rate equations fail and the simulation of these
reactions requires stochastic methods based on the master
equation [11,12]. The master equation can be solved either
by direct numerical integration [13–15] or by Monte Carlo
(MC) simulations [16–18]. The master equation provides the
probability distribution of the copy numbers of the interacting
species, from which the average population sizes can be
obtained. In certain cases, the master equation can be solved
using a generating function [19–22]. The set of coupled

ordinary differential equations is then transformed into a single
partial differential equation for the generating function. This
equation is solved using numerical methods. In a few cases,
it can be solved analytically [23,24]. The master equation can
also be approximated using the Fokker-Planck equation [25].
This is a partial differential equation in which the population
sizes of the reactive species are represented by continuous
variables [26]. The methods described above are useful for
simple reaction networks, which involve a small number
of interacting species. However, as the number of species
increases, the number of equations in the master equation
quickly proliferates. This makes the master equation infeasible
for complex networks including a large number of interacting
species [13,14].

MC methods enable the analysis of larger and more com-
plex networks. In particular, the Gillespie algorithm [16,17]
has become the method of choice for the simulation of
stochastic chemical, biological, and ecological networks. This
is a kinetic Monte Carlo approach, namely, an algorithm
that generates “paths” of the stochastic process [27]. The
basic idea is simple. At each time step, the next move is
drawn from all possible processes that may take place at that
point, where each step is endowed with a suitable rate. The
time elapsed until the next move is drawn from a Poisson
distribution, the average of which is determined by these
rates. After each move, the list of available processes is
updated and their new rates are evaluated. This method is
remarkably efficient in integrating over an exponentially large
phase space. The availability of ever more powerful computers
has enabled researchers to simulate networks of increasing
size and complexity and to analyze them in greater detail.
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Improved variants of the algorithm and related methods were
developed [28–35]. Some of these improvements are based on
the the tau-leaping method [30,36] in which several reactions
take place in a single time interval. Other methods are based
on the distinction between fast and slow processes, which are
treated differently [37–39]. MC methods suffer from several
drawbacks. In order to extract the expectation values of desired
moments and correlations, one needs to perform statistical
analyses over large amounts of noisy data. This may become
impractical for highly complex systems. Also, the combination
of fast and slow processes tends to reduce the efficiency of the
simulations.

Recently, we have developed an approach for the dimen-
sional reduction of the master equation, referred to as the
multiplane method. This reduction extends the applicability of
the direct integration of the differential equations. The multi-
plane method, which was developed in the context of chemical
reactions on surfaces, provides a significant reduction in the
number of equations [40–42]. In the multiplane method, one
breaks the network into a set of maximal fully connected
subnetworks (maximal cliques). Lower-dimensional master
equations are constructed for the marginal probability distri-
butions associated with these cliques, with suitable couplings
between them. This reduces the number of equations and
extends the feasibility of the stochastic analysis. In the reduced
multiplane method, one breaks the network into minimal
cliques, including only pairs of interacting nodes, lowering
even further the number of equations [43].

Another recently developed method, based on moment
equations, provides an efficient analysis of stochastic reaction
networks [44–46]. This method exhibits crucial advantages
over the current simulation methodologies. As opposed to
the exponential proliferation of the master equation, the
number of moment equations rises only polynomially with
the number of reactive species. In fact, for a wide range of
conditions, the number of equations is reduced to merely one
equation for each reactive species (node) and one equation
for each reaction (edge). Moreover, for any given network,
the moment equations, up to second order moments, can be
constructed using a diagrammatic scheme [46]. This enables
one to automate the construction of the set of equations, a
feature which is essential in the case of complex networks.
Furthermore, the moment equations are linear in terms of the
moments. Thus, the stability and convergence properties can be
easily controlled and the steady state solution can be obtained
by standard algebraic methods. In the original formulation
of the moment equations beyond a single species [45,46],
only first and second order moments were included. It was
shown that even at this rather low order, the equations are still
accurate for a surprisingly wide range of conditions. However,
in this formulation, only simple chemical processes of the form
X1 + X2 → X3 were accounted for. The moment equations
were used for the analysis of a reaction network that takes
place on the surfaces of interstellar dust grains and leads to
the formation of water ice and methanol through cascades of
hydrogen addition reactions [45,46]. In this network, water ice
is formed by the hydrogenation of oxygen atoms, through the
reactions H + O → OH and H + OH → H2O. Water ice
on interstellar grains also forms by other reaction channels,
through the hydrogenation of O2 and O3 molecules [47–49].

An interesting feature of these networks is the competition
between the hydrogenation processes and the reaction H +
H → H2 over the limited supply of hydrogen atoms. The
kinetic properties of these networks are highly sensitive to
the physical conditions and particularly to the temperature of
the grains.

In a broader perspective, reaction networks may exhibit
a more complicated behavior. Certain reactions may lead to
several products and may take different reaction paths. First
order reactions, where a single reactant dissociates into a set
of other species, may also be included. In addition, processes
such as catalysis, various forms of regulation, predation, com-
petition for limited resources, as well as positive and negative
feedback, give rise to a richer and more complicated dynamics
in these interaction networks. In the formulation presented
in Refs. [44–46], the moment equations can not account for
some of these processes. Also, while in the context of chemical
networks reactions involving more than two reactants are often
ignored, in a broader context, the inclusion of multibody
reactions is sometimes important [50]. Moreover, even for the
simple reactions considered in Refs. [45,46], there are cases
where moments of order higher than two must be included for
the moment equations to provide meaningful results. The prob-
lem is that the equations for such higher order moments lose
their standard form. The diagrammatic formulation no longer
applies, and the resulting equations are tediously elaborate.

In this paper, we present a generalized formulation of the
moment equations, written in terms of the binomial moments,
introduced in Ref. [51]. The binomial moments, as opposed
to ordinary moments, have a simple and intuitive physical
meaning, which captures the structure of the reactions in
the network. They lead to a transparent and easily writable
form of the equations. They also enable a simple and highly
efficient closure condition for the equations. As opposed to
other formulations of the moment equations [52,53] which
include only first and second moments, here the truncation
can be extended to moments of any desired order, without the
need for repeated summations over the master equation.

The aim of this paper is twofold: first, to present the
complete derivation of the binomial moment equations from
the master equation; second, to demonstrate the applicability
of the moment equations to several representative examples
of model networks. The example networks are ordered with
increasing levels of complexity. The first network consists of a
single species and a simple annihilation reaction of n species.
The second network involves two species and a reversible
dimerization reaction. The third example is a complex reaction
network that involves 10 species, which undergo a complex
set of reactions. These networks include a large variety of
processes that appear in realistic systems and exemplify the
structure and dynamics of the binomial moment equations that
describe these systems.

The paper is organized as follows. In Sec. II, we present
the basic concepts of reaction networks and their modeling
using rate equations. The master equation for such networks
is presented in Sec. III. In Sec. IV, we derive the binomial
moment equations from the master equation. In Sec. V, the
binomial moment equations are applied to the analysis of
several stochastic networks of increasing complexity. The
results are summarized and discussed in Sec. VI.
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II. REACTION NETWORKS

Consider a chemical reaction network, consisting of J

molecular species Xi , i = 1, . . . ,J . The molecules may
undergo reactions of the form

J∑
i=1

niXi →
J∑

j=1

mjXj , (1)

where the stoichiometric coefficients ni and mi are integers.
The order of the reaction is given by n = ∑J

i=1 ni , namely,
the number of reactants on the left-hand side of Eq. (1).
In the context of chemical reactions, one often omits reactions
of order higher than n = 2. However, in the formulation
presented below there is no such limitation. The reaction
appearing in Eq. (1) can be expressed in a vector form as

�n → �m, (2)

namely, a configuration of molecules with stoichiometric
coefficients given by �n, reacts to form a new configuration
given by �m. These vectors are J dimensional. The rate
constant for the configuration �n to react is given by T�n
(s−1). Certain reactions may take several reaction paths with
different probabilities or branching ratios. The probability
that the reaction will result in the configuration �m is denoted
by P �m

�n . These probabilities satisfy
∑

�m P �m
�n = 1. Thus, the rate

constant for the reaction �n → �m to occur is given by T�nP �m
�n .

The mean-field rate equations are expressed in terms
of the average population sizes 〈Ni〉. The total reaction
rate for the reaction �n → �m (for all choices of �m) is
proportional to the number of different ways one can gather a
set of reactants given by �n. For a macroscopic system with an
average of 〈Ni〉 copies of Xi , where 〈Ni〉 � ni , this number is
well approximated by

∏J
i=1 〈Ni〉ni /ni!. The rate equations for

the time dependent average population sizes take the form

d〈Ni〉
dt

=
∑
�n �m

miT�nP �m
�n

(
J∏

j=1

〈Nj 〉nj

nj !

)

−
∑

�n
niT�n

(
J∏

j=1

〈Nj 〉nj

nj !

)
, (3)

where i = 1, . . . ,J . The first term accounts for positive
contributions of the reactions to 〈Ni〉, while the second term
accounts for the negative contributions. For each reaction
of the form �n → �m, the population of Xi is reduced by ni

molecules and replenished by mi molecules. Equation (3)
provides accurate results as long as the system is large and
the average population sizes satisfy 〈Ni〉 � 1. However, for
small systems, where the average population sizes are of
order unity or less, fluctuations in the populations of the
reactive species become significant. These fluctuations are not
accounted for by the rate equations, and stochastic methods are
required.

III. MASTER EQUATION

In the stochastic analysis, one describes the microscopic
state of the system by the vector �N = (N1, . . . ,NJ ), where

Ni is the number of copies of species Xi . In the following,
we introduce a combinatorial approach, which allows us
to express the master equation and the moment equations
in a transparent form. Let �v = (v1, . . . ,vJ ) be a vector of
integers. It can be expressed as a linear combination of the J

basis vectors �ei = (0, . . . ,vi = 1, . . . ,0). We denote by Q�v a
combination of molecules consisting of exactly vi copies of the
species Xi .

Consider a reaction network in the state �N . The number of
Q�v combinations that exist in this system is given by

W ( �N,�v) =
( �N

�v
)

, (4)

where ( �N
�v

)
=

J∏
i=1

(
Ni

vi

)
, (5)

and ( Ni

vi
) is the binomial coefficient. To illustrate the motivation

for this definition, consider the reaction �n → �m. It occurs
at a rate proportional to T�nP �m

�n , and to the number of Q�n
combinations which are present in the system, given by
W ( �N,�n).

In writing the master equation, we use the increment
operator defined by S �uf ( �N) = f ( �N + �u), where f is any
function of the state �N . For example, the reaction �n → �m can
be written as �N → S �mS−�n �N . Let P ( �N ) represent the time
dependent probability for the system to be in the state �N . The
master equation for this system takes the form

dP ( �N )

dt
=

∑
�n, �m

T�nP �m
�n [S �nS− �m − I]W ( �N,�n)P ( �N), (6)

where I is the identity operator. In this equation, one sums over
all the reactions �n → �m which may take place in the system.
These reactions yield a positive contribution to P ( �N ) if the
state of the system is �N + �n − �m, and a negative contribution
to P ( �N ) if the system is in the state �N . The truncation of
the master equation is achieved by setting upper cutoffs Ci ,
i = 1, . . . ,J , such that P ( �N ) = 0 if Ni > Ci for any value of i.
The number of coupled equations is thus NE = ∏J

i=1(Ci + 1).
This number grows exponentially with the number of reactive
species J . This feature severely limits the applicability of the
master equation to complex reaction networks [13,14].

IV. BINOMIAL MOMENT EQUATIONS

A more compact description of stochastic reaction networks
can be obtained using moment equations [52]. These equa-
tions, derived by tracing over the master equation, consist of
ordinary differential equations for the time derivatives of the
moments 〈Nk1

1 . . . N
kJ

J 〉, where ki are integers. The order of a
certain moment is given by k = ∑J

i=1 ki . The difficulty with
the moment equations is that higher order moments appear on
the right-hand sides of these equations. To obtain a closed set
of equations, one needs to apply a suitable truncation scheme,
in which the higher order moments are expressed in terms of
low order moments [44–46,52,53]. In practice, the truncation
is typically done at the level of third order moments, namely,
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only first and second order moments are taken into account.
Making the truncation at higher orders turns out to be difficult
even for relatively simple networks.

Here, we present a different formulation of the moment
equations, based on the binomial moments, introduced in
Ref. [51]. The binomial moments are linear combinations
of the moments of P ( �N ) that capture the structure of the
reactions that take place in the system. Due to this property,
the equations we obtain for these binomial moments take
a simple and transparent form up to any desired order and
can be easily constructed. Unlike the ordinary moments, the
binomial moments tend to decrease with increasing order. This
enables us to use a particularly simple truncation scheme where
moments beyond a specified order are neglected.

Consider a reaction network described by the probability
distribution P ( �N ). The binomial moment 〈W�v〉 is defined as
the average number of combinations of the formQ�v that appear
in the system. It is given by

〈W�v〉 =
∑

�N
W ( �N,�v)P ( �N ). (7)

To understand the meaning of the binomial moments,
consider the case where �v = �ei . Here, the corresponding
binomial moment 〈W�ei

〉 is the average number of combinations
consisting of a single copy of the species Xi . This is simply
the average population size 〈Ni〉. In case that �v = �ei + �ej ,
the corresponding moment is 〈W�v〉 = 〈NiNj 〉, which stands
for the average number of Xi-Xj pairs present in the system.
Note that for �v = 2�ei , the corresponding binomial moment is
〈W�v〉 = (〈N2

i 〉 − 〈Ni〉)/2. Similarly, the number of Xi triplets
is given by 〈W�v〉 = (〈N3

i 〉 − 3〈N2
i 〉 + 2〈Ni〉)/6, where �v =

3�ei . The order of the binomial moment 〈W�v〉 is

k =
J∑

i=1

vi. (8)

The physical meaning of a binomial moment 〈W�v〉 of order k

is the average number of k-plets with a configuration given by
�v in the system.

Consider a system in the state �N = �n undergoing the
reaction �n → �w. This reaction generates wi new Xi molecules,

thus adding ( �w
�m ) new Q �m combinations to the system. The total

rate by which reactions of the form �n → �w (for all possible
choices of �w) contribute to the number of Q �m combinations is
thus given by

B �m
�n =

∑
�w

T�nP �w
�n

( �w
�m

)
. (9)

To obtain the binomial moment equations, we use Eq. (7) to
express the time derivatives of the moments 〈W�v〉 in the form

d〈W�v〉
dt

=
∑

�N
W ( �N,�v)

dP ( �N )

dt
. (10)

The time derivative of the probability P ( �N ) is taken from the
master equation [Eq. (6)]. In order to apply the summation, we

first introduce the combinatorial equalities

S �u
( �N

�v
)

=
∑

�w

( �N
�v − �w

)( �u
�w
)

,

S−�u
( �N

�v
)

=
( �N

�u
)−1(�v + �u

�u
)( �N

�v + �u
)

, (11)

( �N
�n
)( �N

�v
)

=
∑

�w

( �n
�w
)(�v + �w

�n
)( �N

�v + �w
)

.

The proofs of these equalities are provided in the Appendix.
Inserting the time derivative of P ( �N ) into Eq. (10) leads to

d〈W�v〉
dt

=
∑
�n, �m

T�nP �m
�n

∑
�N

{( �N
�v
)

[S �nS− �m − I]

( �N
�n
)

P ( �N )

}
.

(12)

By changing the order of terms in the summation and switching
the signs of the increment operators, we obtain

d〈W�v〉
dt

=
∑
�n, �m

T�nP �m
�n

∑
�N

{( �N
�n
)

P ( �N )[S−�nS �m − I]

( �N
�v
)}

.

(13)

Using the three equalities of Eq. (11), we write

d〈W�v〉
dt

=
∑
�n, �m

T�nP �m
�n

∑
�N

{
P ( �N )

[∑
�w

( �m
�w
)(�v + �n − �w

�n
)

×
( �N

�v + �n − �w
)

−
∑

�w

( �n
�w
)(�v+ �w

�n
)( �N

�v+ �w
)]}

.

(14)

We now collect all the terms, and apply the summation over
�N to express the right-hand side in terms of the binomial

moments. The equation takes the form

d〈W�v〉
dt

=
∑
�n, �w

[∑
�m

T�nP �m
�n

( �m
�w
)] [(�v + �n − �w

�n
)

〈W�v+�n− �w〉
]

−
∑
�n, �w

(∑
�m

T�nP �m
�n

)( �n
�w
)(�v + �w

�n
)

〈W�v+ �w〉. (15)

Using Eq. (9), and the fact that
∑

�m P �m
�n = 1, the resulting

binomial moment equation is

d〈W�v〉
dt

=
∑
�n, �m

[
B �m

�n

(�v + �n − �m
�n

)
〈W�v+�n− �m〉

− T�n

( �n
�m
)(�v + �m

�n
)

〈W�v+ �m〉
]

, (16)

where, for the sake of convenience, we exchanged the vectors
�m and �w in the summation. The first term accounts for positive
contributions of the reactions to 〈W�v〉, while the second term
accounts for the negative contributions. We first refer to the
positive contributions. Consider a single combinationQ�v+�n− �m.
There are on average 〈W�v+�n− �m〉 such combinations in the
system. For each one of these combinations, the reaction
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�n → �m produces a new Q�v combination, so 〈W�v〉 increases.
The rate in which it increases is given by the product of
the rate constant B �m

�n and the binomial coefficient ( �v + �n − �m
�n ).

We now refer to the negative contributions. Consider the
combination Q�v+ �m, which undergoes a reaction of the form
�n → �w, for any possible choice of �w. The overall rate of these
reactions is given by T�n( �v + �m

�n ). Each time such a reaction takes
place, a single combination Q�n is removed from the system.
The removed combination Q�n can be decomposed into Q �m
and Q�n− �m. Note that there are ( �n

�m ) different possibilities to
perform this decomposition of Q�n. When Q �m is removed, the
combination Q�v+ �m is replaced by Q�v . This Q�v combination is
then eliminated by the subsequent removal of Q�n− �m.

Equation (16) is not in a closed form because higher order
moments appear on the right-hand side of each equation.
However, the binomial moments tend to decrease as their order
increases. To demonstrate this feature, consider a binomial
moment 〈W�v〉 of order k. It represents the average number of
appearances of a certain combination Q�v which consists of k

molecules in the system [Eq. (8)].
In small systems, where the average copy numbers are

small, 〈W�v〉 tends to decrease as k increases. To demonstrate
this feature, consider the binomial moment

〈W�v〉 =
∞∑

N1=0
..

NJ =0

(
N1

v1

)(
N2

v2

)
. . .

(
NJ

vJ

)
P ( �N ). (17)

The product of the binomial coefficients on the right-hand side
vanishes for all cases in which Ni < vi , for at least one value
of i. Therefore, we can rewrite the sum as

〈W�v〉 =
∞∑

N1=v1
..

NJ =vJ

(
N1

v1

)(
N2

v2

)
. . .

(
NJ

vJ

)
P ( �N ). (18)

For a moment 〈W�v〉 of order k, the sum in Eq. (7) includes only
terms for which

∑J
i=1 Ni � k. In the small system limit, P ( �N )

quickly decreases as the Ni’s are increased. Therefore, the
binomial moments quickly decrease as their order increases.

This property enables us to use the following truncation
scheme. We choose a cutoff C such that 〈W�v〉 is set to zero
whenever k > C. The number of different binomial moments
of order k is given by ( k + J − 1

k ). Thus, the number of binomial
moment equations, after the truncation, is

NE =
C∑

k=1

(
k + J − 1

k

)
. (19)

While the number of equations in the master equation
grows exponentially with J , the number of binomial moment
equations scales only polynomially with J . Moreover, in
practice one can obtain accurate results using surprisingly low
values of the cutoffs. In the earlier version of this formulation,
it was shown that for a broad range of conditions, the cutoff
C = 2 is sufficient [45,46]. In this case, the equations include
first order moments that account for the average copy numbers

and second order moments that account for the number of pairs
of species Xi and Xj in the system. In cases where a cutoff of
C = 2 is not sufficient, one may raise the cutoff until accurate
results are obtained. In the small system limit, the required
cutoff is usually low. In the large system limit, stochastic
equations are no longer required and can be replaced by the
rate equations. Somewhat related closure conditions appear in
transport-limited reactions, where the local densities are low.
In these systems, the three-particle correlation functions are
expressed in terms of two-particle correlation functions [54].

To obtain a deeper understanding of the binomial moment
equations, we compare them with the rate equations (3) in the
limit of large populations. The binomial moment equations
for the first moments, which represent the average population
sizes of the different reactive species, take the form

d〈W�ei
〉

dt
=

∑
�n, �m

wiT�nP �m
�n 〈W�n〉 −

∑
�n

niT�n〈W�n〉. (20)

In the deterministic limit, one can write

〈W�v〉 =
〈( �N

�v
)〉

�
J∏

i=1

〈(
Ni

vi

)〉
. (21)

For large populations, this can be further approximated by

〈W�v〉 �
J∏

i=1

〈Ni〉vi

vi!
. (22)

Under these conditions, the binomial moment equations for
the first moments [Eq. (20)] are reduced to the form of the rate
equations [Eq. (3)].

V. APPLICATIONS AND RESULTS

To demonstrate the applicability of the binomial moment
equations, we consider several examples. The first example
is a simple reaction network involving a single reactive
species undergoing an n-body annihilation reaction of the
form X + X + · · · + X → ∅. The second example describes
a dimerization-dissociation reaction in which the resulting
dimer species is also included in the system. In the third
example, we show the applicability of the moment equations
to a complex network consisting of many reactive species and
an intricate pattern of reactions between them.

A. Annihilation processes

Consider a system which includes a single reactive species
X. Here, the state of the system is described by the scalar
value N , which denotes the number of copies of X molecules
present in the system. The reactions in this system, presented
in the form �n → �m, are 0 → 1 (addition of a single molecule,
or ∅ → X) and n → 0 (annihilation of a Q�n combination
consisting of n molecules, or X + X + · · · + X → ∅). The
rates are T0 for the addition process and Tn for the annihilation
process. Each reaction in this system exhibits a single reaction
path, namely, P 1

0 = P 0
n = 1. The only nonzero components of

B �m
�n are B0

0 = T0, B1
0 = T0, and B0

n = Tn. The rate equation

031126-5



BARUCH BARZEL AND OFER BIHAM PHYSICAL REVIEW E 86, 031126 (2012)

[Eq. (3)] for this system takes the form

d〈N〉
dt

= T0 − nTn

〈N〉n
n!

, (23)

where 〈N〉 is the time dependent average population size
of the species X. The first term describes the formation of
X molecules and the second term accounts for the n-body
reactions. The steady state population size is obtained by
setting the time derivative on the left-hand side to zero. The
result is

〈N〉 = [(n − 1)!S]
1
n , (24)

where S = T0/Tn. Since 〈N〉 ∝ S1/n, we refer to S1/n as the
system size. The reaction rate under steady state conditions is
given by

R = Tn

〈N〉n
n!

= T0

n
. (25)

This solution is valid as long as the population size is large, and
the system features deterministic behavior. These conditions
are satisfied in the limit where S � 1. However, in the limit
where S 
 1, the average population size becomes small, and
stochastic effects become important.

In the stochastic regime, the dynamics must be described by
stochastic methods based on the master equation. The master
equation for this system takes the form

dP (N )

dt
= T0 [P (N − 1) − P (N )]

+ Tn

[(
N + n

n

)
P (N + n) −

(
N

n

)
P (N )

]
. (26)

The binomial moments for this system are 〈Wv〉, which
represent the average number of Qv combinations present in
the system. The equation for the moment 〈Wv〉 is

d〈Wv〉
dt

= T0〈Wv−1〉 −
n−1∑
m=0

Tn

(
n

m

)(
v + m

n

)
〈Wv+m〉. (27)

The first term of the equation accounts for the formation pro-
cess. When this process occurs, at a rate T0, each combination
Qv−1, of which there are on average 〈Wv−1〉, turns into a
combination Qv , thus contributing to 〈Wv〉. The second term
accounts for the n-body annihilation process. In this process,
a combination Qv+m is stripped of n molecules. As long
as m < n, this will result in the elimination of a single Qv

combination. The rate for this to occur is proportional to the
rate constant Tn and to the number of Qn combinations, which
is given by ( v + m

n ). Finally, the binomial prefactor ( n

m ) accounts
for the number of ways to choose the first m molecules to
be removed, after which the remaining n − m molecules are
withdrawn from the resulting Qv combination.

In the stochastic limit, where S 
 1, we may assign a strict
cutoff on the binomial moment equations of C = n. According
to this cutoff, binomial moments of order higher than n are set
to zero. The meaning of this cutoff is that we assume that the
appearance of combinations with more than n copies of the
species X in the system is rare. This assumption is valid as
long as the system is sufficiently small. Note that this is the
minimal cutoff one can take without completely terminating

the reaction process. The resulting truncated binomial moment
equations are

d〈W1〉
dt

= T0 − nTn〈Wn〉,
d〈W2〉

dt
= T0〈W1〉 − Tn

(
n

2

)
〈Wn〉,

(28)...

d〈Wn〉
dt

= T0〈Wn−1〉 − Tn〈Wn〉.
The average population size is given by the binomial

moment 〈W1〉, and the reaction rate is given by R = Tn〈Wn〉.
Under steady state conditions, the binomial moment equations
yield

〈W1〉 = n − 1

2
, R = T0

n
. (29)

Note that the reaction rate R is obtained directly from the first
equation in Eqs. (28). This means that extending the truncation
to higher order moments, adding more equations, will not
affect the value of R. Thus, the reaction rate, as obtained from
the moment equations is exact, regardless of the size of the
system. It also agrees with the rate equation result [Eq. (25)].
In contrast, in the stochastic regime, the result for the first
moment 〈W1〉, representing the average population size, does
not agree with the result of the rate equation [Eq. (24)]. In
this regime, where Tn � T0 (S 
 1), the reactions dominate
the behavior of the system. Thus, molecules are formed at a
constant rate of T0, and once there are n molecules present
in the system, a reaction occurs almost instantaneously, and
sweeps the system clean of molecules. The distribution P (N )
is uniform as long as N < n, and vanishes for N � n. The
average population size 〈W1〉 is thus given by Eq. (29).

The binomial moment equations also enable us to obtain
the variance of the population σ 2 = 〈N2〉 − 〈N〉. Using the
binomial moments, this can be expressed as

σ 2 = 2〈W2〉 + 〈W1〉 − 〈W1〉2. (30)

Using Eq. (28), we find that σ 2 = (n2 − 1)/12.
The results obtained above for 〈W1〉, in which the binomial

moment equations were truncated at C = n, are valid only in
the limit S 
 1. To extend the domain of validity of the results,
one needs to add more equations, accounting for higher order
moments. Raising the cutoff of the binomial moment equations
to C = n + 1 provides the first order correction to Eq. (29).
With this truncation, the binomial moment equations become

d〈W1〉
dt

= T0 − nTn〈Wn〉,
d〈W2〉

dt
= T0〈W1〉 − Tn

(
n

2

)
〈Wn〉 − Tnn(n + 1)〈Wn+1〉,

(31)...

d〈Wn+1〉
dt

= T0〈Wn〉 − Tn(n + 1)〈Wn+1〉.
Here, the steady state population size is

〈W1〉 = n − 1

2
+ S, (32)
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which includes a first order correction in terms of S. The
variance obtained from the moment equations with this
truncation is

σ 2 = n2 − 1

12
+

(
3n − 1

2

)
S − S2. (33)

The next order correction can be obtained by adding the
equation for 〈Wn+2〉. This leads to

〈W1〉 = n − 1

2
+ (n + 1)T0

(N + 1)Tn + nT0

� n − 1

2
+ S − n

n + 1
S2. (34)

The analysis above demonstrates the fact that unlike the
ordinary moment equations, in the binomial moment equations
it is straightforward to add higher order moments until
sufficiently accurate results are obtained.

In Fig. 1, we present results for a system that exhibits a
three-body annihilation reaction, namely, n = 3. We show the
average population size 〈W1〉 versus S, as obtained from the
binomial moment equations for different cutoffs. The master
equation results are also shown (solid line). For a cutoff of
C = 3 (circles), the results of the binomial moment equations
coincide with those of the master equation in the limit of
S 
 1. As the cutoff is raised to C = 4 (squares), C = 5
(triangles), and C = 6 (diamonds), the range of validity of the
binomial moment equations is extended. Finally, for a cutoff of
C = 30 (+), the binomial moment equation results agree with
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FIG. 1. (Color online) The average population size 〈W1〉 vs the
system size S for a three-body annihilation reaction as obtained from
the binomial moment equations with a cutoff of C = 3 (circles),
C = 4 (squares), C = 5 (triangles), C = 6 (diamonds), and C = 30
(+). For small systems, the results are in perfect agreement with
those obtained from the master equation (solid line). By raising the
cutoff, we obtain accurate results from the moment equations for a
wider range of system sizes. Beyond the cutoff of C = 5 or 6, the
rate equations can be used (dashed line). A cutoff of 30 is sufficient
to cover the entire displayed range. In the small system limit, the rate
equations deviate significantly, and the binomial moment equations
are needed.

the master equation for the entire range of parameters that is
displayed. The rate equation results (dashed line) are accurate
only in the limit where S � 1, but show significant deviations
in the stochastic regime, where S < 1. Note that already for
C = 6 a smooth convergence to the rate equation results is
obtained. Thus, in practice, for this system, it is sufficient to
include merely five or six equations. If the system requires
more equations than that, it is already safe to use the rate
equations. To appreciate the efficiency of the binomial moment
equations, we focus on the limit where S � 1, shown on the
right-hand side of Fig. 1. In this limit, the average population
reaches approximately 〈W1〉 = 60. Still, the binomial moment
equations achieve accurate results even though the cutoff was
set only at C = 30. This exemplifies that using the binomial
moment equations with the closure condition proposed here
allows one to choose very restrictive cutoffs, and obtain valid
results even with a relatively small amount of equations.

B. Dimerization reaction

The next example we consider is the dimerization-
dissociation system. This system includes two species, X1 and
X2, undergoing the following reaction:

X1 + X1 � X2. (35)

Using the vector notation, this system is described by two
reactions: 2�e1 → �e2 with the rate constant T2�e1 = α, and �e2 →
2�e1 with the rate constant T�e2 = β. The rate equations for this
system take the form

d〈N1〉
dt

= −α〈N1〉2 + 2β〈N2〉,
(36)

d〈N2〉
dt

= 1

2
α〈N1〉2 − β〈N2〉,

where 〈N1〉(t) and 〈N2〉(t) are the average population sizes of
X1 and X2, respectively. Note that the total number of individ-
ual copies of X1, whether single or dimerized, is conserved.
This is expressed in the rate equations by the conservation
law dN0/dt = 0, where N0 = 〈N1〉 + 2〈N2〉 is the overall
amount of X1 molecules, determined by the initial conditions
of the system. The time dependent solution of Eq. (36) can be
obtained by separation of variables. It is given by

〈N1〉(t) = −β + ω

2α
+ ωe−ω(t−t0)

α(1 − e−ω(t−t0))
, (37)

where ω =
√

β2 + 4αβN0 and t0 is determined by the initial
conditions of the system. The relaxation time is τ = 1/ω, and
the steady state populations are

〈N1〉 = −β + ω

2α
, 〈N2〉 = 2αN0 + β − ω

4α
. (38)

As long as N0 � 1, the system obeys the law of mass
action kinetics, and the rate equations apply. However, when
N0 is of order unity, the system is stochastic and the rate
equations are no longer reliable. To account for the stochas-
ticity, we refer to the moment equations. The nonvanishing
components of B �m

�n are B0
2�e1

= α, B
�e2
2�e1

= α, B0
�e2

= β, B
�e1
�e2

=
2β, and B

2�e1
�e1

= β. The binomial moment equations for the
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dimerization-dissociation system take the form

d〈W�v〉
dt

= α

(�v + 2�e1 − �e2

2�e1

)〈
W�v+2�e1−�e2

〉 + 2β

(�v + �e2 − �e1

�e2

)

× 〈
W�v+�e2−�e1

〉 + β

(�v + �e2 − 2�e1

�e2

)〈
W�v+�e2−2�e1

〉
−

[
α

( �v
2�e1

)
+ β

( �v
�e2

)]
〈W�v〉 − 2α

(�v+�e1

2�e1

)〈
W�v+�e1

〉
.

(39)

Here, the truncation of the equations derives from the con-
servation of N0, leading to 〈W�v〉 = 0 for any vector �v where
v1 + 2v2 > N0. Note that this truncation is exact since for a
system with overall N0 copies of X1 there can not be any
combinations Q�v that do not satisfy the above condition.

For N0 = 2, there are three nonvanishing binomial mo-
ments 〈W�e1〉, 〈W2�e1〉, and 〈W�e2〉. The equations for these
moments are

d
〈
W�e1

〉
dt

= 2β
〈
W�e2

〉 − 2α
〈
W2�e1

〉
,

d
〈
W2�e1

〉
dt

= β
〈
W�e2

〉 − α
〈
W2�e1

〉
, (40)

d
〈
W�e2

〉
dt

= α
〈
W2�e1

〉 − β
〈
W�e2

〉
.

Here, two conservation laws emerge. The first conservation
law is 〈W�e1〉 + 2〈W�e2〉 = N0, which is equivalent to the overall
conservation of the copy number of X1. The second conserva-
tion, which is valid only for N0 = 2, is 〈W2�e1〉 + 〈W�e2〉 = 1. It
reflects the fact that any removal of X1 pairs from the system
must result in the addition of an X2 dimer and vice versa.
Using these two conservation laws, Eq. (40) reduces to a single
equation for 〈W�e1〉:

d
〈
W�e1

〉
dt

= 2β − (α + β)
〈
W�e1

〉
. (41)

This equation gives rise to the time dependent solution

〈
W�e1

〉 = 2β

α + β
+ Ae−(α+β)t . (42)

The relaxation time is τ = 1/(α + β), and the steady state
solution is

〈
W�e1

〉 = 2β

α + β
,

〈
W2�e1

〉 = β

α + β
,

〈
W�e2

〉 = α

α + β
. (43)

The variance σ 2
i , i = 1,2, in the populations of X1 and X2

can be obtained using Eq. (30). It is given by

σ 2
1 = 4αβ

(α + β)2
, σ 2

2 = αβ

(α + β)2
. (44)

The stochastic solution is different from that obtained from
the rate equations. This is because the limitations imposed on
this system due to the discrete nature of the molecules are
overlooked by the deterministic analysis.

To obtain a deeper insight on the effects of the discreteness
in this system, we solve the binomial moment equations for

N0 = 3. The equations for the five nonvanishing moments are

d
〈
W�e1

〉
dt

= 2β
〈
W�e2

〉 − 2α
〈
W2�e1

〉
,

d
〈
W2�e1

〉
dt

= 2β
〈
W�e1+�e2

〉 + β
〈
We2

〉 − α
〈
W2�e1

〉 − 6α
〈
W3�e1

〉
,

d
〈
W3�e1

〉
dt

= β
〈
W�e1+�e2

〉 − 3α
〈
W3�e1

〉
, (45)

d
〈
W�e2

〉
dt

= α
〈
W2�e1

〉 − β
〈
W�e2

〉
,

d
〈
W�e1+�e2

〉
dt

= 3α
〈
W3�e1

〉 − β
〈
W�e1+�e2

〉
,

and the three conservation laws that emerge are〈
W�e1

〉 + 2
〈
W�e2

〉 = N0,
〈
W3�e1

〉 + 〈
W�e1+�e2

〉 = 1,
(46)

4
〈
W�e1+�e2

〉 + 2
〈
W2�e1

〉 − 〈
W�e1

〉 = 3.

Here, the solution under steady state conditions takes the form

〈
W�e1

〉 = 3α2 + 6αβ + 3β2

3α2 + 4αβ + β2
,

〈
W�e2

〉 = 3α2 + 3αβ

3α2 + 4αβ + β2
.

(47)

Consider the limit where α � β. In this limit, the system is
dominated by the process of dimerization. Deterministically,
the system reaches a state where N1 
 N2, and N2 � N0/2
[Eq. (38)]. However, in this limit, for N0 = 3, the stochastic
solution yields 〈W�e1〉 � 〈W�e2〉 � 1. For small values of N0,
the effect of parity plays an important role in the behavior of
the system. Even if the dimerization process is dominant, if the
total number of monomers is odd, there will inevitably remain
at least a single monomer in the system at all times.

In Fig. 2(a), we show the monomer to dimer ratio
η = 〈W�e1〉/〈W�e2〉, as obtained from the binomial moment
equations (circles) versus N0 under steady state conditions.
The results are in perfect agreement with those obtained from
the master equation (solid line). The effect of parity is clearly
observed by the sawtooth structure of the graph. The rate
equation results (dashed line) do not account for this effect.
For large values of N0, the moment equation results coincide
with the rate equations. The parameters used here are α = 2
and β = 1. In Fig. 2(b), we present σ 2

i /N0 versus N0, as
obtained form the moment equations, for i = 1 (circles) and
for i = 2 (squares). The results are in perfect agreement with
those obtained from the master equation (solid lines). As the
system enters the deterministic regime (large values of N0),
the variance becomes small compared to the size of the system
(parametrized by N0).

C. Complex reaction network

Consider the more complex reaction network, presented in
Fig. 3. This network consists of processes involving single
molecules as well as pairs of molecules. The network includes
10 reactive species, 3 zero order reactions, 14 first order
reactions, and 12 second order reactions. The zero order
reactions lead to the formation of X1, X2, and X3 molecules,
where P

�ei

0 = 1/3 for i = 1, 2, and 3. The rest of the species
are formed via first and second order reactions. The first
order reactions include the degradation of each of the reactive

031126-8



STOCHASTIC ANALYSIS OF COMPLEX REACTION . . . PHYSICAL REVIEW E 86, 031126 (2012)

0.5

1

1.5
η

Rate eqs.
MC
BME

2 4 6 8 10 12 14 16 18
N

0

0

0.1

0.2

0.3

0.4

σ i /N
0

i = 1
i = 2

(a)

(b)

FIG. 2. (Color online) (a) The monomer to dimer ratio in the
dimerization-dissociation reaction vs N0, as obtained from the
binomial moment equations (circles). The results are in perfect
agreement with those obtained from MC simulations (solid line).
The sawtooth shape of the graph reflects the parity effect of this
system. This effect is overlooked by the deterministic analysis based
on the rate equations (dashed line). (b) The variance (normalized)
σi/N0 vs N0 as obtained from the binomial moment equations for the
monomer population (circles), and for the dimer population (squares).
The results are in perfect agreement with those obtained from MC
simulations (solid lines).

species, and the dissociation of X6 and X7. The four first order
reactions involving X6 are given by �e6 → 0 (degradation),
�e6 → 2�e1 + �e4, �e6 → �e4 + �e7, and �e6 → �e1 + �e5, where P 0

�e6
=

0.999 and P
2�e1+�e4
�e6

= P
�e4+�e7
�e6

= P
�e1+�e5
�e6

/2 = 0.00025. The two
first order reactions involving X7 are �e7 → 0 and �e7 → 2�e1,
where P 0

�e7
= 0.999, P 2�e1

�e7
= 0.001. The second order reactions

involve all the pairs of nodes connected by edges. The reaction
of X1 and X4 includes three reaction paths �e1 + �e4 → �e5, �e1 +
�e4 → �e3 + �e7, and �e1 + �e4 → 2�e1 + �e3, where P

�e5
�e1+�e4

= 0.25,

P
�e3+�e7
�e1+�e4

= 0.5, and P
2�e1+�e3
�e1+�e4

= 0.25. The paths for the reaction
of X5 and X6 are �e5 + �e6 → 5�e1 + 2�e3, �e5 + �e6 → �e5 + �e6,
and �e5 + �e6 → �e9, with the probabilities 1/4, 1/4, and 1/2,
respectively. This means that when a pair of X5 and X6

molecules encounter each other, they either dissociate into
their fundamental components, remain unchanged, or combine
to form the molecule X9. To characterize the size of the system,
we introduce the parameter S. The rate of zero order reactions
is taken to be proportional to the size of the system, while the
rate of second order reactions is inversely proportional to the
size of the system [55]. We thus set T0 = γ S, T�ei

= δi , and
T�ei+�ej

= aij /S.
For this reaction network, setting the cutoff at C = 3 for

all the species, one obtains (3 + 1)10 ≈ 106 equations in the
master equation. In contrast, the same cutoff set in the binomial
moment equations yields only 285 equations [Eq. (19)]. A
lower cutoff of C = 2 will result in 65 equations in the
binomial moment equations, compared with approximately
6 × 104 equations in the master equation.

FIG. 3. (Color online) Schematic illustration of a chemical
reaction network. The nodes represent the different reactive species,
and the edges represent the reactions between them. Arrows are
drawn from the edges to the reaction products. First order reactions
are represented by arrows emerging from the reacting nodes. In
cases where more than a single reaction path exists, or where
the stoichiometric coefficient of the product is not one, the path
probability and the relevant stoichiometric coefficient appear in
parentheses by the arrows.

In Fig. 4, we show the population sizes of the species
X1, . . . ,X9 versus the system size S, under steady state
conditions, as obtained from the binomial moment equations
with a cutoff of C = 2 (circles). For small systems, the results
are in perfect agreement with those obtained from the master
equation (solid lines). Note that in this example the master
equation was solved using MC simulations [16,17]. Direct
integration of the master equation is infeasible in this case due
to the large number of equations.

For large systems, the stochastic results converge to those
obtained from the rate equations (dashed lines). For most
species, even in the limit of S � 1, the results of the binomial
moment equations coincide with those obtained from the
master equation. This is despite the fact that the number of
equations is dramatically reduced. In fact, for certain species,
it is sufficient to choose a cutoff of C = 2 to account for
the abundances in the entire range of system sizes. In the
case that the the cutoff of C = 2 is insufficient, one may
raise the cutoff to 3 or 4 until a smooth convergence to the
deterministic regime is obtained. Results obtained for a cutoff
of C = 3 are included for 〈N1〉, 〈N2〉, and 〈N3〉 (+). Consider
the population size of the species X9. In order for this species
to be produced, a pair of X5 and X6 must be present in the
system. However, the only contribution to the formation of
such pairs comes from the presence of triplets. For instance,
when the combination Q�e1+�e4+�e6 translates into Q�e5+�e6 through
the second order reaction �e1 + �e4 → �e5. This pair can not be
produced by any other process involving combinations of a
lower order. Thus, a cutoff lower than C = 3 in the binomial
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FIG. 4. (Color online) The average population sizes 〈W�ei
〉, i = 1, . . . ,9, of the reactive species in the network shown in Fig. 3 versus the

system size parameter S as obtained from the binomial moment equations (circles). The results were obtained with a cutoff of C = 2. In the
limit where S is small, the results are in perfect agreement with those obtained from the master equation (solid lines). The rate equation results
(dashed lines) show significant deviations in this limit. Here, for certain species, the moment equation results deviate in the limit of large
systems. For these species, we include results obtained with a higher cutoff of C = 3 (+).

moment equations will not enable the production of X9 even
in the stochastic limit. This is an example of a case where
third order moments are required, even when populations are
small, and even when no reactions of higher order than two
are included. In such cases, the ability to extend the moment
equations to higher cutoffs becomes crucial.

In this system, when S 
 1, several reactions become very
slow and can be considered as rare events. For instance,
the production of X9 molecules requires the reaction of X5

and X6. However, since the abundances of these molecules
are very small in the stochastic limit, their simultaneous
appearance in the system rarely occurs. These rare reactions
are difficult to account for by MC simulations, due to the
exceedingly long run times required. This is the reason that
in the stochastic limit there appear no results for 〈N5〉, 〈N6〉,
and 〈N9〉 obtained from the MC simulations. In contrast, the
binomial moment equations account for these rare processes
without any limitation.

In Fig. 5, we focus on the transition between the stochastic
regime and the deterministic regime. We show the convergence
of the binomial moment equations to the deterministic results
of the rate equations (dashed lines) for the average populations

of X1, X2, and X3. Results are shown for cutoff assignments
of C = 2 (circles), C = 3 (+), C = 4 (triangles), C = 5 (×),
and C = 6 (squares). Already at C = 5 or 6 the convergence
to the deterministic results is smooth. When a higher cutoff is
required, one can reliably use the rate equations.

VI. SUMMARY AND DISCUSSION

We have presented an equation-based formulation of
stochastic reaction networks using the binomial moment
equations. This formulation enables us to efficiently analyze
complex reaction networks and evaluate the time dependent
copy numbers and reaction rates as well as other moments
of interest. The crux of the method lies in the definition of
the binomial moments. These moments capture the essence
of the combinatorics that governs the reaction rates, reflecting
the stoichiometric structure of the reactions. As a result, the
equations take a transparent form and it is easy to include
moments up to any desired order. This is in contrast with
ordinary moment equations, where it is often difficult to write
the equations for moments of order higher than two. The
binomial moments enable one to use a simple and convenient
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FIG. 5. (Color online) The transition between the stochastic
regime S < 1 and the deterministic regime S > 1. Results are shown
for the binomial moments 〈W�e1 〉, 〈W�e2 〉, and 〈W�e3 〉 vs the system size
S, as obtained from the moment equations with a cutoff of 2 (circles),
3 (+), 4 (triangles), 5 (×), and 6 (squares). As the cutoff is raised,
the convergence to the rate equation results (dashed line) becomes
smoother. When a cutoff higher than 6 is required, one enters the
range of validity of the rate equations. The master equation results
are also shown (solid lines).

truncation scheme in which all moments above a specified
order are set to zero. This closure scheme is fully controlled
and determined by the maximal number of particles allowed to
reside simultaneously in the system, which is clearly limited
by the system size.

The binomial moment equations display some important
advantages over commonly used approaches such as direct
integration of the master equation and MC methods. Direct
integration of the master equation is applicable only for very
small networks because the number of equations increases
exponentially with the number of species in the network. The
most commonly used approach to the simulation of stochastic
reaction networks is the Monte Carlo method [16,17]. The
Monte Carlo method is easy to implement and is of very
general applicability. It provides numerical realizations of
specific paths of the stochastic process. From these paths,
one can evaluate the population sizes of the different species
and the reaction rates. The data obtained from the Monte
Carlo method can also be used in order to calculate temporal
correlation functions. However, to obtain accurate results,
the Monte Carlo method needs to produce large amounts of

statistical data. This is difficult in systems that combine fast
and slow processes or exhibit rare events.

As opposed to MC simulations, the moment equations can
efficiently account for rare events and for systems that combine
fast and slow processes covering a broad range of time scales.
Moreover, unlike the rate equations, the moment equations are
linear. This feature guarantees the stability of the differential
equations, and in some simple cases also enables an analytical
time dependent solution [56]. The steady state solution of the
moment equations can be obtained by simply solving a set of
coupled linear algebraic equations.

In the case of reaction networks that can be solved
using only first and second moments, such as the hydrogen
addition reactions presented in Refs. [45,46], the binomial
moment equations do not exhibit significant advantages over
the ordinary moment equations. However, the analysis of
stochastic networks often requires higher moments, either due
to the structure of the network (which may include reactions
that involve more than two species) or due to the kinetic
parameters. In the latter case, some parts of the network may be
in the deep stochastic limit, while other parts may be in some
intermediate regime. As a result, only some of the species
appear in very low copy numbers. In such cases, the binomial
moment equations have a crucial advantage. These equations
can be constructed up to high order moments. Moreover, they
exhibit very good convergence due to the fact that the moments
decrease as a function of their order.

The binomial moment equations are designed to apply in
the limit of small systems, where the copy numbers of the
reactive species are low, and fluctuations are important. In
some cases, the equations maintain their accuracy even when
the system is large, despite the low cutoffs (such as C = 2). If
this is not the case, the cutoffs should be raised until accurate
results are obtained. In practice, when simulating a complex
network, one may need to use both the rate equations and the
moment equations. In the small system limit, where the copy
numbers are low, the results of the moment equations should
be used. As the large system regime is approached, the cutoffs
used in the moment equations should be raised accordingly.
Once a good convergence of the moment equation results to
the rate equation results is obtained, one no longer needs to use
the moment equations. In most cases, this convergence occurs
when the cutoffs are not much higher than 3 or 4.

For the sake of completeness, we also refer to the possibility
to analyze stochastic reaction networks using the chemical
Langevin equations [11]. These equations are essentially rate
equations to which noise terms are added, turning them into
stochastic differential equations. These equations are suitable
for the analysis of systems that are affected by external noise.
In the reaction networks considered here, the fluctuations are
intrinsic. They result from the stochastic nature of the reactions
and from the low copy numbers of the reactants. Under these
conditions, it is crucial to account for the discrete nature of
the reactants. The problem with the Langevin approach is
that unlike the moment equations, it does not account for the
discreteness. Once the discreteness is lost, it is not possible to
evaluate the reaction rates correctly. Therefore, the Langevin
approach is not suitable for these stochastic reaction networks.
Moreover, the Langevin equations are based on the mean-field
approximation in the sense that the reaction rates are expressed
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in terms of the first moments and their products. This is unlike
the moment equations in which higher moments are taken into
account.

In recent years, there has been much progress in the study
of complex interaction networks. The topological structure of
chemical, biological, and ecological networks was extracted
using large sets of empirical data. An important theoretical
challenge is to study the dynamics of the reaction networks.
The aim of such studies is to evaluate the population sizes
of the interacting species as well as their fluctuations and
correlations. The binomial moment equations provide an
effective set of tools for describing the dynamics of these
systems. They open the way to systematic studies of large and
complex stochastic networks beyond the feasibility limit of
existing methods. Moreover, as an equation-based paradigm,
it is amenable to analytical treatments that are expected to
provide crucial insight about the networks.
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APPENDIX: COMBINATORIAL IDENTITIES

In this appendix, we prove three combinatorial identities
that are used in the paper.

Identity 1:

S �u
( �N

�v
)

=
∑

�w

( �N
�v − �w

)( �u
�w
)

. (A1)

Proof. For convenience we introduce a vectorial general-
ization of the exponential function, in the form

x
�N =

J∏
i=1

xNi . (A2)

The binomial expansion of this function takes the form

(1 + x)
�N =

∑
�n

( �N
�n
)

x �n. (A3)

We use the equality

(1 + x)
�N+�u = (1 + x)

�N (1 + x)�u, (A4)

and take the binomial expansion of both sides. Comparing the
coefficients of x �v , one obtains( �N + �u

�v
)

=
∑

�w

( �N
�v − �w

)( �u
�w
)

, (A5)

which proves Identity 1.
Identity 2:

S−�u
( �N

�v
)

=
( �N

�u
)−1(�v + �u

�u
)( �N

�v + �u
)

. (A6)

Proof. We first prove this identity for scalars. The right-hand
side of (A6) can be written as

(N − u)!u!

N !
· (v + u)!

v!u!
· N !

[N − (v + u)]!(v + u)!
, (A7)

which can be easily reduced to(
N − u

v

)
, (A8)

in agreement with Identity 2. The generalization to vectors
is straightforward. The left-hand side of Eq. (A6) can be
expressed as a product by( �N − �u

�v
)

=
J∏

i=1

(
Ni − ui

vi

)
. (A9)

Expressing the right-hand side as a product, one observes that
the equality is satisfied for each pair of corresponding terms
and thus it is satisfied for the entire product.

Identity 3:( �N
�n
)( �N

�v
)

=
∑

�w

( �n
�w
)(�v + �w

�n
)( �N

�v + �w
)

. (A10)

Proof. We first prove this identity for scalars. The right-hand
side of (A10) can be written as∑

w

( �n
�w
)

N !

(N − v − w)!(v + w − n)!n!
, (A11)

which by factoring out ( N

v ) becomes(
N

v

) ∑
w

(
N − v

w

)(
v

n − w

)
. (A12)

Using (A1), one can substitute the sum in the above expression
by ( N

n ) to obtain the left-hand side of (A10). As above, the
generalization to vectors is straightforward.
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