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We study, both analytically and numerically, the Boltzmann transport equation for the Hubbard chain with
nearest-neighbor hopping and spatially homogeneous initial condition. The time-dependent Wigner function is
matrix-valued because of spin. The H theorem holds. The nearest-neighbor chain is integrable, which, on the
kinetic level, is reflected by infinitely many additional conservation laws and linked to the fact that there are also
nonthermal stationary states. We characterize all stationary solutions. Numerically, we observe an exponentially
fast convergence to stationarity and investigate the convergence rate in dependence on the initial conditions.
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I. INTRODUCTION

The Hubbard model is a simplified description of inter-
acting electrons moving in a periodic background potential;
see [1–3] for introductory literature. We are interested in
the dynamics of the Hubbard model in the regime of small
interactions, which is conveniently described by kinetic theory,
following the pioneering work of Peierls [4], Nordheim [5],
and Uehling and Uhlenbeck [6]. From the point of view
of kinetic theory the Hubbard model has unusual features.
The noninteracting model has a doubly degenerate band,
which–because of spin–makes the Wigner function 2 × 2
matrix valued. In addition the Hamiltonian is invariant under
global SU(2) spin rotations. On the kinetic level this property is
reflected by an exceptionally large set of conserved quantities.
We refer to [7] for a recent experimental realization through
ultracold atoms in an optical lattice under conditions where
also kinetic theory is applied.

As one would expect, even the matrix-valued Boltzmann
equation satisfies the H theorem. The goal of our note is
to achieve–beyond mere entropy increase–a quantitative and
more detailed understanding of the approach to stationarity.
The Boltzmann equation consists of the sum of an effective
Hamiltonian plus a dissipative collision term, both with cubic
nonlinearity. At such generality, numerical simulation is not
an easy task. Therefore we concentrate on the Hubbard chain
with nearest-neighbor hopping and on-site interaction. In
addition we assume spatial homogeneity. Our simulations use
64 grid points in momentum space, which still allows for easy
exploration. At this stage the reader might wonder why on
the kinetic level in one dimension there are any collisions
at all. This will be explained in due course, as well as the
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difference between the nearest-neighbor integrable model and
the nonintegrable next-nearest-neighbor case.

Let us start with the underlying Hamiltonian and the
resulting kinetic equation. The electrons are described by
a spin- 1

2 Fermi field on Z with creation and annihilation
operators satisfying the anticommutation relations

{a∗
σ (x),aτ (y)} = δxyδστ , (1)

{aσ (x),aτ (y)} = 0, (2)

{a∗
σ (x),a∗

τ (y)} = 0, (3)

for x,y ∈ Z, σ,τ ∈ {↑ , ↓}, and {A,B} = AB + BA. The
Hamiltonian reads

H =
∑

x,y∈Z

α(x − y) a∗(x) · a(y) + λ

2

∑
x∈Z

(a∗(x) · a(x))2.

(4)

Here a∗(x) · a(x) = a∗
↑(x) a↑(x) + a∗

↓(x) a↓(x). α is the hop-
ping amplitude, with the properties α(x) = α(x)∗, α(x) =
α(−x), and λ is the strength of the on-site interaction. Our
notation emphasizes the invariance under global spin rotations.

For the Fourier transformation we use the convention

f̂ (k) =
∑
x∈Z

f (x) e−2πi k x . (5)

Then the first Brillouin zone is the interval T = [− 1
2 , 1

2 ] with
periodic boundary conditions. The dispersion relation ω(k) =
α̂(k) and, up to a constant, in Fourier space H can be written as

H =
∑

σ∈{↑,↓}

∫
T

dk ω(k)â∗
σ (k)âσ (k)

+ λ

2

∫
T4

d4k δ(k) â∗
↑(k1)â∗

↑(k2)â↓(k3)â↓(k4), (6)

with k = k1+ k2− k3− k4 mod 1 and d4k = dk1 dk2 dk3 dk4.
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To arrive at the kinetic equation, we assume that the initial
state of the chain is quasifree, gauge invariant, and invariant
under spatial translations. It is thus completely characterized
by the two-point function

〈â∗
σ (k)âτ (k′)〉 = δ(k − k′)Wστ (k). (7)

It will be convenient to think of W (k) as a 2 × 2 matrix for
each k ∈ T. Then, in general, W (k1)W (k2) 	= W (k2)W (k1) and
every argument of standard kinetic theory has to be reworked.
By the Fermi property we have 0 � W (k) � 1 as a matrix for
each k. In particular, W can be written as

W (k) =
∑

σ∈{↑,↓}
εσ (k)|k,σ 〉〈k,σ |, (8)

where |k,σ 〉 for σ ∈ {↑, ↓} is a k-dependent basis in spin space
C

2 and εσ are the eigenvalues with 0 � εσ � 1.
At some later time t the state is still gauge and translation

invariant, hence necessarily

〈a∗
σ (k,t)aτ (k′,t)〉 = δ(k − k′)Wστ (k,t). (9)

In general W (t) is a complicated object, but for small coupling
λ the quasifree property persists over a time scale of order λ−2,
a structure which allows one to obtain the kinetic equation by
second order time-dependent perturbation theory. More details
can be found, e.g., in [8–10]. Here we only write down the
resulting Boltzmann equation:

∂

∂t
W (k,t) = Cc[W ](k,t) + Cd[W ](k,t) = C[W ](k,t), (10)

which has the structure of an evolution equation and has to be
supplemented with the initial data W (k,0) = W (k).

The first term is of the Vlasov type:

Cc[W ](k,t) = −i [Heff(k,t),W (k,t)], (11)

where the effective Hamiltonian Heff(k,t) is a 2 × 2 matrix
which itself depends on W . More explicitly,

Heff,1 =
∫

T3
dk2dk3dk4 δ(k)P

(
1

ω

)
× (

W3W4 − W2W3 − W3W2

− tr[W4]W3 + tr[W2]W3 + W2
)
. (12)

Here and later on we use the shorthand W̃ = 1 − W , W1 =
W (k1,t), Heff,1 = Heff(k1,t), ω = ω(k1) + ω(k2) − ω(k3) −
ω(k4). Since W is 2 × 2 matrix valued, tr[ · ] is the trace in
spin space. Finally P denotes the principal part. Since the k3,
k4 integration can be interchanged, Heff = H ∗

eff , as it should be.
There are many different ways to write the collision term Cd.

We choose a version which separates the various contributions
into gain and loss terms. Then

Cd[W ]1 = π

∫
T3

dk2dk3dk4δ(k)δ(ω)
(
A[W ]1234 + A[W ]∗1234

)
,

(13)

where the index 1234 means that the matrix A[W ] depends on
k1, k2, k3, and k4. Explicitly,

A[W ]1234 = −W4W̃3W2 + W4 tr[W̃3W2]

− {
W̃4W2 − W̃4W3 − W̃3W2 + W̃4 tr[W3]

− W̃4 tr[W2] + tr[W2W̃3]
}
W1, (14)

with the first two summands being the gain term and {...}W1

being the loss term. The gain term is always positive definite,
as implied by the inequality

A tr[BC] + C tr[BA] − ABC − CBA � 0, (15)

valid for arbitrary positive definite matrices A,B,C. Thus if an
eigenvalue of W (k,t) happens to vanish, the gain term pushes
it back to values > 0. A similar argument can be made for
W̃ (k,t), implying the propagation of the Fermi property [10],
to say the following: if at t = 0 one has 0 � W (k) � 1, then
the solution to Eq. (10) also satisfies 0 � W (k,t) � 1.

In our contribution, we report on a numerical solution of the
kinetic equation (10), emphasizing the approach to stationarity.
To provide an outline, in Sec. II we establish a few general
properties of Eqs. (10), (12), (13). They hold for arbitrary ω

and also for the obvious extension of Eq. (10) to d dimensions.
In particular, we show that the entropy production σ [W ] =
d
dt

S[W ] has the property σ � 0. The thermal state WFD (the
Fermi-Dirac distribution) satisfies C[WFD] = 0 and hence also
σ [WFD] = 0. But to list all stationary solutions of Eq. (10) is
not an easy task in general.

In Sec. III we restrict ourselves to the Hubbard chain with
nearest-neighbor hopping, i.e.,

ω(k) = 1 − cos(2πk). (16)

The first task is to discuss the kinematically allowed collisions,
in other words the solutions of ω = 0 together with k = 0
mod 1. The nearest-neighbor model has a special symmetry
through which a large set of further stationary states, beyond
the thermal ones, can be found. On the kinetic level, this reflects
the integrability of the underlying quantum Hamiltonian. In
Sec. IV our numerical procedure is outlined and in Sec. V it
is used to study the dynamics for representative initial Wigner
functions.

II. GENERAL PROPERTIES OF THE HUBBARD
KINETIC EQUATION

To emphasize generality, for this section only, we consider
Z

d as an underlying lattice. Hence kj ∈ T
d with periodic

boundary conditions. The SU(2) invariance of H is reflected
by

C[U ∗WU ] = U ∗C[W ]U, (17)

for all U ∈ SU(2). Hence if W (k,t) is a solution to Eq. (10), so
is U ∗ W (k,t) U . Also hermiticity is propagated in time, i.e., if
W (0) = W (0)∗, then also W (t) = W (t)∗, which follows from

C[W ]∗ = C[W ∗]. (18)

Furthermore the Fermi property, 0 � W (t) � 1, is propagated
in time; see [10] for details.

There are two conservation laws: spin,

d

dt

∫
Td

dk W (k,t) = 0, (19)

and energy,

d

dt

∫
Td

dk ω(k) tr[W (k,t)] = 0. (20)
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The proof uses the symmetrization of the integrand. One
can interchange the variables k1 ↔ k2, k3 ↔ k4 and also the
pairs {k1,k2} ↔ {k3,k4}. For the energy, one then picks up the
integrand ω and hence the factor ω δ(ω) = 0.

The next general property is the H theorem. Since |λ| � 1,
locally the state is a free fermion. On the kinetic level, the
entropy of the state W is then defined as

S[W ] = −
∫

Td

dk1(tr[W1 log W1] + tr[W̃1 log W̃1]). (21)

Hence the entropy production is given by

σ [W ] = d

dt
S[W ] = −

∫
Td

dk1 tr[(log W1 − log W̃1) C[W ]1].

(22)

The H theorem asserts that

σ [W ] � 0 for all W with 0 � W � 1. (23)

To establish Eq. (23), for each k we write

W (k) =
∑

σ∈{↑,↓}
εσ (k)Pσ (k), (24)

with eigenvalues 0 � εσ (k) � 1 and orthogonal eigenprojec-
tions Pσ (k) = |k,σ 〉〈k,σ | with 〈k,σ |k,σ ′〉 = δσσ ′ . As before,
we use a shorthand as Pj = Pσj

(kj ), εj = εσj
(kj ) and

∑
σ =∑

σ1,σ2,σ3,σ4
. Inserting Eq. (24) into Eq. (22), one obtains

σ [W ] = π

∫
(Td )4

d4k δ(k)δ(ω)
∑

σ

(log ε1 − log ε̃1)

× (ε̃1ε̃2ε3ε4 − ε1ε2ε̃3ε̃4)(tr[P1P3]tr[P2P4]

+ tr[P1P3]tr[P2P4] − tr[P1P3P2P4] − tr[P4P2P3P1])

= π

∫
(Td )4

d4k δ(k)δ(ω)
∑

σ

(ε̃1ε̃2ε3ε4 − ε1ε2ε̃3ε̃4)

× log(ε̃1/ε1) |〈k1,σ1|k3,σ3〉〈k2,σ2|k4,σ4〉
− 〈k1,σ1|k4,σ4〉〈k2,σ2|k3,σ3〉|2. (25)

We interchange 1 ↔ 2, 3 ↔ 4 and (1,2) ↔ (3,4). Then

σ [W ] = π

4

∫
(Td )4

d4k δ(k)δ(ω)
∑

σ

(ε̃1ε̃2ε3ε4 − ε1ε2ε̃3ε̃4)

× log

(
ε̃1ε̃2ε3ε4

ε1ε2ε̃3ε̃4

)
|〈k1,σ1|k3,σ3〉〈k2,σ2|k4,σ4〉

− 〈k1,σ1|k4,σ4〉〈k2,σ2|k3,σ3〉|2 � 0, (26)

since (x − y) log(x/y) � 0.
Stationary states are defined by

C[W ] = 0, (27)

which obviously implies σ [W ] = 0. Physically one would
expect thermal equilibrium to be included in the stationary
states. On the kinetic level thermal equilibrium is defined by
the Fermi-Dirac state:

WFD(k) =
∑

σ∈{↑,↓}

(
eβ(ω(k)−μσ ) + 1

)−1|σ 〉〈σ |, (28)

which is characterized by the inverse temperature β, the two
chemical potentials μ↑, μ↓ for the spin occupations, and some

k-independent spin basis |σ 〉, β, μ↑, μ↓ ∈ R. Indeed, it is
easily checked that C[WFD] = 0.

With this background information, one develops the follow-
ing rough picture on the approach to stationarity. The initial
state determines a special, k-independent basis |σ 〉 through∫

Td

dk W (k) =
∑

σ∈{↑,↓}
εσ |σ 〉〈σ |. (29)

By Eq. (19) this basis is preserved in time. Thus it is natural to
expand W (k,t) in this special basis. Approach to the thermal
state would mean

lim
t→∞〈σ |W (k,t)|σ ′〉 = 0 for σ 	= σ ′ (30)

and

lim
t→∞〈σ |W (k,t)|σ 〉 = (

eβ(ω(k)−μσ ) + 1
)−1

for σ ∈ {↑ , ↓}.
(31)

Since, by Eq. (19), the integral over the eigenvalue is
conserved, one concludes that

εσ =
∫

Td

dk
(
eβ(ω(k)−μσ ) + 1

)−1
, σ ∈ {↑, ↓}. (32)

Correspondingly, by Eq. (20), for the average energy,

e =
∫

Td

dk ω(k) tr[W (k)]

=
∫

Td

dk
∑

σ∈{↑,↓}
ω(k)

(
eβ(ω(k)−μσ ) + 1

)−1
. (33)

Both equations determine the parameters β, μ↑, μ↓ from
the initial W . One has 0 � ε↑,ε↓ � 1 and mink ω(k) � e/2 �
maxk ω(k). Then the map (e,ε↑,ε↓) to (β,μ↑,μ↓) is one to one.

Implicitly our argument assumes that the set of stationary
states equals the set of thermal states. But this might fail if there
are not enough collisions, which could very well be the case
in low dimensions. The issue of characterizing all stationary
states has been accomplished only partially; see [11] for results
towards this goal. On the other hand we still succeed in listing
all stationary states and their domain of attraction. As will
be discussed in the following section, for the Hubbard chain
with nearest-neighbor hopping the stationary states are not
exhausted by the thermal ones.

III. NEAREST-NEIGHBOR HUBBARD CHAIN

A. Collisions

We return to the Hubbard chain with nearest-neighbor
hopping [Eq. (16)]. Figure 1 visualizes ω(k) for k ∈ [− 1

2 , 1
2 ].

The first task is to investigate the kinematically allowed
collisions defined by δ(k)δ(ω). The momentum conservation
k = 0 mod 1 allows us to eliminate one k variable, say
k2 = k3 + k4 − k1 mod 1. Inserted into energy conservation
ω = 0 and using some trigonometric identities, one arrives at

ω = 4 sin(π (k1 − k3)) sin(π (k1 − k4)) cos(π (k3 + k4)). (34)

Figure 2 visualizes ω for fixed k1 = 23
64 . From Eq. (34), we

conclude that the collision manifold has a solution path k3 +
k4 = 1

2 (and thus also k1 + k2 = 1
2 ) denoted γdiag in Fig. 2,
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ω

FIG. 1. (Color online) The dispersion relation ω(k) of Eq. (16).

besides the “trivial” solutions k3 = k1 (denoted γ1) and k4 = k1

(denoted γ2).
In what follows, we investigate the integral (13) of the

dissipative collision operator Cd along the paths γ1, γ2, and
γdiag. Using the invariance of the integral (13) under k3 ↔ k4,
we may interchange W3 ↔ W4. Then the integrand in Eq. (13)
can be decomposed as

A[W ]1234 + A[W ]∗1234 = Aquad[W ]1234 + Atr[W ]1234, (35)

with

Aquad[W ]1234 = −W̃1W3W̃2W4 − W4W̃2W3W̃1

+W1W̃3W2W̃4 + W̃4W2W̃3W1, (36)

Atr[W ]1234 = (W̃1W3 + W3W̃1)tr[W̃2W4]

− (W1W̃3 + W̃3W1)tr[W2W̃4]. (37)

γ

γ

γ

γ

FIG. 2. (Color online) Contour (blue straight lines) and gradient
(green vectors) of the energy conservation ω = 0 for fixed k1 = 23

64
and after eliminating k2. The diagonal blue line γdiag is precisely the
contour k3 + k4 = 1

2 . The vertical and horizontal blue lines, γ1 and
γ2, are the contours k3 = k1 and k4 = k1, respectively. pi marks the
intersection of γi with γdiag for i = 1,2.

Inspection of Eq. (36) immediately reveals that
Aquad[W ]1221 ≡ 0 along γ2 since (k1,k2) = (k4,k3).
Moreover, we also have Aquad[W ]1212 ≡ 0 along γ1

with (k1,k2) = (k3,k4), which can be checked by expanding
Eq. (36). In other words, Aquad[W ]1234 contributes only along
γdiag.

The situation is different for the term Atr[W ]1234: while
Atr[W ]1212 ≡ 0 along γ1 by direct inspection of Eq. (37), it is
(in general) nonzero along γ2 and also along γdiag. In summary,
for evaluating the dissipative collision integral Eq. (13) we
have to integrate Atr[W ] along γ2 and both Aquad[W ] and
Atr[W ] along γdiag.

As a side remark, the solution path γdiag is special for the
nearest-neighbor dispersion relation Eq. (16). If we add to
Eq. (16) a small next-nearest-neighbor term, then γ1 and γ2

persist and γdiag gets somewhat deformed. In addition, a new
collision channel opens up, as illustrated in Fig. 3 for the
dispersion relation

ωnnn(k) = ω(k) − 1
2 cos(4πk)

= 1 − cos(2πk) − 1
2 cos(4πk). (38)

B. Stationary solutions

The collision paths γ1, γ2, and γdiag have special symme-
tries, from which one can guess the form of stationary solutions
beyond the thermal one. They have the same structure as the
Fermi-Dirac state, but with ω(k) replaced by a more general
function f . One finds

Wst(k) =
∑

σ∈{↑,↓}
λσ (k) |σ 〉〈σ |, λσ (k) = (

ef (k)−aσ + 1
)−1

,

(39)

FIG. 3. (Color online) Contour (blue straight lines) and gradient
(green vectors) of the energy conservation for a next-nearest-neighbor
model with ωnnn(k) of Eq. (38) and fixed k1 = 23

64 .
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where f is a real-valued, one-periodic function satisfying
f (k) = −f ( 1

2 − k), aσ ∈ R, and |σ 〉 is an orthogonal basis,
independent of k.

As discussed in the Appendix, Eq. (39) characterizes the
entire set of stationary solutions. The next step is to identify
the domain of attraction for Wst, in other words to study the
map from the initial W to Wst. Here we can follow the strategy
described at the end of Sec. II.

We first note that there are many energy-like quantities
which are conserved. Let g : T → R with g(k) = −g( 1

2 − k).
Then

d

dt

∫
T

dk g(k) tr[W (k)] = 0, (40)

which generalizes the energy conservation Eq. (20).
Equation (40) again follows by an appropriate interchange
of the integration variables k1, . . . ,k4.

By substituting g(k) = δ(k − k′) − δ(k − 1
2 + k′) for arbi-

trary k′ ∈ T, one concludes that

h(k) = tr[W (k)] − tr
[
W

(
1
2 − k

)]
(41)

is pointwise constant for each k ∈ T. Assuming that the initial
W converges to a stationary state of the form of Eq. (39), it
must hold that

h(k) =
∑

σ∈{↑,↓}

((
ef (k)−aσ + 1

)−1 − (
e−f (k)−aσ + 1

)−1)
. (42)

Equivalently, as in Sec. II, the spin conservation law
requires that the eigenvalues εσ in Eq. (29) are equal to

εσ =
∫

T

dk
(
ef (k)−aσ + 1

)−1
. (43)

We claim that Eqs. (42) and (43) uniquely determine f and
aσ , or more specifically, that the map between

tr[W (k)] − tr
[
W

(
1
2 − k

)]
, |k| � 1

4 , 0 � ε↑,ε↓ � 1 (44)

and

f (k) with f (k) = −f
(

1
2 − k

)
, |k| � 1

4 , a↑,a↓ (45)

is one to one. In particular, to a given W one can associate a
unique Wst of the form of Eq. (39).

Sketch of the proof. By a short calculation, Eq. (42) can be
written as

h(k) = − sinh(f (k))

×
(

1

cosh a↑ + cosh f (k)
+ 1

cosh a↓ + cosh f (k)

)
,

(46)

and Eq. (43) can be written as

εσ =
∫

I
dk

(
sinh aσ

cosh aσ + cosh f (k)
+ 1

)
, (47)

with interval of integration I := [− 1
4 , 1

4 ]. We define a general-
ized “free energy” through

H (f,a↑,a↓) =
∫

I
dk

∑
σ∈{↑,↓}

log
(
coshaσ + cosh f (k)

)
. (48)

The map (f,a↑,a↓) �→ H is strictly convex. Furthermore,

∂

∂aσ

H =
∫

I
dk

sinh aσ

cosh aσ + cosh f (k)
= εσ − 1

2
(49)

and

δH

δf (k)
=

∑
σ∈{↑,↓}

sinh f (k)

cosh aσ + cosh f (k)
= −h(k). (50)

Thus the map from above can be viewed as Legendre transform
from the first set Eq. (44) to the second set of variables Eq. (45).
Since H is convex, the map is one to one. �

IV. NUMERICAL PROCEDURE

A. Mollifying the collision operators

Dissipative collision operator. We have to make sure that
δ(ω)δ(k) is a well-defined prescription. For this purpose we
eliminate k2 and, using Eq. (34), obtain∫

γ2

dk4 δ(ω) = ∣∣∂k4ω|k4=k1

∣∣−1

= (
2π | sin(2πk3) − sin(2πk1)|)−1

. (51)

FIG. 4. (Color online) (a) The term 1/ω as a function of k3 and k4, for fixed k1 = 23/64. (b) The “mollified” version ω/(ω2 + ε2) with
ε = 1

2 free of singularities.
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FIG. 5. (Color online) Diagonal matrix entries of a high-
temperature equilibrium state WFD. The state is (almost) independent
of k.

Likewise along γdiag it holds that∫
γdiag

dk4 δ(ω) = ∣∣∂k4ω|k4=1/2−k3

∣∣−1

= (
2π | sin(2πk3) − sin(2πk1)|)−1

. (52)

Considering the subsequent integration over k3 in Eq. (13), the
critical point k3 = 1

2 − k1 (marked p2 in Fig. 2) would lead to
infinities in general. (Integrating along γdiag across the point
p1 (k3 = k1) is possible since A[W ]1234 + A[W ]∗1234 is zero
at that point, as explained above.) As mollification we choose
the substitution(

2π | sin(2πk3) − sin(2πk1)|)−1

→ (
4π2

(
sin(2πk3) − sin(2πk1)

)2 + ε2
)−1/2

, (53)

with some finite ε > 0. Concretely, we use ε = 1
2 for the

simulations.
Conservative collision operator. The integral Eq. (12) for

the conservative collision operator Cc differs from dissipative
integral Eq. (13), since there is only a single delta distribution
δ(k). Thus, we can eliminate k2 = k3 + k4 − k1 as for the
dissipative case, but still have to integrate over both k3 and
k4.

The integral Eq. (12) is defined as Cauchy principal value
with respect to 1/ω. Figure 4(a) illustrates this term in
dependence of k3 and k4 (compare also with Fig. 2). While

the Cauchy principal value exists for continuous W (k), the
numeric calculation is rather demanding and we resort to a
mollifying procedure as for the dissipative collision operator.
Concretely, we substitute

1

ω
→ ω

ω2 + ε2
(54)

with finite ε > 0 (in our case ε = 1
2 ). Figure 4(b) shows the

right-hand side, in direct comparison with the unmollified
version. Note that Cc could be defined via the integral Eq. (12)
with the replacement Eq. (54), and then letting ε → 0.

B. Solving the Boltzmann equation

In order to solve the Boltzmann equation Eq. (10) numeri-
cally, we discretize the k variable by a uniform grid:

kj = j

n
, j = 0, . . . ,n − 1, (55)

with n = 64 in our case. We have chosen the interval [0,1]
instead of (equivalently) [− 1

2 , 1
2 ] simply for convenience. Note

that due to periodicity, W (1,t) = W (0,t), so the point k = 1
is not required. We use the trapezoidal rule to approximate
the integrals (13) and (12) of the dissipative and conservative
collision operators, respectively. Note that this approach is
particularly suited for analytic period functions. Moreover,
considering the two-dimensional integral of the conservative
collision operator, we ensure that the variable k2 = k3 +
k4 − k1 mod 1 is a grid point whenever k1, k3 and k4 are
grid points, in distinction from other integration rules with
nonuniform points.

We solve the Boltzmann differential equation (10) for
the time variable by a Strang splitting (or symmetric Trotter
splitting) technique: denoting the (fixed) time step by �t , we
combine an explicit midpoint rule step for the dissipative part
with the time evolution operator for the conservative part:

X(kj ,t) = e−iHeff (kj ,t) �t/2 W (kj ,t) eiHeff (kj ,t) �t/2,

j = 0, . . . ,n − 1, (56)

Y (kj ,t) = X(kj ,t) + �t Cd

[
X(t) + �t

2
Cd[X(t)]

]
(kj ),

j = 0, . . . ,n − 1, (57)

(a) matrix entries of initial W (k, 0) (b) eigenvalues of W (k, 0)

FIG. 6. (Color online) (a) Initial state W (k,0) = WFD(k) + V (k) with V (k) defined in Eq. (59). The blue (upper) and green (middle) curves
show the real diagonal entries, and the red (lower dark gray) and magenta (lower light gray) curves show the real and imaginary parts of the
off-diagonal |↑〉〈↓| entry, respectively. (b) Corresponding eigenvalues of W (k,0) in the interval [0,1].
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decay rate:

−0.337939

2 4 6 8 10 12 14
t

0.001

0.01

0.1

1

decay rate:

–0.648043

2 4 6 8 10 12 14
t

10−5

0.001

0.1

S[WFD –S W(t)

decay rate:

–0.54771

2 4 6 8 10 12 14
t

10 5

0.001

0.1

diag(W(t)–WFD

decay rate:

–0.337867

2 4 6 8 10 12 14
t

0.001

0.01

0.1

1

|(W(t)–WFD 12 |)|| ) ||

|(W( )–WFD ||t ]] [

−

|

(a) convergence in Hilbert-Schmidt norm (b) entropy convergence

(c) convergence of the diagonal entries (d) convergence of the off-diagonal entries

FIG. 7. (Color online) Convergence of the initial W (0) (Fig. 6) to the high-temperature equilibrium state WFD (Fig. 5) as a semilogarithmic
plot (blue). The decay rate is the slope of the fitted red (dotted) line.

W (kj ,t + �t) = e−iH ′
eff (kj ,t) �t/2 Y (kj ,t) eiH ′

eff (kj ,t) �t/2,

j = 0, . . . ,n − 1, (58)

where H ′
eff depends on Y (t). The midpoint rule has order 2,

while the time evolution operator e−iH �t/2(·)eiH �t/2 has only

order 1. Thus, the complete integration scheme has order 1.
As advantage, the time evolution operator preserves matrix
symmetry. For the simulations, we use �t = 1/16, and the
overall simulation time interval runs from t = 0 to varying
upper limit t = 15, . . . ,45.

FIG. 8. (Color online) Bloch sphere representation (dark blue curve) of the initial W (k,0) (Fig. 6), parametrized by k and viewed from
two perspectives. The light blue curve shows the corresponding Bloch curve of W (k,t) for t = 1/2. Finally, the curve for the high-temperature
equilibrium state WFD(k) is indiscernible from a single point at the tip of the z-axis arrow.
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FIG. 9. (Color online) Diagonal matrix entries of a low-
temperature equilibrium state WFD (β = 7, μ↑ = 17

16 , μ↓ = 15
16 ).

C. Cost analysis

Considering a single time step, the most expensive part
is the evaluation of the conservative collision operator Cc in
Eqs. (56) and (58), i.e., the two-dimensional integral Eq. (12)
after eliminating k2. (The dissipative collision operator Cd

requires only a one-dimensional integration.) For the uniform
discretization with n points in each direction, this scales like
O(n2). One time step requires the evaluation of this integral
for n different k1 points, thus the overall cost is O(n3).

On a Intel Core i7-740QM Processor (6M cache, 1.73 GHz)
without using parallelization, one time step takes approxi-
mately 90 s (Mathematica 8 implementation), so a complete
simulation is approximately 6 h. Note that the performance
could be easily increased by a C/C ++ implementation and
making use of parallelization.

V. SIMULATION RESULTS

1. High-temperature state

Figure 5 illustrates a high-temperature Fermi-Dirac equi-
librium state WFD Eq. (28) where β = 10−4, μ↑ = 104 and
μ↓ = −104. We have chosen the initial state (see Fig. 6) by
W (k,0) = WFD(k) + V (k) with V (k) a rotation of the Pauli σz

matrix and subtracting the constant matrix τ/18:

V (k) = 1

4
e−2πi τ k σz e2πi τ k − τ

18
, τ = σx − σy + 1

2
σz.

(59)

V (k) satisfies

∫
T

dk V (k) = 0 and tr[V (k)] = 0, (60)

for all k ∈ T such that W (0) matches WFD in terms of the spin
and energy conservation laws Eqs. (19) and (20).

Figure 7 illustrates the convergence to the equilibrium state
WFD. Interestingly, we observe that the off-diagonal entries
converge slower than the diagonal entries, but an analytic
explanation of this effect is still lacking.

Figure 8 displays the Bloch vectors �r(k,t) ∈ R
3 of W (k,t)

parametrized by k, i.e.,

W (k,t) = 1
2 (1 + �r(k,t) · �σ ) , �σ = (σx,σy,σz). (61)

The dark blue curve shows the initial �r(k,0) and the lighter blue
curve shows �r(k, 1

2 ). As time progresses, the initial curve straps
to almost a single point, since WFD(k) is almost independent
of k.

2. Low-temperature state

Figure 9 illustrates a low-temperature Fermi-Dirac equilib-
rium state WFD Eq. (28) with β = 7, μ↑ = 17

16 , and μ↓ = 15
16 .

In this case, for given WFD(k) the variational freedom for
the initial W (k,0) with the same symmetries as WFD(k) is
strongly restricted. Similar to the high-temperature state, we
define W (k,0) = WFD(k) + V (k) (see Fig. 10) with

V (k) = 1
4

(
e−64 sin(π(k−3/4))2 − e−64 sin(π(k−1/4))2)

× e−2πi σx k σz e2πi σx k. (62)

Again, V (k) satisfies

∫
T

dk V (k) = 0 and tr[V (k)] = 0, (63)

for all k ∈ T. We observe that the convergence to the equi-
librium state (Fig. 11) is slower than for the high-temperature
state in the previous paragraph. (Note that the simulation time
interval is now [0,45] as compared to [0,15].)

(a) initial W (k, 0) (b) eigenvalues of W (k, 0)

FIG. 10. (Color online) (a) Initial state W (k,0) = WFD(k) + V (k) with V (k) defined in Eq. (62). The blue (upper right) and green (upper
centered) curves show the real diagonal entries, and the red (lower dark gray) and magenta (lower light gray) curves show the purely imaginary
off-diagonal entries. (b) Eigenvalues of W (k,0) in the interval [0,1].
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(a) convergence in Hilbert-Schmidt norm (b) entropy convergence

(c) convergence of the diagonal entries (d) convergence of the off-diagonal entries

FIG. 11. (Color online) Convergence to the low-temperature equilibrium state WFD (Fig. 9) as a semilogarithmic plot (blue). The decay
rate is the slope of the fitted red (dotted) line. For this example, we observe that the off-diagonal entries converge much faster than the diagonal
ones.

3. Degenerate chemical potentials

We consider a Fermi-Dirac equilibrium state with degen-
erate chemical potentials μ↑ = μ↓, as illustrated in Fig. 12.
As initial state W (k,0), we set W (k,0) = WFD(k) + V (k) (see
Fig. 13) with V (k) taken from Eq. (59). As illustrated in Fig. 14,
there is no indication that the convergence changes due to the

degeneracy. Two time snapshots of the eigenvalues of W (k,t)
are shown in Fig. 15. They have a peculiar shape, and converge
to the diagonal entries of WFD, as expected.

4. Nonthermal stationary state

For this example, we start from an (rather arbitrary) initial

W (k,0) = 2
5

(
1
2 e− cos(4π(k−γ )) + 1

4
1
4 sin(e2πik)

1
4 sin(e−2πik) 1

4 erf(cos(2πk)) + 1
2 + arctan

(
sin

(
2πk − 1

5

)) + π
4

)
, (64)

FIG. 12. (Color online) Diagonal matrix entries of an equilibrium
state WFD with β = 1 and same chemical potentials μ↑ = μ↓ = 1.

illustrated in Fig. 16 (where γ is the Euler gamma constant),
and then determine the stationary, nonthermal state Wst(k), via
the f function described in Sec. III B. Figure 17 illustrates
both f and Wst. Next, we run the numerical simulation
of the time evolution, which should converge to the pre-
dicted Wst(k). Figure 18 indeed verifies the convergence
to Wst(k).

For special cases, we have checked that the asymptotic
decay rate is almost independent of the initial conditions. This
strongly suggests that the collision operator linearized at Wst

has a spectral gap.
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(a) initial W (k, 0) (b) eigenvalues of W (k, 0)

FIG. 13. (Color online) (a) Initial state W (k,0) = WFD(k) + V (k) with WFD(k) proportional to the identity matrix (see Fig. 12) and V (k)
defined in Eq. (59). The blue (center top) and green (center middle) curves show the real diagonal entries, and the red (lower dark gray) and
magenta (lower light gray) curves show the real and imaginary parts of the off-diagonal |↑〉〈↓| entry, respectively. (b) The eigenvalues of
W (k,0) are nondegenerate, different from the equilibrium state WFD(k).

(a) convergence in Hilbert-Schmidt norm (b) entropy convergence

FIG. 14. (Color online) Convergence to the equilibrium state WFD with degenerate eigenvalues (Fig. 12) as a semilogarithmic plot (blue).
The decay rate is the slope of the fitted red (dotted) line.

(a) eigenvalues at t = 1
2

(b) eigenvalues at t = 2

FIG. 15. (Color online) Two snapshots showing the convergence of the eigenvalues to the equilibrium state WFD (centered red, same as
Fig. 12) with μ↑ = μ↓ = 1.
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(a) initial W (k, 0) (b) eigenvalues of W (k, 0)

FIG. 16. (Color online) (a) Initial state W (k,0) defined in Eq. (64). The blue (two peaks) and green (upper right) curves show the real
diagonal entries, and the red (lower dark gray) and magenta (lower light gray) curves show the real and imaginary parts of the off-diagonal
|↑〉〈↓| entry, respectively. (b) Eigenvalues of W (k,0) in the interval [0,1].

(a) (b)

FIG. 17. (Color online) (a) The f function (solid blue) calculated from tr[W (k,0) − W ( 1
2 − k,0)] (green dashed) and the fitted “chemical

potentials” a↑ = −0.617485 and a↓ = 0.0578622. The initial W (k,0) is defined in Eq. (64). (b) Resulting stationary state Wst(k) [Eq. (39)]
given by f and a↑, a↓.

(a) entropy convergence (b) convergence in Hilbert-Schmidt norm

FIG. 18. (Color online) Convergence to the calculated Wst (Fig. 17) as a semilogarithmic plot.
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VI. CONCLUSIONS

The kinetic equation for the Hubbard model, in general,
has two hardly investigated features: (i) the Wigner function is
2 × 2 matrix valued and (ii) the microscopic SU(2) invariance
implies additional conservation laws. We investigated here the
chain with nearest-neighbor hopping, which is an integrable
model [1]. The Boltzmann transport equation reflects integra-
bility by an infinite number of conserved quantities and non-
thermal stationary states. We established the H theorem and
classified all stationary states. Adding a next-nearest-neighbor
coupling seems to destroy all conservation laws beyond spin
and energy, which indicates that now the stationary solutions
are exhausted by the thermal Fermi-Dirac Wigner functions.

In the spatially homogeneous case we observed numerically
an exponentially fast convergence to the predicted stationary
state, both for the diagonal and off-diagonal matrix elements
with roughly comparable decay rates. The decay at low
temperatures is slower than at high temperatures, as one would
have expected. In principle, asymptotic decay rates can be
computed from the linearized collision operator.

Physically of great interest would be to better understand
the spatially inhomogeneous situation. For example one could
imagine to have in each half of the chain a thermal state with
the same temperature, but with different spin orientations. In
principle, this could be handled by kinetic theory. One only
would have to add in the kinetic equation the transport term
ω′(k) ∂/∂x . Numerically, such a problem is more demanding
than the one studied here but is, at least in one dimension,
still in reach. Another challenging problem would be to study
energy transport through the chain. Our results point towards
the validity of Fourier’s law.

APPENDIX: CHARACTERIZATION
OF STATIONARY SOLUTIONS

Proposition 1: Let σ [W ] be as defined in Eq. (22). If 0 <

W < 1, then the solutions to zero entropy production,

σ [W ] = 0, (A1)

are necessarily of the form of Eq. (39).
Remark: As noted by J. Lukkarinen, further zero entropy

and stationary solutions are obtained by setting one eigenvalue
of W identically = 0,1, and the other eigenvalue arbitrary.

Proof: On the one hand, if W is of the form of Eq. (39),
then σ [W ] = 0 follows by inserting. On the other hand,
let σ [W ] = 0. We set k = (k1,k2,k3,k4), σ = (σ1,σ2,σ3,σ4),
d4k = dk1 dk2 dk3 dk4 and define

F (k,σ ) = (ε̃1ε̃2ε3ε4 − ε1ε2ε̃3ε̃4) log

(
ε̃1ε̃2ε3ε4

ε1ε2ε̃3ε̃4

)
� 0, (A2)

with the εi as in Sec. II; furthermore,

G(k,σ ) = |〈k1,σ1|k3,σ3〉〈k2,σ2|k4,σ4〉
− 〈k1,σ1|k4,σ4〉〈k2,σ2|k3,σ3〉|2. (A3)

Then

σ [W ] = π

4

∫
T4

d4k δ(k)δ(ω)
∑

σ

F (k,σ )G(k,σ ), (A4)

according to Eq. (26). Since all terms are non-negative,

F (k,σ ) G(k,σ ) = 0 (A5)

must hold for all σ and all k ∈ γ2 ∪ γdiag (see Fig. 2). On γ1

one has F = 0 and no extra information can be extracted.
F has the structure (x − y) log

(
x
y

)
, which is zero only if

x = y, equivalently if

log

(
ε̃1ε̃2ε3ε4

ε1ε2ε̃3ε̃4

)

= log

(
ε̃1

ε1

)
+ log

(
ε̃2

ε2

)
− log

(
ε̃3

ε3

)
− log

(
ε̃4

ε4

)
= 0.

(A6)

Defining the collision invariants as

�σ (k) = log

(
ε̃σ (k)

εσ (k)

)
, (A7)

condition (A6) reads

�σ1 (k1) + �σ2 (k2) = �σ3 (k3) + �σ4 (k4). (A8)

Note that the labeling of eigenvalues ε↑(k), ε↓(k) and
corresponding eigenvectors is arbitrary. Thus without loss of
generality we can assume that

〈k1,↑| k2,↑〉 	= 0 and thus 〈k1,↓| k2,↓〉 	= 0, (A9)

for all k1,k2 ∈ T.
Consider the contour γ2 (k1 = k4, k2 = k3) for σ =↑↓↑↓.

In this case, the second term on the right side of Eq. (A3)
vanishes, and thus

G(k,↑↓↑↓) = |〈k1,↑| k2,↑〉〈k1,↓| k2,↓〉|2 > 0, (A10)

by construction (A9). Therefore condition (A5) forces
F (k,↑↓↑↓) = 0 on γ2. Equation (A8) becomes after rear-
ranging terms

�↑(k1) − �↓(k1) = �↑(k2) − �↓(k2). (A11)

Since variables are separated, both sides of Eq. (A11) must be
constant, i.e.,

�↑(k) − �↓(k) = c, (A12)

for a fixed c ∈ R and all k ∈ T.
Next, we establish that the basis |k,σ 〉 has to be k

independent up to a k-dependent phase, which can be chosen
such that |k,σ 〉 = |σ 〉 with |↑〉,|↓〉 a fixed basis in C

2. If c = 0
in Eq. (A12), then �↑ = �↓, and it follows that W (k) = ε(k)1.
In particular, one can set |k,σ 〉 = |σ 〉.

In the other case, c 	= 0, consider the contour γ2 for
σ =↑↑↓↓: F (k,↑↑↓↓) is nonzero since

�↑(k1) + �↑(k2) − �↓(k2) − �↓(k1) = 2c 	= 0, (A13)

where we have used Eq. (A12) for the first equality. Thus
Eq. (A5) requires that G(k,↑↑↓↓) = 0 on γ2. Inserted into the
definition Eq. (A3) yields

〈k1,↑| k2,↓〉〈k2,↑|k1,↓〉 = 0, (A14)

for all k1,k2 ∈ T. Since the vectors |k,↑〉 and |k,↓〉 are an
orthonormal basis of C

2 for each fixed k, Eq. (A14) is
equivalent to

〈k1,↑| k2,↓〉 = 0, (A15)
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for all k1,k2 ∈ T. Keeping k2 fixed, this means that |k1,↑〉 =
const up to a phase, and similarly |k1,↓〉 = const. Without loss
of generality the phase factor can be set to 1, leaving invariant
the projectors Pσ (k) = |k,σ 〉〈k,σ |. In summary, |k,σ 〉 = |σ 〉
and G(k,σ ) = G(σ ).

As final step, consider γdiag for σ =↑↓↑↓. By direct inspec-
tion G(↑↓↑↓) = 1, thus Eq. (A5) requires F (k,↑↓↑↓) = 0.
Equation (A8) for k2 = 1

2 − k1 and k4 = 1
2 − k3 becomes

�↑(k1) + �↓
(

1
2 − k1

) = �↑(k3) + �↓
(

1
2 − k3

)
. (A16)

Since variables are separated, both sides must be constant, i.e.,

�↑(k) + �↓
(

1
2 − k

) = const, (A17)

for all k ∈ T. Combined with Eq. (A12), we obtain

�σ (k) + �σ

(
1
2 − k

) = const, (A18)

for σ =↑, ↓. One concludes that �σ is necessarily of the form

�σ (k) = fσ (k) − aσ with fσ (k) = −fσ

(
1
2 − k

)
, (A19)

for all k ∈ T and some aσ ∈ R. Plugging into Eq. (A12),
one deduces that f↑(k) − f↓(k) = const and, since fσ ( 1

4 ) =
0, it follows that f↑(k) = f↓(k) = f (k) independent of σ .
Summarizing, we arrive at

�σ (k) = f (k) − aσ . (A20)

Solving Eqs. (A20) and (A7) for εσ (k) leads to the claimed
form of Eq. (39).

Corollary 2: Under the constraint 0 < W < 1, all stationary
solutions, i.e., all solutions to C[W ] = 0, are precisely of the
form of Eq. (39):

Wst(k) =
∑

σ∈{↑,↓}
λσ (k) |σ 〉〈σ |, λσ (k) = (

ef (k)−aσ + 1
)−1

,

(A21)

with f (k) = −f ( 1
2 − k) for all k ∈ T.

Proof: Each Wst of the form of Eq. (A21) satisfies C[W ] =
0, which can be checked by inserting Wst into C[W ]: specifi-
cally, the commutator Eq. (11) defining Cc[Wst] vanishes since
Heff and Wst are diagonal. The dissipative collision operator
Cd[Wst] is zero due to the symmetry properties of γdiag and
the fact that f (k) = −f ( 1

2 − k). On the other hand, let W be
a solution of C[W ] = 0. Then

∂

∂t
W (k,t) = C[W ](k,t) = 0, (A22)

and, in particular,

σ [W ] = d

dt
S[W ] = 0. (A23)

According to Proposition 1, W is of the form of Eq. (A21).
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