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Structure of trajectories of complex-matrix eigenvalues in the Hermitian–non-Hermitian transition
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The statistical properties of trajectories of eigenvalues of Gaussian complex matrices whose Hermitian
condition is progressively broken are investigated. It is shown how the ordering on the real axis of the real
eigenvalues is reflected in the structure of the trajectories and also in the final distribution of the eigenvalues in
the complex plane.
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I. INTRODUCTION

A few years after Wigner’s [1] introduction of the Gaussian
ensemble of Hermitian random matrices as a basis of a
statistical theory of spectra of complex many-body systems,
Ginibre investigated properties of the Gaussian matrices when
the Hermitian condition is removed [2]. The Hermitian ones
have found applications [3], especially since the link with
the characterization of the manifestation of chaos in quantum
mechanics has been established [4]. More recently, the non-
Hermitian class has attracted great interest [5].

The interpolation between universality classes of matrices
is a standard subject of investigation in random matrix theories
[6]. The Wigner-Ginibre transition, which is our present
object of study, has already been a matter of investigation.
It has been established that asymptotically, its density of
eigenvalues, starting from Wigner’s semicircle law distribution
on the real axis, evolves as the transition proceeds through an
elliptic shape, ending up in a uniform circular distribution
at the Ginibre situation [7]. In addition, an asymptotic weak
non-Hermiticity regime [8] with important applications to
quantum open systems [9] has been found in the intermediate
regime of transition.

From the physical point of view, this transition can be seen
as the passage of a gas from a one-dimensional (1D) config-
uration to an isotropic two-dimensional (2D) configuration.
In fact, it is well known that the positions of eigenvalues of
Gaussian ensembles can be considered as those of charges of
a Coulomb gas. It also has been recognized that the real eigen-
values of the Hermitian matrices have properties of a 1D gas of
bosons, the so-called Girardeau gas [10]. On the other hand, the
joint distribution of the complex eigenvalues of the complete
non-Hermitian matrices, that is, the Ginibre matrices, have the
same structure of the Laughlin wave function of a 2D gas [11].

The behavior of individual eigenvalues of Hermitian ran-
dom matrices has been a matter of investigation since the
pioneering works that described the distribution of largest
eigenvalues, an achievement followed by several applications
[12]. Recently, the order statistics problem of obtaining the
distribution of all eigenvalues considered an ordered sequence
of random variables has been addressed [13]. Here we are
interested in studying how that ordering on the real axis
reflects on the eigenvalue trajectories in the complex plane
as the Hermitian condition is progressively removed and also
in the final eigenvalue distribution. In other words, do the

complex eigenvalues retain a memory of their initial positions
on the real axis? To do this investigation, we resort to a
system of differential equations that describes the motion of
the eigenvalues as a function of the parameter breaking the
Hermitian condition.

II. TRANSITION EQUATIONS AND RESULTS

The Ginibre ensemble consists of complex random matrices
S whose joint distribution of elements is given by

P (S) = exp[−tr(S†S)] (1)

in which no Hermitian condition is imposed. Especially for the
case in which we are interested, namely, complex matrices of
size N , their eigenvalues, for large values of N , are uniformly
distributed in a disk of radius

√
N. Beyond this circle, at a

radius r , the density decays as [14]
√

π exp[−u2]

2u
, (2)

where u = r − √
N, such that eigenvalues can be found up to

∼√
N + 2.

Taking a matrix out of this ensemble, we define a new
matrix H (t) by the relation

H (t) =
(

S + S†

2

)
+ t

(
S − S†

2

)
, (3)

where the parameter t varies from 0 to 1. It is relevant to
mention that others’ parametrizations have been used to study
this transition [9]; however, for our purpose of investigating
trajectories, the parameter t defined by Eq. (3) is more
convenient. Of course, our t is related to those other parameters
by a simple transformation. With t > 0, Eq. (3), together with
its adjoint, can be inverted to express S in terms of H and H † as

S =
(

1 + t

2t

)
H −

(
1 − t

2t

)
H †. (4)

Substituting Eq. (4) in Eq. (1), we obtain the density
distribution of the t-dependent matrix elements of H :

P (H ) = KN (t) exp

(
−tr

[
1 + t2

2t2
(H †H )

− 1 − t2

4t2
(HH + H †H †)

])
. (5)
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For t = 0 the matrices H (0) are Hermitian such that, in the
limit t → 0, Eq. (5) becomes

P [H (0)] = exp(−tr[H 2(0)]). (6)

Therefore, H (0) belongs to the Gaussian unitary ensemble
whose eigenvalues are distributed on the real axis according
to the Wigner semicircle law [14]:

ρ(x) = 1

π

√
2N − x2. (7)

The joint distribution of the eigenvalues apart from a constant
is given by

P (z1,z2, . . . ,zN ) = exp

[
−

N∑
k=1

(
x2

k + y2

t2

)] ∏
j>i

|zj − zi |2

= exp[−W (z1, . . . ,zN )], (8)

where

W (z1, . . . ,zN ) =
N∑

k=1

(
x2

k + y2

t2

)
− 2

∑
j>i

log |zj − zi |. (9)

Therefore, the eigenvalues can be considered as positions
of N point charges under the action of a confining potential
harmonic in the two Cartesian axis and a repulsive 1D
Coulomb force.

For intermediate values of t, that is, 0 < t < 1, asymptot-
ically, that is, when N becomes large, the eigenvalues fill an
ellipse [7] whose axes for our parametrization are

a =
√

2N

1 + t2
(10)

and

b = t2

√
2N

1 + t2
. (11)

As S = H (1) belongs to the Ginibre ensemble of non-
Hermitian matrices, H (t) undergoes a transition from the
Wigner to the Ginibre ensemble with eigenvalues moving
along trajectories in the complex plane. Their motion is
governed by a system of differential equations that can be
deduced in the following way [15]: The matrices H (t) are
diagonalized by the similarity transformation

D = Q−1HQ, (12)

where D is a diagonal matrix whose diagonal contains the
complex eigenvalues while Q is a matrix of size N that contains
the eigenvectors. However, the adjoint of Eq. (14),

D† = Q†H †(Q−1)†, (13)

shows that the inverse of the adjoint of Q diagonalizes the
Hermitian of H. All of these matrices are functions of the
parameter t. Taking the derivative (denoted by a dot) with
respect to t of Eq. (12), we obtain

Ḋ = [D,U ] + P, (14)

where

P = Q−1ḢQ (15)

and

U = Q−1Q̇ = −Q̇−1Q, (16)

while for the derivative of P we have

Ṗ = [P,U ] + Q−1ḦQ. (17)

The diagonal part of (14) gives

Ḋkk = żk = Pkk, (18)

while the off-diagonal part

Ḋkl = 0 = DkkUkl − UklDll + Pkl (19)

yields

Ukl = − Pkl

zk − zl

. (20)

Using the arbitrariness of the matrix U we impose the
necessary condition that its diagonal elements vanish, that is,
Ukk = 0. Finally, from (16) we derive the equations

Q̇ij =
∑
l �=j

QklPlj

zl − zl

(21)

and

Q̇−1
ij =

∑
l �=i

PilQ
−1
lj

zi − zl

(22)

for the evolution of the eigenvectors. The above equations,
together with the initial conditions provided by the Hermitian
matrix H (0), form a complete system of first-order differential
equations that can be solved numerically to obtain eigenvalues
and eigenvectors along the transition.

Insofar as the dependence of H with the parameter t has
not been specified, this set of differential equations is general.
Assuming this dependence to be given by Eq. (3), the second
derivative Ḧ vanishes due to the linear dependence with t and,
explicitly, Eq. (17) gives

Ṗkk =
∑
m�=k

2PkmPmk

zk − zm

(23)

for the diagonal elements and

Ṗkl =
∑

m�=k,m�=l

PkmPmk

(
1

zk − zm

+ 1

zl − zm

)
(24)

for the other elements. These two equations, together with
Eq. (19), form a set of 2N (N + 1) coupled differential
equations to be integrated. Regarding the initial conditions,
since H (0) is Hermitian, its eigenvalues are real and its
eigenvector matrix is unitary, that is, Q−1 = Q†. Taking this
into account, we find that initially the matrix P is given by

P (0) = Q†(0)
S − S†

2
Q(0), (25)
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FIG. 1. The lines are N = 20 eigenvalue trajectories generated
integrating the equations of motion, and the dots over the lines are
eigenvalues obtained by diagonalizing the matrix.

such that

P (0) = −P †(0), (26)

whose diagonal part

Pkk(0) = −P ∗
kk(0) (27)

shows that the diagonal elements of P (0) are pure imaginary.
Substituting these initial “velocities” in Eq. (18), we find that
the eigenvalues leave the real axis at t = 0 perpendicularly.

We observe that integrating these equations between the
initial value t = 0 and some final value t = tf is equivalent
to diagonalizing H (t) at each intermediate value of t. This is
illustrated in Fig. 1, in which N = 20 eigenvalue trajectories
obtained performing the integration from t = 0 to t = 1,

FIG. 2. (Color online) Ensemble of trajectories of 60 matrices of
size N = 20 generated evolving eigenvalues initially at the edges, the
middle parts, and the center of the spectra, together with the density
circle of radius

√
N.

FIG. 3. (Color online) Ensemble of eigenvalues at the Ginibre
regime evolved from eigenvalues at the edges, the middle parts, and
the center of the spectra, together with the density circle of radius

√
N.

the equations of motion, are compared with the result of
diagonalizing the matrices at several intermediate values of
t. The agreement is perfect, showing that the above system is
reliable and amenable to numerical integration.

Figure 1 also shows that eigenvalues may have complicated
trajectories in the complex plane. Therefore, in order to
reveal structures the trajectories may have, it is necessary to
accumulate results of many simulations, that is, to construct
an ensemble. This is done in Fig. 2, in which trajectories
were obtained by evolving eigenvalues of 60 different initial
Hermitian matrices, clearly exhibiting a structure. Indeed,
trajectories starting on the real axis at the edge cover regions
of a meniscus shape whose curvature decreases as eigenvalues
more to the center are considered. Trajectories starting at the
central region of the initial spectrum move inside strips. The
presence of these strips is better seen in Fig. 3, where points
correspond to eigenvalues at the end of the transition, that is,
for t = 1. The structure of the distribution of points shows that,
statistically, eigenvalues preserve to some extent the relative
positions they had on the real axis.

III. CONCLUDING REMARKS

In conclusion, evolving under the action of the external
confining harmonic potential and the repulsion force among
them, eigenvalues present structures in their trajectories and
in their final distribution in the complex plane that reflect the
ordering they have on the real axis. We remark that the present
study can be considered an instance of the so-called parametric
statistics used to characterize the evolution of individual
eigenvalues as a function of an external parameter [16]. In
the case of complex eigenvalues, parametric evolution has
been experimentally investigated by considering resonances
trapped in an open microwave cavity in which the slit width
can be varied [17].
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