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Diffusion in a soft confining environment: Dynamic effects of thermal fluctuations
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A dynamical model of a soft, thermally fluctuating two-dimensional tube is used to study the effect of thermal
fluctuations of a confining environment on diffusive transport. The tube fluctuations in both space and time are
driven by Brownian motion and suppressed by surface tension and the rigidity of the surrounding environment.
The dynamical fluctuations modify the concentration profile boundary condition at the tube surface. They decrease
the diffusive transport rate through the tube for two important cases: uniform tube fluctuations (wave vector,
q = 0 mode) for finite tube lengths and fluctuations of any wave vector for infinitely long tubes.
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I. INTRODUCTION

Diffusion in channeled structures plays a central role in
many chemical and biological processes. Crystalline chan-
neled structures called zeolites are widely used in chromatog-
raphy and as catalysts [1–3], ion channels regulate the flow of
ions through cellular membranes [4,5], nuclear pore complexes
allow the transport of biological molecules in and out of the cell
nucleus [4,6], and recently, synthetic nanopores have been used
to detect micro-RNA molecules [7,8]. Hence, considerable
effort has been devoted to the development of theoretical
models in order to improve the general understanding of the
diffusion mechanisms in porous materials (for example, see
Refs. [5,9–16]).

In a recent microscopic study of diffusion in zeolites by
Palmieri and Ronis [10–12], the energy exchange between
the vibrating crystal lattice and the diffusing component
was included with a high level of accuracy. For the case of
diffusion in a system with large energy barriers, the lattice
vibrations were shown to significantly reduce the diffusion
rate through the channel by two different mechanisms. First,
the vibrations reduced the probabilities for the guest to cross
energy barriers by increasing the activated state free energy.
Second, they also decreased the correlation time of the of
guest microscopic dynamics.

While microscopic models provide a very detailed descrip-
tion of the system, they come with a high computational cost,
especially for complex biological systems; they also tend to
be fairly specific. To gain conceptual insight into the generic
features of the phenomenon we study diffusion in channeled
structures from a phenomenological “coarse-grained” point of
view. The first macroscopic theory for the diffusion in a tube of
varying cross section is given by the Fick-Jacobs equation [17],
and later extended by Zwanzig [18] and Reguera and Rubı̀ [19].
These procedures map the three-dimensional diffusion process
to a one-dimensional process along the longitudinal axis of the
tube. Because the force exerted by the tube only acts at the
boundaries, the effect of varying cross section of the tube is
purely entropic. These early studies opened the door to many
others. The same mapping procedure was done in Ref. [20],
but with the hard walls of the tube replaced by soft walls.
Burada and co-workers [21,22] proposed control mechanisms
for external force induced transport inside irregular channeled
structures with entropic barriers. Also related is the directed
transport that can arise from the motion of the tube if that

motion is biased towards asymmetric tube conformation. This
phenomena was observed experimentally [23] and predicted
theoretically [24]. Numerical simulations of an overdamped
Brownian particle in an oscillating asymmetric tube also led
to directed transport [25].

These recent studies considered the diffusion inside static
tubes, simplified two-state tube model (one state is the flat tube,
the other the deformed tube) with specific transfer rates or a
tube whose boundaries oscillate with a given frequency. None
of them includes the effects of unavoidable dynamical thermal
fluctuations. Hence, the point of this paper is to quantify the
effects of such fluctuations on the diffusion inside a soft tube.
By soft tube, we mean that although amplitude of the tube
fluctuations is constrained by elastic properties of the system,
as is the case for polymeric and membrane systems, these
fluctuations can be large. Our starting point is the standard
diffusion equation,

∂C(x,t)

∂t
= D∇2C(x,t), (1.1)

where C(x,t) is the concentration profile and D is the diffusion
coefficient. The role of the thermal fluctuation here is very
different from the one studied by Palmieri and Ronis. The
transport process does not involve any barrier crossing events.
In principle, the thermal fluctuations can also decrease the
value of D in Eq. (1.1), but this effect should not be significant
if the tube is sufficiently large. On the other hand, the transport
is affected by fluctuation induced motion of the diffusing
particles inside the tube as follows. For a uniform and static
tube separating two bulk phases, the steady-state concentration
profile inside the tube should be linear along the tube and uni-
form in the other directions. Local equilibrium is maintained
perpendicular to the tube axis. The fluctuations of the tube
will modify the transport process by constantly breaking that
local equilibrium and by “pushing” diffusing particles along
the tube axis. To quantify these effects, we use the relation
between the steady-state flux J and the concentration at both
ends of the tube to define an effective diffusion coefficient,

Deff = − JL

[C(x = L,t) − C(x = 0,t)]
. (1.2)

For a static and uniform tube at steady state,
C(x = L,t) − C(x = 0,t) = −JL/D and Deff = D. In this
paper, we report how Deff changes when dynamical thermal
fluctuations of the tube are incorporated. Note that the long
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term objective of this research is to understand and characterize
transport processes in confining and soft environment where
large thermal fluctuations are observed. For example, this
is the case of many biological systems and synthetic DNA
brushes that were recently used to design biological chips [26].

The paper is organized as follows. Section II describes
the system that we model. The boundary conditions for the
concentration profile are specified and the thermal fluctuations
of the tube are expressed as functions of the surface tension of
the tube and elastic constants of the surroundings. In Sec. III,
we show how the concentration profile can be obtained from
a perturbative expansion in the displacements of the tube
boundaries, which are assumed to be small. Section IV presents
the results for the effective diffusion constant Deff that is
smaller than D for two illustrative cases: uniform fluctuations
of finite tubes and undulations of long tubes. Finally, Sec. V
summarizes our main results and concludes by identifying
future avenues and extension of this work as well as its
implications for directed transport.

II. DESCRIPTION OF THE SYSTEM

For mathematical simplicity, we consider diffusion in a
two-dimensional (2D) soft tube whose boundaries undergo
thermal fluctuations. The tube lies along the x axis, its
boundaries are symmetric with respect to a reflection about
x = 0 and are defined by y = ±h(x; t) = ±[h0 + δh(x; t)] at
any particular times (see Fig. 1); here, δh(x; t) is the time and
space dependent fluctuation of the tube surface position, which
in the absence of fluctuations is located at y = h0. The tube
length is equal to L and constant flux J in the tube (at x = 0)
and out of the tube (at x = L) is imposed,

−D

(
∂C(x,y; t)

∂x

)
x=0

= −D

(
∂C(x,y,t)

∂x

)
x=L

= J. (2.1)

It is more common to impose constant concentration at both
ends of the tube (which corresponds to a tube separating
two reservoirs of different concentrations). Remember that
the effect of the tube fluctuations on diffusive transport is
quantified by Deff defined in Eq. (1.2). Our procedure solves
for the concentration profile by fixing J at both ends of the

h0

h(x)

L

x

y

J J

FIG. 1. (Color online) Schematic of 2D diffusion in a fluctuating
tube. The tube has length L and lies along the x axis. Its boundaries
are given by y = ±h(x; t) = ±[h0 + δh(x; t)] where h0 is the average
tube radius. Constant flux J boundary conditions are imposed at both
ends of the tube [Eq. (2.1)]. Tube fluctuations modify the no flux
condition at the tube boundaries according to Eq. (2.2).

tube. The resulting concentration difference is used to calculate
Deff . Equivalently, we could have solved for the fluxes by fixing
the concentration at both ends. Our boundary condition was
chosen because it simplifies the mathematical analysis.

The other boundary condition for the concentration at
the tube surface takes the tube motion into account. At that
boundary, there are two contributions to the flux normal to the
tube. The first one is written as −n̂(x,t) · D∇C(x,y; t) where
n̂(x,t) is the outward normal of the tube at position x and
time t . This contribution comes from the diffusive flux close
to the tube boundary. The second one is written as n̂(x,t) ·
vhC(x,y; t) where vh = [0,∂δh(x; t)/∂t] is the velocity of the
tube at position x and time t (the tube has no velocity in the x

direction). This contribution is the dynamic one. It comes from
the fact that the boundary “pushes” or “drags” the neighboring
diffusing particles. For the diffusing particles to remain in the
tube at all times, these two contribution to the net flux must be
equal. Hence we obtain[

C(x,y; t)
∂δh(x; t)

∂t
∓ D

∂C(x,y; t)

∂x

∂δh(x; t)

∂x

+D
∂C(x,y; t)

∂y

]
y=±[h0+δh(x;t)]

= 0. (2.2)

At this point, it is important to point out that, writing Eqs. (1.1)
and (2.2), we ignored any coupling with the hydrodynamic
modes of the solvent. In reality, tube motion induced flows
will contribute to the transport convectively. This effect goes
beyond the scope of the current analysis and will be considered
in the future.

The problem is fully specified once we characterize the tube
fluctuations, δh(x; t). The main assumption of this work is that
the tube fluctuations are unaffected by the diffusion process.
In other words, the tube fluctuations affect the diffusion, but
the diffusion does not affect the tube. This assumption can be
relaxed in future studies. For now, it allows us to construct a
simple model for the tube free energy. First, each fluctuation
mode (with wave vector q) gives rise to an energy cost due to
(the 2D) line tension γ [27] of the tube boundary,

Fγ = γ

2

∞∑
q=−∞

(
2πq

L

)2

δh(q; t)δh(−q; t), (2.3)

where

δh(x; t) = 1

L1/2

∞∑
q=−∞

δh(q; t)ei2πqx/L (2.4a)

and

δh(q; t) = 1

L1/2

∫ L

0
dx δh(x; t)e−i2πqx/L (2.4b)

relate the local fluctuation of the tube boundary δh(x; t) to
its Fourier representation δh(q; t). We will also work with the
time Fourier transform of h(x; t) defined as

δh(x; t) = 1

(2π )1/2

∫ ∞

−∞
dω δh(x; ω)eiωt , (2.5a)

and

δh(x; ω) = 1

(2π )1/2

∫ ∞

−∞
dt δh(x; t)e−iωt . (2.5b)
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As seen from Eq. (2.3), line tension alone leads to unstable
q = 0 mode, which can fluctuate with no energy cost. This is
a consequence of the model that does not contain solvent and
hence does not conserve the volume inside the tube. While
this may be applicable for some narrow zeolitic channels,
in larger pores such as ion channels or nuclear pores, the
solvent incompressibility and/or hydrodynamic modes can
further modify the fluctuation spectrum. Here, we propose
a simple model in which the elasticity of the surroundings
constrains the magnitude of the q = 0 fluctuations; this may
be relevant to diffusion in the systems that we just mentioned.

Consider a tube embedded in a 2D elastic medium that is
tethered at distance H away from the tube. 2D linear elasticity
[28] can then be used to derive the following free-energy
associated with tube fluctuations:

FE =
∞∑

q=−∞
Gqδh(q; t)δh(−q; t), (2.6)

where Gq is a function that depends on the compressional κ

and shear μ moduli as well as the thickness of the surrounding
elastic medium H . Here, the only relevant limit of G(q) are
small and large values of q,

Gq =
{ κ+μ

2H
q → 0∣∣ 2πq

L

∣∣μ κ+μ

κ+2μ
q → ∞ .

Hence, the medium deformations stabilize the small q fluctu-
ations.

Assuming that the large q fluctuations are dominated by the
restoring forces due to line tension of the tube (proportional
to q2), we use the following interpolation formula for the tube
free-energy:

Ftube = 1

2

∞∑
q=−∞

�qδh(q; t)δh(−q; t), (2.7)

where

�q = γ0 + γ

(
2πq

L

)2

, (2.8)

and where γ0 = (κ + μ)/H . We have neglected the linear term
in q that appears in Eq. (2.7) at large q. In that range, the
surface tension contributes a term ∝q2 to the free energy which
dominates the linear elastic term. Note that the details of the
mechanism that leads to γ0 is not important for the purpose of
the present work. It is only important to understand that, for
most realistic systems, the q = 0 modes should be stable. Here,
we proposed a specific origin for γ0 based on linear elasticity,
but other mechanisms could also stabilize that mode.

The time dependence of the tube fluctuations are obtained
from the Langevin equation,

∂δh(q; t)

∂t
= −ξ�q δh(q,t) + ζ †(q; t), (2.9)

where ξ is a phenomenological parameter that determines the
fluctuations time scale [29]. The second fluctuation-dissipation
theorem relates the white noise associated with the fluctuations
and the damping,

〈ζ †(q; t)ζ †(q ′; t ′)〉 = 2ξkBT δq,−q ′δ(t − t ′). (2.10)

In the last expression, we introduced the Dirac δ function δ(t),
the Kronecker δ function δq,−q ′ , the Boltzmann constant kB ,
and the temperature T . From Eq. (2.9), it is straightforward to
show that the tube fluctuations are fully determined by the fact
that 〈δh(x; t)〉 = 0, and by

〈δh(q; t)δh(q ′; t ′)〉 = kBT

�q

e−ξ�q |t−t ′|δq,−q ′ (2.11)

or

〈δh(q; ω)δh(q ′; ω′)〉 = 2ξkBT

ξ 2�2
q + ω2

δq,−q ′δ(ω − ω′).

(2.12)
The next section describes the procedure to obtain an effective
diffusion coefficient by imposing the boundary conditions
given by Eqs. (2.1) and (2.2) on the diffusion equation,
Eq. (1.1), with tube fluctuations defined by Eq. (2.11) or (2.12).

III. PERTURBATION THEORY

We consider small amplitude fluctuations and find the
first nonzero corrections to the concentration profile. In
other words, we write h(x; t) = h0 + εδh(x; t) and derive a
perturbation expansion for the particle concentration C(x,y; t)
in terms of ε,

C(x,y; t) = C0(x) + εC1(x,y; t) + ε2C2(x,y; t) + O(ε3).

(3.1)

ε is an expansion parameter that keeps track of the various
orders of the fluctuation amplitude δh(x; t). We will later set
it to 1. Even for small fluctuations, we must include terms up
to second order in ε because the first order corrections vanish
when averaged over the fluctuations.

For the case of a straight 2D tube with no undulations, the
unperturbed solution C0(x) is the usual linear concentration
profile,

C0(x) = − J

D
(x − L), (3.2)

and is independent of y and t . The first and second order
corrections to C both satisfy the diffusion equation, Eq. (1.1),
and the following boundary condition at x = 0 and L:

−D

(
∂C1(2)(x,y; t)

∂x

)
x=0

= −D

(
∂C1(2)(x,y,t)

∂x

)
x=L

= 0.

(3.3)

The constant flux boundary condition at both ends of the tube,
Eq. (2.1), is satisfied by C0 alone. To impose the boundary
condition at the surface of the tube, we rewrite Eq. (2.2) to
order ε and ε2 to get

D

(
∂C1(x,y; t)

∂y

)
y=h0

= −C0(x)
∂δh(x; t)

∂t
+ D

∂C0(x)

∂x

∂δh(x; t)

∂x
, (3.4)
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which is the boundary condition for C1, and

D

(
∂C2(x,y; t)

∂y

)
y=h0

= −
[
D

(
∂2C1(x,y; t)

∂y2

)
δh(x; t) − D

(
∂C1(x,y; t)

∂x

)

× ∂δh(x; t)

∂x
+ C1(x,y; t)

∂δh(x; t)

∂t

]
y=h0

, (3.5)

which is the boundary condition for C2. Clearly, one must first
solve for C1 and then for C2.

Tube fluctuations destroy the uniformity of the unperturbed
concentration profile along y. Hence, we define the following
concentration profile which is averaged within the tube along
the y-axis and ensemble averaged (or time averaged for ergodic
systems) over the tube fluctuations,

C(x; t) ≡
〈

1

h0 + εδh(x; t)

∫ h0+εδh(x;t)

0
dy C(x,y; t)

〉
, (3.6)

where 〈· · · 〉 denotes the thermal average. C(x; t) is the
quantity that we will use in Eq. (1.2) to define the effective
diffusion coefficient. For small fluctuations, we expand the
last expression order by order in ε and use the fact that
〈δh(x; t)〉 = 0 to obtain

C(x; t) = C0(x) + ε2C2(x; t) + O(ε4), (3.7)

where

C2(x; t) = 1

h0

∫ h0

0
dy 〈C2(x,y; t)〉

− 1

h2
0

∫ h0

0
dy 〈C1(x,y; t)δh(x; t)〉

+ 1

h0
〈C1(x,y = h0; t)δh(x; t)〉. (3.8)

From this definition and Eq. (1.2), the effective diffusion
coefficient is written as

Deff = D

1 − D
JL

�C2
, (3.9)

where

�C2 = C2(x = L; t) − C2(x = 0; t). (3.10)

The definition of Deff is meaningful only if C2 does not depend
on time, which is indeed the case since we average over the
tube fluctuations.

IV. RESULTS

Details of the perturbation theory to obtain �C2 are given
in Appendix A. Here, we summarize the main results. One
important point is that the first and second order corrections to
the concentration profile are written as follows after a Fourier
transform in time:

C1,2(x,y; ω) =
∞∑
l=1

f
(1,2)
l (ω) cos (πlx/L) cosh [λl(ω)y],

(4.1)

where

λl(ω) =
√

iω

D
+
(

πl

L

)2

. (4.2)

This form of C1,2(x,y; ω) guarantees that the boundary
condition at the tube ends, Eq. (3.3), as well as the diffusion
equation (1.1), are obeyed. Only the coefficients f

(1,2)
l need

to be determined. This is done from the conditions at the tube
boundaries, Eqs. (3.4) and (3.5).

The full expression for �C2 is given by the sum of the
two terms in Eqs. (A19) and (A29). The result is an infinite,
multiple sum expression that is quite involved but that holds for
all values of the system’s parameters as long as δh(x,t) is small.
Next, we explore various limits where simpler expressions for
�C2 and Deff can be obtained.

A. Uniform fluctuations

This is the simplest scenario. The fluctuations are indepen-
dent of x. In other words, the tube walls remain flat on both
sides, but the distance between them fluctuates as a function
of time. In this case, �C2 is given by Eq. (A19) but only the
q = 0 term is kept in the sum over all q. The result is

�C2 = −8JξkBT

D2h2
0π

2

∞∑
l=1,odd

1(
ξγ0

D
+ (πl

L

)2)
l2

= − JkBT

Dh2
0γ0

(
1 −

√
4D

ξγ0L2
tanh

√
ξγ0L2

4D

)
. (4.3)

This expression gives more insight when written in terms
of parameters that reflect the physics. We can define τ =
(tD,0/tf,0)1/2 where tD,0 = L2/(4D) is the characteristic time
scale for the diffusing particle to cross the entire tube length
and tf,0 = 1/(ξγ0) is the characteristic uniform fluctuation
time scale. The effective diffusion coefficient is then obtained:

Deff = D

1 + kBT

γ0h
2
0L

(1 − τ−1 tanh τ )
. (4.4)

This form leads to a simple interpretation. When the diffusion
time is much longer than the characteristic fluctuation time
scale, tD,0 � tf,0 (τ → ∞), many fluctuation events modulate
the transport process and the effect on Deff is maximized. On
the other hand, when tD,0 � tf,0 (τ → 0), the fluctuations are
slow compared to the diffusion process, so that the particle
traverses the tube before the fluctuations can be “felt” so that
there is almost no effect and Deff = D. In summary,

Deff =
{

D

1+kBT /γ0h
2
0L

when τ → ∞,

D when τ → 0.

Note that (1 − τ−1 tanh τ ) monotonically increases from 0
to 1 as τ is varied from 0 to ∞. This means that uniform
fluctuations always decrease the effective diffusion coefficient.
For fluctuations evolving with any significant rate, the system
“wastes” a lot of time in trying to equilibrate along the y axis
while never reaching such a local equilibrium state. Hence, the
effective diffusion along x—i.e., the tube axis—is reduced.
The maximum reduction is determined by 〈δh(t)2〉/h2

0 =
kBT /γ0h

2
0L. The reduction is larger at higher temperature and

for softer tubes (smaller γ0). The last equation also predicts

031111-4



DIFFUSION IN A SOFT CONFINING ENVIRONMENT: . . . PHYSICAL REVIEW E 86, 031111 (2012)
D

ef
f

/D

2 4 6 8 10

0.2

0.4

0.6

0.8

1.0

τ

FIG. 2. Uniform tube fluctuations, δh(q,t) = δ0,qL
1/2δh(t). The

effective diffusion coefficient is monotonically decreasing with
increasing τ = (tD,0/tf,0)1/2 [see Eq. (4.4)]. From the top to the
bottom curve, kBT /γ0h

2
0L = 1, 2, 4, and 8.

that the correction will be small for very long tube, i.e., when
kBT /γ0h

2
0L � 1. When the tube is long, the energetic cost

associated with the uniform displacement of the boundaries is
large. Hence, the fluctuations are small and so is the correction
to D. The results of the uniform tube fluctuations case are
summarized in Fig. 2.

B. Long tube: Spatially dependent dynamical fluctuations

The infinite multiple sum expression for �C2 given by
Eqs. (A19) and (A29) simplifies considerably for a very long
tube. In that limit, �C can be written as

�CL→∞ = −JL

D
+ �C2,L→∞

= −JL

D

{
1 + ξkBT

2πD

∫ ∞

−∞
dq

1

�(q)2h2
0

+ ξkBT

2π

∫ ∞

−∞
dq q2 coth [�(q)h0]

�(q)h0

1

ξ�(q)

− ξkBT

4πD

∫ ∞

−∞
dq q2 coth [�(q)h0]

�(q)3h0

×
(

1 + �(q)h0

cosh (�(q)h0)

)}
, (4.5)

where �(q) and �(q) are defined in Eqs. (B4) and (B5). The
derivation of this expression is found in Appendix B. Note

that �CL→∞ is still given in terms of one infinite sum here
approximated as an integral. The L → ∞ limit has eliminated
one infinite sum out of the two in the original expression.

Before simplifying this result further, we can already derive
some general insight from the form of �CL→∞. Clearly, the
second term inside the curly brackets on the right-hand side
of the last equation is always positive and hence decreases
Deff . The sign of the third and fourth terms is less obvious but
can nevertheless also be shown to be always positive. If we
combine them and write the common factor of the integrand
as follows,

F (X,Q) = h2
0

[
2X2

X2 − Q2
−
(

1 + X

cosh X

)]
, (4.6)

with X = �(q)h0 and Q = qh0, it is easy to show that
F (X,Q) > 0 for ξ�(q)h2

0/D = X2 − Q2 > 0. Because this
condition is satisfied for all values of the system parameters
[see Eq. (B5) for �(q)], we see that the last term inside the
curly brackets in Eq. (4.5) is also always positive. Note that
the proof treated X and Q independently, which they are
not. But F (X,Q) > 0 for all X and Q implies that F will
also be positive for the special case where X is a function
of Q. Hence, we have shown that, for large L and any other
system’s parameter, −�CL→∞ is always increased by the tube
fluctuations. According to Eq. (1.2), this means that thermal
fluctuations always decrease the effective diffusion coefficient
for long tubes.

The q = 0 contribution of the integral in Eq. (4.5) does not
quite reproduce the behavior predicted by Eq. (4.3). Rather,
the large τ limit of Eq. (4.4) is obtained. This occurs because,
in the limit of large L, the ratio tD,0/tf,0 → ∞. In other words,
for a very long and uniform tube, even if the tube fluctuates
slowly, the diffusing species spend enough time in the tube to
feel the effect of the fluctuations.

The integral that appears in the last term of Eq. (4.5) cannot
be performed analytically. Moreover, one can show that it
diverges logarithmically (the integrand goes like q−1 at large
q). On the other hand, the Fourier expansion contains an upper
cutoff that determines the largest wave number of the system,
proportional to the inverse of the smallest characteristic
distance in the microscopic structure of the tube—usually a
molecular size. We denote this cutoff by Q. We can obtain
an analytical expression for the integral if we assume that
ξγ0h

2
0/D > 1. In this case, �(q)h0 > 1, coth [�(q)h0] ≈ 1

and 1/ cosh [�(q)h0] is exponentially small. Using these
approximations, the integral is performed to give

�CL→∞

= −JL

D

⎧⎨
⎩1 + kBT

16πγ0
(
D3t2

D,QtD,h0

)1/2

⎡
⎣2

( tf,Q
tf,0

+ 2 tD,Q
tf,0

)
(
1 + 4 tD,Q

tf,Q

)3/2 ln

{[
tf,0

4tD,Q

]1/2[(
1 + 4

tD,Q
tf,Q

)1/2

+
(

1 + 4
tD,Q
tf,Q

+ 4
tD,Q
tf,0

)1/2]}

− 2
tf,Q
tf,0

tanh−1

(
1 + 4

tD,Q
tf,Q

+ 4
tD,Q
tf,0

)−1/2

+
2π
( tD,Q

tf,0

)1/2( tD,Q
tD,h0

)1/2

(
1 + 4 tD,Q

tf,Q

)1/2 +
4
( tD,Q

tf,0

)
(
1 + 4 tD,Q

tf,Q

)(
1 + 4 tD,Q

tf,Q
+ 4 tD,Q

tf,0

)1/2

⎤
⎦
⎫⎬
⎭ (4.7)

and

Deff = − JL

�CL→∞
,
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where tf,0 is the characteristic time for the uniform fluctuations
(q = 0) defined in the previous section, tD,Q = 1/(4DQ2) is
the characteristic diffusion time scale to sample the largest
wave-number undulation, tD,h0 = h2

0/(4D) is the characteristic
diffusion time scale to sample the tube cross section, and
tf,Q = 1/(ξγQ2) is the characteristic time for the maximum
wave-number fluctuations. For large Q, tf,0/tf,Q, tf,0/tD,Q,
and tD,h0/tD,Q are all large. Hence the dominant contribution to
Eq. (4.7) comes from a term that contains the logarithm and its
argument grows linearly with Q at large Q. Equation (4.7) was
tested against the full numerical integration of Eq. (4.5) and ex-
cellent agreement was obtained for all cases. Note that we have
tried to approximate Eq. (4.5) by dropping all terms in Eq. (4.7)
expect the one that contains the logarithm and that dominates at
largeQ. This approximation was not always in good agreement
with the full numerical integration of Eq. (4.5), especially when
the ratio tf,Q/tD,Q was large. Hence, we decided to work with
the complete expression that appears in Eq. (4.7).

The decrease of the effective diffusion arises from several
contributions. First, it comes from the time the system spends
trying to follow the fast motion of the tube at large Q. This
contribution is represented by the second term on the right-
hand side of Eq. (4.5). Second, it comes from the time it
takes for the diffusing particles to sample undulations at the
surface of the tube. This contribution is the third term on
the right-hand side of Eq. (4.5). Note that this terms survives
if the fluctuations are static (ξ → 0). Finally, the fluctuating
undulations are also able to “push” the diffusing particles along
the direction of the tube axis. This contribution is represented
by the fourth term on the right-hand side of Eq. (4.5). This
effect contributes to an increase in Deff , but it never dominates
over the other contributions that tend to decrease the effective
diffusion coefficient.

The overall competition of all terms leads to the closed form
expression given by Eq. (4.7). It is then simple to show that the
reduction of Deff gets larger with increasing temperature T and
decreasing average tube radius h0 (or tD,h0 ), elastic restoring
force of the elastic medium γ0, diffusion coefficient D, and
characteristic uniform fluctuation time scale tf,0 (or 1/ξ ) for
fixed tf,Q and tD,Q. The two other independent variables,
the tube surface tension γ and the wave-number cutoff Q,
are both absorbed in the definition of the two time scales
tf,Q and tD,Q, respectively. Note that the tube diffusion time
scale tD,0 defined in the previous section does not appear
in the last expression. This happens because it tends to 0
as L → ∞.

It might be interesting to know if the effective diffu-
sion coefficient can be optimized by varying the system
parameters. Clearly, this cannot arise from the prefactor
χ = kBT /16πγ0(D3tD,h0 )1/2 since this term is monotonic
with respect to any of the variables. Figure 3 answers this
question by looking at χ (D/Deff − 1). A maximum of that
function is equivalent to a maximum reduction of Deff .
No maxima are observed. For fixed tD,Q, the reduction of
Deff decreases monotonically with tf,Q. Maximum reduction
occurs for large tf,Q (small surface tension). In this regime,
the nonzero wave-number fluctuations are slow compared to
typical diffusion time scales to sample undulations. Hence,
this shows that the maximum reduction of Deff occurs when
the nonzero wave-number fluctuations are slow, contrary to the

χ(
D

/D
ef

f -
1)

t
f,Q

10−4 0.001 0.01 0.1 1

0.01

0.1

1

10

100

FIG. 3. The effects of tf,Q and tD,Q on Deff is shown by plotting
χ (D/Deff − 1) with χ = kBT /16πγ0(D3tD,h0 )1/2 against tf,Q. From
the top to the bottom curve, tD,Q = 0.0001,0.001,0.01,0.1. When
this function is large, Deff is small.

uniform fluctuations which decrease Deff significantly when
they are rapid. For smaller values of tf,Q, the undulations
fluctuate more rapidly and hence push the diffusing particles
along the tube axis, thereby contributing to an increase in Deff ,
which nevertheless always remains smaller than D.

V. DISCUSSION

In this paper, we considered the diffusion inside a two-
dimensional tube that undergoes thermal fluctuations as a
model for diffusive transport in a “soft” confining environment.
Note that we considered thermal fluctuations because their
statistical properties are well known, but the same method
could be applied to systems whose fluctuations might be
driven by nonequilibrium processes. Such soft environments
are commonly encountered in many biological systems and
can give rise to large amplitude fluctuations. In the model,
the fluctuations are fully specified by the line tension of the
tube and the rigidity of the surrounding environment. The
effects of the tube undulations on the concentration profile of
the diffusing particles are taken into account by the boundary
condition at the tube surface. From the relationship between
the concentration difference at both ends and the flow in and
out of the tube, an effective diffusion coefficient was obtained
[see Eqs. (4.4) and (4.7)]. In the two cases considered (uniform
fluctuations and long tube with space and time dependent
fluctuations), the thermal fluctuations always decrease the
effective diffusion.

This result extends the microscopic observations made by
Palmieri and Ronis [10–12] in their studies of transport pro-
cesses in zeolites. There, it was shown that the diffusion inside
channeled structure was well described by the Smoluchowski
equation [30],

∂C(x; t)

∂t
= ∂

∂x

(
D0e

−βW (x) ∂

∂x
eβW (x)C(x; t)

)
, (5.1)

where the thermally fluctuating crystal lattice was shown
to decrease the transport rate by both decreasing D0 and
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increasing the potential energy barriers in the free energy
W (x). Hence, the thermal vibrations were shown to decrease
the transport rate through zeolitic channels by two different
mechanisms. They decrease the probability of barrier crossing
events and help to decorrelate the diffusing guest motion as
it moves inside the channel. In this work, we considered the
diffusion inside a larger tube where many diffusing guests are
coarse grained and represented by a concentration field. The
interior of the tube is energetically flat [W (x) is a constant]
and the tube boundaries do not have any long range interaction
with the diffusing species. The only boundary condition at
the tube surface forces the particles to remain in the tube
as it fluctuates. For this system, the observations made by
Palmieri and Ronis probably mean that the tube fluctuations
will have a small effect on D itself. In other words, diffusing
guest dynamics decorrelation time will be dominated by
the interactions with the solvent. Remember that we have
assumed that the diffusing component does not perturb the
tube.

However, we have shown that on top of this effect, the
effective diffusion through a tube of macroscopic length is
further decreased by other mechanisms. For spatially uniform
thermal fluctuations, only one mechanism plays a role. The
local equilibrium along the direction perpendicular to the tube
axis is broken by the fluctuations. The system constantly tries
to re-establish that local equilibrium and the net flow along the
tube is reduced. For nonuniform fluctuations, three different
mechanisms result in a decreased Deff . The fact that local
equilibrium is broken along the direction perpendicular to the
tube still contributes to decrease Deff , but this effect becomes
less and less important as the fluctuation wave number
increases. At large wave numbers, two other effects dominate.
First, the system “wastes” time sampling the undulations
created by the fluctuations. Note that this effect survives even
if the fluctuations are quasistatic. Second, the nonuniform
fluctuations can “push” the diffusive particles along the tube
axis and enhance the transport. As shown in Eq. (4.7) and
Fig. 3, the former mechanism always dominates and the
effective diffusion is always reduced by thermal fluctuations.
On the other hand, Fig. 3 shows that for fast nonuniform
fluctuations, both mechanisms contribute significantly such
that Deff is reduced but much less. Our analysis predicts that the
reduction of the effective diffusion coefficient will be largest at
large temperature (T ) and small tube radius (h0), tube surface
tension (γ ) and elastic properties (γ0), diffusion coefficient
(D) and fluctuation time scale (ξ ).

The first method for treating diffusion in a static tube
of varying cross section is the well-known Fick-Jacobs
equation [17,19] for the cross sectional integral of the local
concentration, C(x; t),

∂C(x; t)

∂t
= D

∂

∂x

(
h(x)

∂

∂x

C(x; t)

h(x)

)
. (5.2)

In Appendix C, we demonstrate how our set of governing
equations reduce to the Fick-Jacob (FJ) equation for slowly
varying tube radius [dh(x)/dx � 1] and for infinitely slow
fluctuations ξ → 0. On the other hand, our work differs

fundamentally from the FJ equation and its numerous exten-
sions. The FJ approach deals with smooth spatial variation
of h(x) so that the assumption of local equilibrium in y is
reasonable, but the amplitude of h(x) is unrestricted. Our
method does not assume local equilibrium perpendicular to the
tube axis nor slowly varying cross section. This allows us to
study dynamically fluctuating boundaries. On the other hand,
we restrict ourselves to small amplitude fluctuations of h(x).
In the case of uniform fluctuations, these dynamical effects
are solely responsible for the reduction of Deff [in Eq. (4.4),
Deff → D as ξ → 0]. For the nonuniform fluctuations of
a long tube, these dynamical effects increase Deff . Both
our work and prediction based on the Fick-Jacobs equation
show that static and nonuniform fluctuations always decrease
Deff . We have shown that dynamic, but spatially nonuniform
fluctuations moderate the reduction of Deff .

One of our main assumptions, used to simplify the problem
and probably applicable to the case of dilute systems, is that
the tube thermal fluctuations are unaffected by the diffusion
process. This approximation will certainly break down when
the tube size is reduced such that the particles interact with
the tube boundaries in an increasingly frequent manner and/or
deform the tube shape due to their larger sizes. It order to
study the effects on thermal diffusion on single-file diffusion
system [22], this approximation should be relaxed. This issue
can be addressed in the future and will allow for a meaningful
comparison with experiments. We also ignored coupling of
the tube fluctuations with the solvent hydrodynamic modes
which will have the effect of adding convection to the
transport process in any real system. This contribution to
the net transport will also be studied in the future. Another
assumption that we have used is that the 2D tube maintains
its symmetry with respect to a reflection about the tube axis
as it fluctuates. In other words, the tube surface positions
are given by y = ±h(x; t). We choose this for mathematical
simplicity, but it would be trivial to repeat the analysis with
uncorrelated fluctuations of the two boundaries. Since the
two surfaces will have the same statistical properties, we do
not expect that relaxing this approximation will modify our
conclusions.

One of the most important implications of this work is
perhaps on driven transport processes. Thermal fluctuations
of the confining environment are unavoidable. The current
work as well as the earlier work of Palmieri and Ronis
suggest that they always decrease diffusive transport. This
opens the door to the following question: Does this decrease in
diffusive motion increase or reduce the efficiency of directional
transport produced by molecular motors [31]? This question
is biologically relevant and will be the topic of another
publication.
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APPENDIX A: COMPLETE EXPRESSION FOR �C2

We first write C2 in terms of x and ω by Fourier transforming Eq. (3.8) in time and using Eq. (4.1) for C1(x,y; ω) and
C2(x,y; ω),

C2(x; ω) =
∞∑
l=1

cos

(
πlx

L

)[
sinh [λl(ω)h0]

λl(ω)h0

〈
f

(2)
l (ω)

〉

+ 1

(2π )1/2h0

∫
dω1

{
cosh [λl(ω1)h0] − sinh [λl(ω1)h0]

λl(ω1)h0

} 〈
f

(1)
l (ω1)δh(x; ω − ω1)

〉]
. (A1)

f
(2)
l (ω) can be expressed in terms of f

(1)
l (ω) by multiplying both sides of Eq. (3.5) by cos (πlx

L
) and integrating with respect to x

from 0 to L,

Df
(2)
l (ω)λl(ω) sinh [λl(ω)h0]

= − 1

(2π )1/2

∫
dω1

∞∑
k=1

f
(1)
k (ω1) cosh [λl(ω1)h0]

[
iω

2

L

∫ L

0
dx1 cos

(
πlx1

L

)
cos

(
πkx1

L

)
δh(x1; ω − ω1)

+ D

(
πl

L

)(
πk

L

)
2

L

∫ L

0
dx1 sin

(
πlx1

L

)
sin

(
πkx1

L

)
δh(x1; ω − ω1)

]
. (A2)

We then insert this equation in Eq. (A1); we use the definition of λl(ω) [Eq. (4.2)] and the fact that
∞∑
l=1

cos

(
πlx

L

)
cos

(
πlx1

L

)
= L

2
δ(x − x1) (A3)

to obtain

C2(x; ω) = C(a)
2 (x; ω) + C(b)

2 (x; ω), (A4)

where

C(a)
2 (x; ω) = −

∞∑
l=1

cos
(

πlx
L

)
(2π )1/2h0

∫
dω1

sinh [λl(ω1)h0]

λl(ω1)h0

〈
f

(1)
l (ω1)δh(x; ω − ω1)

〉
(A5)

and

C(b)
2 (x; ω) =

∞∑
l=1

cos
(

πlx
L

)
(2π )1/2λl(ω)2h0

∫
dω1

∞∑
k=1

cosh [λk(ω1)h0][Gl,k(ω,ω1) − Hl,k(ω,ω1)], (A6)

and where

Gl,k(ω,ω1) =
(

πl

L

)2 2

L

∫ L

0
dx1 cos

(
πlx1

L

)
cos

(
πkx1

L

)〈
f

(1)
k (ω1)δh(x1; ω − ω1)

〉
, (A7)

Hl,k(ω,ω1) =
(

πl

L

)(
πk

L

)
2

L

∫ L

0
dx1 sin

(
πlx1

L

)
sin

(
πkx1

L

)〈
f

(1)
k (ω1)δh(x1; ω − ω1)

〉
. (A8)

If the fluctuations are uniform along the tube length, δh(x; ω) does not depend on x. In this case, one can show from the last two
equations that Gl,k = Hl,k and that C(b)

2 (x; ω) = 0. Hence, for uniform fluctuations, C2(x; ω) = C(a)
2 (x; ω).

We first derive an expression for C(a)
2 (x; ω). We rewrite f

(1)
l (ω) by Fourier transforming Eq. (3.4) in time and again by

multiplying both sides by cos ( πlx
L

) and integrating with respect to x from 0 to L. This gives

Df
(1)
l (ω)λl(ω) sinh [λl(ω)h0] = J

L1/2

∞∑
q=−∞

δh(q,ω)

[
iω

D
G

(1)
l,q − i2πq

L
H

(1)
l,q

]
, (A9)

where

G
(1)
l,q = 2

L

∫ L

0
dx cos

(
πlx

L

)
(x − L)ei2πqx/L, (A10)

and

H
(1)
l,q = 2

L

∫ L

0
dx cos

(
πlx

L

)
ei2πqx/L. (A11)
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This is used together with Eq. (2.12) for the fluctuation correlations to give

C(a)
2 (x; ω) = − 2JξkBT δ(ω)

(2π )1/2Dh2
0L

∞∑
l=1

cos

(
πlx

L

)
e−i2πqx/L

[
iG

(1)
l,q

D
I1 − i2πqH

(1)
l,q

L
I2

]
, (A12)

where

I1 =
∫

dω1
ω1

λl(ω1)2
(
ξ 2�2

q + ω2
1

) = −iπ

�2
l,q

(A13)

and

I2 =
∫

dω1
1

λl(ω1)2
(
ξ 2�2

q + ω2
1

) = π

ξ�q�
2
l,q

, (A14)

where

�2
l,q =

[
ξ�q

D
+
(

πl

L

)2]
. (A15)

These last two integrals are evaluated easily through contour integrations. The quantity we need is �C2, so we will look at
�C(a)

2 (ω) = C(a)
2 (x = L; ω) − C(a)

2 (x = 0; ω),

�C(a)
2 (ω) = (2π )1/22JξkBT δ(ω)

Dh2
0L

∞∑
l=1,odd

∞∑
q=−∞

1

�2
l,q

(
G

(1)
l,q

D
− i2πq

L

H
(1)
l,q

ξ�q

)
. (A16)

Note that the sum over l is now over the odd values only. The last expression can be simplified by realizing that all factors
multiplying G

(1)
l,q are strictly even in q while all factors multiplying H

(1)
l,q are strictly odd. Hence, the only parts of G

(1)
l,q and H

(1)
l,q

that will survive the q sum are respectively the ones that are even in q and odd in q. These are readily obtained from the above
integral expressions for G

(1)
l,q and H

(1)
l,q . The results are

G
(1)
l,q(even in q, l odd) = − 4L(4q2 + l2)

π2(l2 − 4q2)2
, (A17)

and

H
(1)
l,q (odd in q, l odd) = − i8q

π (l2 − 4q2)
. (A18)

Using these simplifications and inverting the Fourier transform in time, the complete expression for �C(a)
2 (t) becomes

�C(a)
2 (t) = −8JξkBT

D2π2

∞∑
l=1,odd

∞∑
q=−∞

(l2 + 4q2)

(�l,qh0)2(l2 − 4q2)2

[
1 + D

ξ�q

(
2πq

L

)2
l2 − 4q2

l2 + 4q2

]
. (A19)

Obtaining a similar expression for C(b)
2 (x; ω) is more involved but can nevertheless be done. We plug Eqs. (A9) and (2.12) for

the fluctuations into Eq. (A6) to obtain

C(b)
2 (x; ω) = i2JξkBT δ(ω)

(2π )1/2Dh0L

∞∑
l=1

∞∑
k=1

∞∑
q=−∞

cos
(

πlx
L

)
λl(ω)2

{[(
πl

L

)2

G
(2)
l,k,q −

(
πl

L

)(
πk

L

)
H

(2)
l,k,q

][
G

(1)
k,q

D
I3 − 2πq

L
H

(1)
k,qI4

]}
, (A20)

where

G
(2)
l,k,q = 2

L

∫ L

0
dx cos

(
πlx

L

)
cos

(
πkx

L

)
e−i2πqx/L, (A21)

H
(2)
l,k,q = 2

L

∫ L

0
dx sin

(
πlx

L

)
sin

(
πkx

L

)
e−i2πqx/L, (A22)

and

I3 =
∫

dω1
ω1 coth [λk(ω1)h0]

λk(ω1)
(
ξ 2�2

q + ω2
1

) = −iπ coth (�k,qh0)

�k,q

, (A23)

I4 =
∫

dω1
coth [λk(ω1)h0]

λk(ω1)
(
ξ 2�2

q + ω2
1

) = π coth (�k,qh0)

ξ�q�k,q

. (A24)
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Again, these last two integrals are evaluated through contour integrations. At this stage, we can write �C(b)
2 (t) as

�C(b)
2 (t) = −2JξkBT

Dh0L

∞∑
l=1,odd

∞∑
k=1

∞∑
q=−∞

1(
πl
L

)2
[(

πl

L

)2

G
(2)
l,k,q −

(
πl

L

)(
πk

L

)
H

(2)
l,k,q

]
coth (�k,qh0)

�k,q

[
G

(1)
k,q

D
− i2πq

L

H
(1)
k,q

ξ�q

]
.

(A25)

Using the integral representation of G
(2)
l,k,q and H

(2)
l,k,q , the sum over l in the last expression can be performed. The two integrals

are then evaluated to give
∞∑

l=1,odd

(
G

(2)
l,k,q − k

l
H

(2)
l,k,q

)
= −δk,odd

4q2

k2 − 4q2
+ iδk,2q

πq

2
. (A26)

When this is used together with the q symmetries of G
(1)
k,q and h

(1)
k,q , Eqs. (A17) and (A18), and

G
(1)
2q,q (odd in q) = (1 − δq,0)

−iL

4πq
− δq,0L, (A27)

H
(1)
2q,q(even in q) = 1, (A28)

we finally obtained an infinite sum expression for �C(b)
2 (t),

�C(b)
2 (t) = −JξkBT

D2π2

∞∑
q=−∞

[
π2 coth (�2q,qh0)

4(�2q,qh0)

{
1 − δq,0 +

(
2πq

L

)2 4D

ξ�q

}

+
∞∑

k=1,odd

32q2(k2 + 4q2) coth (�k,qh0)

(k2 − 4q2)3(�k,qh0)

{
1 + 2D

ξ�q

(
2πq

L

)2 (k2 − 4q2)

(k2 + 4q2)

}]
. (A29)

APPENDIX B: �C2 AT LARGE L

Inserting the definition of �l,q in Eq. (A15), the sum over l appearing in C(a)
2 [Eq. (A19)] can be performed analytically. The

answer is

C(a)
2 = −JξkBT

Dh2
0

∞∑
q=−∞

1

ξ�q[1 + 4ε(q)2q2]

[
1 −

(
1 + 16ε(q)4q4

1 + 4ε(q)2q2

) 2ε(q) tanh
(

π
2ε(q)

)
π

]
, (B1)

where

ε(q)2 = Dπ2

ξ�qL2
. (B2)

From the definition of �q in Eq. (2.8), it is easy to show that this parameter is small when L → ∞, but that the product [ε(q)q]
remains finite for large q. Because ε tanh (π/2ε) → 0 when ε → 0, the large L limit of �C(a)

2 can be recast as

�C(a)
2,L→∞ = −JξkBT

D2h2
0

∞∑
q=−∞

1
ξ�q

D
+ ( 2πq

L

)2 = −JξkBT L

2πD2h2
0

∫ ∞

−∞
dq

1

�(q)2
, (B3)

where

�(q)2 = ξ�(q)

D
+ q2 (B4)

and

�(q) = γ0 + γ q2, (B5)

and where the last line is obtained converting the sum to an integral.
For �C(b)

2 , we will have to use the following identity:

coth (�k,qh0)

�k,qh0
= 1

h2
0

∞∑
n=−∞

1
ξ�q

D
+ (πk

L

)2 + (πn
h0

)2 . (B6)
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This identity is plugged into the second term on the right-hand side of Eq. (A29) and the sum over k is performed to give

− JξkBT

D2π2

∞∑
q=−∞

∞∑
k=1,odd

32q2(k2 + 4q2) coth (�k,qh0)

(k2 − 4q2)3(�k,qh0)

{
1 + 2D

ξ�q

(
2πq

L

)2 (k2 − 4q2)

(k2 + 4q2)

}

= JξkBT

4D2h2
0

∞∑
q=−∞

⎡
⎣ ∞∑

n=−∞

⎛
⎝ 1

ξ�q

D
+ (πn

h0

)2
[

1 + 20ε(q,n)2q2

[1 + 4ε(q,n)2q2]2
− 1

1 + 4ε(q,n)2q2

2D

ξ�q

(
2πq

L

)2 ]
+ O[ε(q,n)]

⎞
⎠
⎤
⎦, (B7)

where

ε(q,n)2 = π2[ ξ�q

D
+ (π2n2

h2
0

)2]
L2

. (B8)

Again, this last parameter is small for large L and it is even smaller for large value of q and n. Hence, terms of order ε(q,n) are
dropped, the sum over n in the last expression can be performed analytically, and �C(b)

2 can be rewritten as

�C(b)
2,L→∞ = −JξkBT

2D2

∞∑
q=−∞

(
2πq

L

)2 coth (�2q,qh0)

(�2q,qh0)3

[
2D(�2q,qh0)2

ξ�q

− h2
0

(
1 + �2q,qh0

cosh (�2q,qh0)

)]

= −JξkBT L

4πD2

∫ ∞

−∞
dq q2 coth [�(q)h0]

[�(q)h0]3

[
2D [�(q)h0]2

ξ (γ0 + γ q2)
− h2

0

(
1 + �(q)h0

cosh [�(q)h0]

)]
. (B9)

The second line is obtained converting the sum to an integral.

APPENDIX C: COMPARISON WITH THE FICK-JACOBS EQUATION

Defining the cross-section integral of the local concentration as

C(x; t) =
∫ h(x)

−h(x)
dy C(x,y; t), (C1)

and using the boundary condition at the tube boundary with ∂h(x; t)/∂t = 0, we obtain

∂C(x; t)

∂t
= D

[
∂2C(x; t)

∂x2
−
(

∂C[x,h(x); t]

∂x
+ ∂C[x, − h(x); t]

∂x

)
dh(x)

dx
− {C[x,h(x); t] + C[x, − h(x); t]}d

2h(x)

dx2

−
(

∂C[x,h(x); t]

∂x
+ ∂C[x, − h(x); t]

∂x

)(
dh(x)

dx

)3 ]
. (C2)

Invoking the local equilibrium approximation,

C(x,y; t) ≈ C(x; t)

2h(x)
, (C3)

this last expression simplifies to

∂C(x; t)

∂t
= D

∂2C(x; t)

∂x2
− D

∂

∂x

(
dh(x)

dx

C(x; t)

h(x)

)
−
(

dh(x)

dx

)3
∂

∂x

C(x; t)

h(x)
. (C4)

If the last term on the right-hand side of this equation is dropped, one recovers the standard Fick-Jacobs equation written in the
text. This shows that the FJ equation is valid for slowly varying h(x) and that the first corrections should be of order [dh(x)/dx]2,
something that has been first demonstrated in Ref. [18].
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