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Decay of unstable states driven by colored noise in an electromagnetic field
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The statistics of the first passage time in connection with the quasideterministic (QD) approach is used to
characterize the non-Markovian decay process of the unstable state of an electrically charged Brownian particle
under the influence of an electromagnetic field. We consider a constant magnetic field and a fluctuating electric
field, which satisfies the properties of a Gaussian exponentially correlated noise. It is shown that at the beginning
of the decay process, the magnetic field is strongly coupled to the noise correlation time and thus the requirements
of the QD approach are not satisfied. Only in the approximation of a weak coupling between both parameters
can the time characterization of the decay process be successfully achieved. Our theoretical approach relies on
a Langevin equation for the charged particle in an arbitrary two-dimensional unstable potential and applies to a
bistable potential as a particular case.
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I. INTRODUCTION

The first passage time (FPT) distribution and related
topics have been widely used to characterize the random
relaxation processes of a variety of out-of-equilibrium phys-
ical, chemical, and biological systems wherein the stochastic
fluctuations (or noise) play a fundamental role [1–41]. The
mathematical tool used for such a purpose relies basically upon
stochastic differential equations like Langevin-type equations,
Fokker-Planck equations, master equations, and their possible
generalizations. When the considered stochastic differential
equation is driven by the so-called white noise, which has no
memory effects or zero correlation time, the process is said to
be Markovian. On the other hand, if the stochastic term in the
aforementioned equation is driven by colored noise, i.e., one
with memory effects or finite correlation time, then we have a
non-Markovian process. In modeling real phenomena we often
idealize the underlying physical processes, and those modeled
by means of white noise are examples of such an idealization.
However, in real situations, correlated fluctuations are present
and the corresponding physical processes must, in principle,
be treated within the theory of non-Markovian processes.
Nevertheless, a large number of approaches reported in the
literature are focused more on the Markovian processes than
on the non-Markovian ones. This is because the Markovian
processes are more easily handled than the non-Markovian
ones. In this latter case, it is not an easy task to extract the exact
statistical information [14–40]. The study of non-Markovian
processes seems to be mathematically more accessible in terms
of stochastic differential equations than that given in terms
of equations for the probability densities (Fokker-Planck or
master equations). In this sense we can mention the studies
of the dynamical characterization through the passage time
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distribution of the decay of an unstable state driven by an
external Gaussian colored noise [Ornstein-Uhlenbeck (OU)
noise] given in Refs. [24–26]. In [24] the study is given in
terms of the statistics of the FPT distribution in the context of
a general one-dimensional Langevin-type equation, whereas in
[26] the decay process has been described through the so-called
nonlinear relaxation time in terms of a Fokker-Planck-type
equation. The study done in [24] was compared with the analog
simulation previously reported in [21].

In the present contribution we study the statistics of the
FPT distribution along with the QD approach to characterize
the decay process of the unstable state of a charged Brownian
particle in the presence of an electromagnetic field. The
QD approach is a good approximation because it gives a
precise physical picture of the mechanism responsible for
the decay of the unstable state. This physical mechanism is
twofold: small fluctuations change the initial condition in the
neighborhood of the unstable state and then the deterministic
motion drives the system out of this state. The same picture
holds for a charged Brownian particle in the presence of an
additional electromagnetic field. In this case the magnetic field
is assumed to be a constant vector pointing along the z axis
and the electric field as an external Gaussian exponentially
correlated noise (OU noise). Hence, the decay process of
the charged particle is accelerated by the electric force and
rotationally evolved due to the action of the magnetic field. The
dynamical characterization is formulated within the context
of the Langevin equation for the charged particle which is
localized around the unstable state of a two-dimensional (2D)
bistable potential, although in reality our study is given for
arbitrary 2D unstable potentials. Three mean first passage
times (MFPTs) are calculated according to the manner in
which the initial condition of the system is prepared. The first
time scale is calculated when at time t = 0 the charged particle
is localized in the position r0 = 0, corresponding to the initial
unstable state of the potential. The second one is obtained when
the particle’s initial position has a distribution of values around
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r0 = 0. In this case the width of the initial distribution, which
accounts for the noise intensity at t = 0, may not necessarily
be of the same intensity than that of the noise responsible
for the decay process for times t > 0. This initial distribution
is considered to be independent of the colored noise term,
and therefore both are statistically independent. The third time
characterization is calculated in a more realistic situation and
it corresponds to the case wherein the particle’s initial position
is also distributed, but now it is actually coupled to the colored
noise term, and therefore both are not statistically independent.
In the time characterization of the decay of unstable states, the
quasideterministic (QD) approach has been shown to be a
very good approximation which allows a description of the
relaxation process into two time regimes [13,24,25]. The first
one corresponds to early times of the decay of the unstable
state where the noise and linearities are dominant. In the
second regime the process is dominated by nonlinearities
(deterministic force) and noise plays no fundamental role.
It will be shown in the three aforementioned cases that the
magnetic field is strongly coupled to the noise correlation
time. As a consequence of this strong coupling effect, it is
not possible to achieve the time characterization of the decay
process by means of the QD approach. However, we succeed
in achieving the proposed goal by considering a weak coupling
between both parameters.

Our work is then structured as follows: In Sec. II we
establish the Langevin equation for the charged particle in
a 2D bistable potential under the action of an electromagnetic
field, assuming a constant magnetic field and an OU process
for the electric field. In Sec. III we introduce the QD approach
and calculate the MFPT for the three aforementioned cases
for linear and nonlinear 2D unstable potentials. The case of
a 2D bistable potential is studied as a particular case. The
three theoretical nonlinear MFPTs for the bistable potential are
compared with numerical simulation. We give our concluding
remarks in Sec. IV and finally, at the end of our work, we
present the relevant algebraic details in an Appendix.

II. LANGEVIN EQUATION IN AN ELECTROMAGNETIC
FIELD

We consider an electrically charged Brownian particle of
mass m and charge q in an electromagnetic field initially lo-
cated on the unstable state of a 2D bistable potential V (x,y) =
−(a1/2)(x2 + y2) + (b1/4)(x2 + y2)2, where a1,b1 > 0, and
r2 = x2 + y2 is the square modulus of the position vector
r = (x,y). The force derived from this potential is clearly
F = a1r − b1 r2r. The magnetic field is assumed to be a
constant vector pointing along the z axis, that is, B = (0,0,B),
and the electric field as the external noise which satisfies the
property of an OU process. In the 2D case, the Langevin
equation associated with the charged particle reads as

m
du
dt

= −αu + a1 r − b1 r2r + q

c
u × B + q E(t) , (1)

where u = dr/dt = (ux,uy) is the planar velocity vector,
α > 0 the friction coefficient, and qE(t) is the fluctuating
electric force. In the over-damped approximation the inertial
term m du/dt can be neglected and the above Langevin

equation reduces to

dr
dt

= ã r − b̃ r2� r + W̃ r + α−1
e �μ(t) , (2)

where μ(t) = (q/α)E(t) ≡ (μx,μy) is the external noise sat-
isfying the property of Gaussian colored noise with zero mean
value 〈μi(t)〉 = 0 and correlation function

〈μi(t)μj (t ′)〉 = D

τ
δij e−|t−t ′ |/τ i,j = x,y , (3)

D being the noise intensity and τ its correlation time. The
matrices W̃ and � are defined as

W̃ =
(

0 �̃

−�̃ 0

)
, � =

(
1 C

−C 1

)
, (4)

and the parameters ã = a/αe, b̃ = b/αe, αe = (1 + C2), �̃ =
ãC, with C = qB/cα a dimensionless constant, and a = a1/α,
b = b1/α. The dynamical characterization will be further
described in a transformed space of coordinates r′ = e−W̃ tr,
where the QD approach is better understood. In this case, the
Langevin Eq. (2) transforms into

dr′

dt
= ã r′ − b̃ r ′ 2� r′ + α−1

e �μ′(t) , (5)

where μ′(t) = R−1(t)μ(t) and R(t) = eW̃ t is an orthogonal
rotation matrix such that the transpose is its inverse, that is,
RT

(t) = R−1(t) and R−1(t) = e−W̃ t , with

R(t) =
(

cos �̃ t sin �̃ t

− sin �̃ t cos �̃ t

)
. (6)

In Eq. (5) the quantity r ′ 2 = x ′ 2 + y ′ 2 is the square modulus
of vector r′ and it satisfies r ′ 2 = r2, which means that the
modulus of vector r remains invariant under the transformation
R−1(t).

III. MFPT AND QD APPROACH

To characterize the decay of the unstable state of an
arbitrary 2D nonlinear potential through the MFPT within
the QD approach, we first study the time characterization
of its linear approximation, which is given by V (x,y) =
−(̃a/2) (x2 + y2) = −(̃a/2) r2 such that −R2 � x2 + y2 �
R2, where R2 represents the absorbing barrier. We must
notice that in the transformed space of coordinates the linear
potential is also given by V (x ′,y ′) = −(̃a/2) r ′ 2 and also
−R′ 2 � x ′ 2 + y ′ 2 � R′ 2. Thus the linear approximation of
the overdamped Langevin Eq. (5) is simply

dr′

dt
= ã r′ + α−1

e �μ′(t) , (7)

and its solution is easily given by r′(t) = h′(t) eãt , where

h′(t) = r′
0 + g′(t) , (8)

being r′(0) ≡ r′
0 and

g′(t) = α−1
e

∫ t

0
e−ãs �R−1(s)μ(s) ds . (9)

In the dynamical characterization of the decay of a linear
unstable state, the QD approach has shown to be a very good
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theory [13,24,25]. It tells us that, as time increases and for a
small noise intensity, the stochastic process h′(t) becomes a
Gaussian random variable. This is indeed the case, because in
the large time limit dh′(t)/dt = dg′(t)/dt → 0, and therefore
the process h′(t) becomes a Gaussian random variable denoted
by h′(∞) = h′ such that h′ = r′

0 + g′ and

g′ = α−1
e

∫ ∞

0
e−ãt �R−1(t)μ(t) dt . (10)

In this approximation the process r′(t) becomes r′(t) = h′eãt ,
which is called a quasideterministic process, and h′ plays the
role of an effective initial condition. The square of the process
also satisfies

r ′ 2(t) = h′ 2 e2̃at , (11)

where h′ 2 ≡ |h′|2 = h′ 2
1 + h′ 2

2 plays the role of an effective
initial condition. Inverting expression (11), we can calculate
the passage time distribution required by the charged particle
to reach the absorbing barrier r ′ 2 = R′ 2, that is,

t
L

= 1

2̃a
ln

(
R′ 2

h′ 2

)
. (12)

This time scale is also a random variable due to the randomness
of h′ and its statistical properties can be determined through
the marginal probability density P (h′). The latter can be
calculated from the joint probability density given by the
Gaussian distribution [41,42]

P (h′
1,h

′
2) = Nexp

[
− 1

2

2∑
i,j=1

(σ−1)ij (h′
i − 〈h′

i〉)(h′
j − 〈h′

j 〉)
]

,

(13)

where N = 1/2π (det σij )1/2 is the normalization factor. The
matrix σij = σji is assumed to be positive definite; then the in-
verse matrix (σ−1)jk = (σ−1)kj and its square root (σ 1/2)jk =
(σ 1/2)jk , as well as its inverse square root (σ−1/2)jk =
(σ−1/2)jk , exist. In this case σij ≡ 〈h′

ih
′
j 〉 − 〈h′

i〉〈h′
j 〉 is the

correlation matrix of the effective initial conditions. Because
of h′ = r′

0 + g′ the correlation matrix can be written as

σij = σ 0
ij + σ

g

ij + σ
0g

ij + σ
0g

ji , (14)

where

σ 0
ij = 〈x ′

0ix
′
0j 〉 − 〈x ′

0i〉〈x ′
0j 〉 , (15)

σ
g

ij = 〈g′
ig

′
j 〉 − 〈g′

i〉〈g′
j 〉 , (16)

σ
0g

ij = 〈x ′
0ig

′
j 〉 − 〈x ′

0i〉〈g′
j 〉 , (17)

σ
0g

ji = 〈x ′
0j g

′
i〉 − 〈x ′

0j 〉〈g′
i〉 . (18)

The matrix σ 0
ij accounts for the fluctuations of the initial

conditions at time t = 0, σ
g

ij is related to the noise-driven

fluctuations for times t > 0, and σ
0g

ij and σ
g0
ij account for

the statistical dependence between the colored noise and the
initial state of the system. Accordingly, we can obtain three
expressions for the correlation matrix given by Eq. (14), and
therefore three MFPTs. Two of them correspond to the physical
situation wherein the initial condition is statistically noise
independent (decoupled case) and the other one to the physical

situation wherein the initial condition of the system is coupled
to the noise.

a. Decoupled case with fixed initial condition. This is
the simplest case which satisfies the condition r′

0 = 0, and
therefore σ 0

ij = 0, σ
0g

ij = σ 0
ji = 0. In this case the correlation

matrix is only given by σij = σ
g

ij and according to Eqs. (A2)
and (A3) of Appendix A1, it satisfies σ

g

11 = σ
g

22 and σ
g

12 =
−σ

g

21, where

σ
g

11 = D(1 + ãτ )

a [(1 + ãτ )2 + (�̃τ )2]
,

(19)

σ
g

12 = − D �̃τ

a [(1 + ãτ )2 + (�̃τ )2]
.

It must be noticed that the correlation matrix does not satisfy
the properties of the joint probability density given by Eq. (13).
This fact is due to the coupling effect between the magnetic
field and the noise correlation time through the factor �̃τ .
However, if we suppose that �̃τ � 1 + ãτ , then σ

g

12 ≈ 0 and
the correlation matrix σij becomes diagonal with elements
σii = σ 2

fic, where

σ 2
fic = D

a (1 + ãτ )
= De

ã (1 + ãτ )
, (20)

and De ≡ D/(1 + C2). Here, the second equality has been
written to see more clearly the influence of the magnetic field.

b. Decoupled case with distributed initial condition. This
case may occur when the noise source for times t � 0 is
not the same that the noise source for times t > 0, with the
system initiating its decay process from an arbitrarily randomly
selected point at time t = 0. In this case the initial condition is
noise-independent and therefore 〈r0μ〉 = 0, and again σ

0g

ij =
σ 0

ji = 0; thus, the correlation matrix is σij = σ 0
ij + σ

g

ij . It is
shown in Appendix A2 that σ 0

11 = σ 0
22 and σ 0

21 = −σ 0
12, where

σ 0
11 = D(1 + ã0τ )

a0[(1 + ã0τ )2 + (�̃τ )2]
, (21)

σ 0
12 = D�̃τ

a0[(1 + ã0τ )2 + (�̃τ )2]
. (22)

In a similar way as in case (i), the matrix σij becomes diagonal
if also �̃τ � 1 + ã0τ and �̃τ � 1 + ãτ , leading to σ 0

12 ≈ 0.
The diagonal elements of matrix σij are defined by σii = σ 2

dic,
where

σ 2
dic = De

ã0 (1 + ã0τ )
+ De

ã (1 + ãτ )
. (23)

As an additional information we must comment here that,
very recently, we have obtained the exact analytical solution
for the stationary-state probability density of a charged
Brownian harmonic oscillator in crossed electric and mag-
netic fields [27]. Under the same hypothesis established
in this work for the electromagnetic field, we have been
able to show that the marginal probability density Pst (r) =
(1/2π σ 0

11)exp(−|r|2/2σ 0
11), where σ 0

11 is the same as that given
by Eq. (21). This is a fact which support the veracity of Eq. (21).

c. Coupled case with distributed initial condition. This case
represents a more realistic physical situation because the initial
condition, being not arbitrarily distributed, is shown to be
coupled in a natural way to the colored noise term. In a similar
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way as done in Ref. [24], we also suppose that at time t = 0
the charged particle is localized in a steady-state (for instance,
around the minimum of a harmonic potential) in such a way
that, for times t � 0, the dynamical evolution of the system
satisfies the following linear stationary equation:

dr0

dt
= −ã0 r0 + W̃r0 + α−1

e �μ(t) , (24)

where ã0 = (a0/αe) with a0 > 0; W̃ and � are the same as
those given in Eq. (4). In this dynamics the noise term μ(t) is
also assumed to satisfy the properties of a Gaussian colored
noise with zero mean value and an exponentially correlated
function, similar to Eq. (3). For practical purposes we again
consider the initial noise intensity D′ to be D′ = D. Hence,
the physical situation described by the dynamics (24) is the
following: at time t = 0, the system suffers a change in
the control parameter −ã0 → ã, allowing the system to be
localized in the initial unstable state described by the linear
approximation of the dynamics (2). The solution of Eq. (24)
then reads

r0 = α−1
e

∫ 0

−∞
eã0t�R−1(t)μ(t) dt . (25)

In a similar way, for the transformed space of coordinates r′
at time t = 0 the system is also localized in a steady state
such that, for times t < 0, its dynamical evolution satisfies the
equation

dr′
0

dt
= −ã0 r′

0 + α−1
e �μ′(t) , (26)

where r′
0 = r0 and μ′(t) has been defined in Sec. II. In this

case, the physical situation is that at time t = 0, the system
suffers a change in the control parameter −ã0 → ã, allowing
the charged particle to be localized in the initial unstable state
described by the linear dynamics given by Eq. (7). The solution
of Eq. (26) is also the same as that to Eq. (25), as expected;
that is,

r′
0 = α−1

e

∫ 0

−∞
eã0t�R−1(t)μ(t) dt , (27)

where we can clearly see that 〈x ′
0i〉 = 0. The correlation matrix

σij is now given by the complete expression of Eq. (14)
and the four corresponding matrix elements are given in
Eqs. (A15)–(A18) of Appendix A2. For arbitrary values
of τ , the matrix σij does not satisfy the requirements of
the probability density (13). However, in the approximation
�̃τ � 1 + ã0τ and �̃τ � 1 + ãτ , the correlation matrix σij

becomes diagonal with elements defined by σcic = σii , where

σ 2
cic = De

ã0(1 + ã0τ )
+ De

ã(1 + ãτ )
+ 2Deτ

(1 + ã0τ )(1 + ãτ )
.

(28)

As can be seen, the non-Markovian contribution of the third
term of this equation arises in a natural way as a consequence
of the aforementioned coupling effect.

To verify our theoretical results, we evaluate them for zero
magnetic field, that is, C = 0. In this case, De = D, ã0 = a0,

and ã = a; thus

σ 2
fic = D

a (1 + aτ )
, σ 2

dic = D

a0 (1 + a0τ )
+ D

a (1 + aτ )
, (29)

and

σ 2
cic = D

a0(1 + a0τ )
+ D

a(1 + aτ )
+ 2Dτ

(1 + a0τ )(1 + aτ )
,

(30)

consistently with the results given in Refs. [24,26]. Therefore
the presence of the magnetic field with respect to the colored
noise induces a renormalization in the parameters D, a0, and a

by the factor 1/(1 + C2), leading to De, ã0, and ã, respectively,
as can be seen in Eqs. (20), (23), and (28).

We thus have shown in all cases that, in the approximation
of weak coupling between the magnetic field and the noise
correlation time such that �̃τ � 1 + ã0τ and �̃τ � 1 + ãτ ,
the correlation matrix of the effective initial conditions is
indeed a diagonal one, and therefore the joint probability
density (13) reduces to its simplest expression

P (h′
1,h

′
2) = 1

2πσ 2
e−(h′ 2

1 +h′ 2
2 )/2σ 2

, (31)

where σ 2 represents any of Eqs. (20), (23), or (28). The
marginal probability density P (h′) can be easily calculated
by means of the transformation

P (h′
1,h

′
2)dh′

1dh′
2 → e−h′ 2/2σ 2

J (h′,θ ) dh′dθ ′ , (32)

where J (h′,θ ) = h′ is the Jacobian of the transformation. After
integration over the θ ′ variable, we obtain the normalized
marginal probability density

P (h′) = h′

σ 2
e−h′ 2/2σ 2

. (33)

The statistical properties of FPT distribution can be calculated
through the moment generating function defined as G(2̃aν) ≡
〈e−2̃aνt 〉. For the linear passage time given by Eq. (12),
the generating function is G

L
(2̃aν) = 〈(R′ 2/h′ 2)−ν〉, which,

according to the marginal probability density (33), reads as

G
L
(2̃aν) =

(
R′ 2

2σ 2

)−ν

�(ν + 1) , (34)

�(x) being the γ function [43]. The MFPT is then calculated
from 〈2̃a t〉 = [−dG(2̃aν)/dν]ν=0, and after some algebra, we
obtain the linear MFPT

〈t〉
L

= 1

2̃a

{
ln

(
R2

2σ 2

)
− ψ(1)

}
, (35)

where ψ(1) = −γ = −0.577 is the Euler’s constant. The
variance of the passage time defined as 〈(�t)2〉 ≡ 〈t2〉 − 〈t〉2

can be calculated through the second moment (〈2̃a t)2〉 =
[d2G(2̃aν)/dν2]ν=0. Again, after some easy algebra, it can
be shown that

〈(�t)2〉 = 1

4̃a2
ψ ′(1) , (36)

with ψ ′(1) = π2/6 ≈ 1.644 5 [43].
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A. Nonlinear contributions

To deal with nonlinear contributions of the unstable poten-
tial, a general definition of a nonlinear potential is required.
Hence, in terms of the variable r ≡ r2 = x2 + y2, such a
nonlinear deterministic dynamics can be defined by [13]

dr

dt
= f (r), f (r) = r(rst − r)

C0 + rg(r)
, (37)

where C0 = rst /2ā, rst is the steady-state value, and g(r) >

0 is a polynomial. The function f (r) has two roots: one is
at r = 0, which corresponds to the unstable state such that
f ′(r)|r=0 > 0, and the other one is at r = rst , corresponding
to the stable state and thus f ′(r)|r=rst

< 0. The deterministic
evolution of Eq. (2) or Eq. (5) must be compatible with Eq. (37)
for a particular expression of g(r).

The connection between the passage time and the QD
approach can be achieved by assuming that r(0) ≡ r2(0) = h2

is a random variable which plays the role of an effective
initial condition responsible for the decay of the unstable
state towards its steady state, characterized by the value
r(∞) ≡ r2(∞) = rst . The nonlinear passage time distribution
along with Eq. (37) can be defined as

t
NL

=
∫ R2

h2

dr

f (r)
=

∫ R2

h2

C0 + rg(r)

r(rst − r)
dr . (38)

After integration it reduces to

t
NL

= 1

2̃a
ln

(
R′ 2

h′ 2

)
+ 1

2̃a
C

NL
, (39)

where C
NL

takes into account the nonlinear contributions and
reads

C
NL

= lim
h→0

[∫ R2

h2

dr

rst − r
+ 2̃a

∫ R2

h2

g(r)

rst − r

]
. (40)

It is very clear that the first logarithmic term of Eq. (39)
accounts for the decay process in the linear regime of the
nonlinear potential, wherein the stochastic fluctuations are
dominant. The second one is practically a constant; it comes
from the nonlinear contributions of the potential away from the
initial unstable state. In this nonlinear regime, the dynamical
evolution of the particle is practically deterministic and the
stochastic fluctuations are not relevant. It is then calculated
in the limit of h → 0. For the nonlinear passage time (39)
the generating function is now G

NL
(2̃aν) = 〈(R̂′ 2/h′ 2)−ν〉,

with R̂′ 2 = eCNLR′ 2. Again, it is given by G
NL

(2̃aν) =
(R̂′ 2/2σ 2)−ν�(ν + 1), and thus the nonlinear MFPT reads
very similar to Eq. (35), that is,

〈t〉
NL

= 1

2̃a

{
ln

(
R̂′ 2

2σ 2

)
+ γ

}
, (41)

and the variance reminds the same as Eq. (36).

B. Nonlinear bistable potential

To calculate the nonlinear MFPT associated with the
Langevin dynamics (2) or (5), we first construct their cor-
responding deterministic equations in terms of the variables r

or r ′. The deterministic equations for these variables have the

expected form and read

dr

dt
= 2̃a r − 2b̃ r2 = 2̃a r

rst

(rst − r)

= 2̃a r′ − 2b̃ r′ 2 = 2̃a r′

r′
st

(r′
st − r′) , (42)

where rst = r2
st = a/b is the stationary-state value. Equa-

tion (42) is compatible with the general definition given by
Eq. (37) if g(r) = 0. In this case the constant given by Eq. (40)
is C

NL
= ln[M2/(1 − M2)], where M2 = R2/r2

st . Finally, the
nonlinear MFPT associated with the Langevin Eq. (2) or
Eq. (5) will be

〈t〉
NL

= 1

2̃a

{
ln

(
R2 M2

2σ 2(1 − M2)

)
+ γ

}
. (43)

Next we proceed to calculate this nonlinear MFPT for each of
the aforementioned studied cases.

a. Decoupled case with fixed initial condition. Using
Eq. (20), it is very easy to check that the nonlinear MFPT
(43) can be written as

Tfic = − 1

2̃a
ln

[
De

ã(1 + ãτ )

]
+ 1

2̃a
ln

[
M2 R2 eγ

2(1 − M2)

]
. (44)

b. Decoupled case with distributed initial condition. Here
we use Eq. (23) to show that the nonlinear MFPT (43) reads

Tdic = − 1

2̃a
ln

[
De

ã0(1 + ã0τ )
+ De

ã(1 + ãτ )

]
+ 1

2̃a
ln

[
M2 R2 eγ

2(1 − M2)

]
. (45)

c. Coupled case with distributed initial condition. Accord-
ing to Eq. (28) the nonlinear MFPT (43) is now

Tcic = − 1

2̃a
ln(De) + 1

2̃a
ln

[
(1 + ãτ )(1 + ã0τ )

1 + (̃a + ã0)τ

]
+ 1

2̃a
ln

[
M2 R2 eγ

2(1 − M2)
(̃
a−1

0 + ã−1
)]

. (46)

The time scales (44)–(46) show clearly the influence of the
magnetic field through the parameters De, ã0, and ã. The
time scale in the coupled case has a similar structure to that
obtained in Ref. [24] in the one-dimensional case, except
by the parameters De, ã0, and ã. Hence, depending on the
coupling between the system’s initial state and the colored
noise term, the non-Markovian time characterization of the
decay of the unstable state of the charged Brownian particle in
an electromagnetic field is given by any of Eqs. (44)–(46).

For the decoupled cases we must notice the following
points: in the Gaussian white noise (GWN) limit, even in
the presence of the magnetic field, Eqs. (44) and (45) can
be written respectively as

Tfic = − 1

2̃a
ln

(
De

ã

)
+ 1

2̃a
ln

(
M2 R2 eγ

2(1 − M2)

)
(47)

and

Tdic = − 1

2̃a
ln

(
De

ã0
+ De

ã

)
+ 1

2̃a
ln

(
M2 R2 eγ

2(1 − M2)

)
. (48)
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10-6 10-5 10-4 10-3 10-2

De

4

6

8

10

T f
ic

τ = 0.5
τ = 5
τ = 10

FIG. 1. (Color online) Decoupled case with fixed initial con-
ditions a = 2, b = 1, α = 1, C = 1, and M2 = 0.995. Symbols
correspond to simulation results. From bottom to top the depicted
cases are τ = 0.5 (continuous line and circles), τ = 5 (dot-dashed
line and triangles), and τ = 10 (double-dash dot line and squares).
Curves have been shifted upward for clarity.

Therefore, the nonlinear time scales (44) and (45) are the same
as those calculated in the GWN case if in Eq. (47) the noise
intensity De is simply rescaled by the factor 1/(1 + ãτ ) and
in Eq. (48) by the factors 1/(1 + ã0τ ) and 1/(1 + ãτ ).

C. Numerical results

In this section the values derived from our theoretical
expressions (44)–(46) are compared with the corresponding
numerical simulation results. In Fig. 1 we present the compar-
ison between the theoretical result given by Eq. (44) with
numerical simulation for values of the parameters a = 1,
b = 1, α = 1, C = 1, and three values of τ = 0.5,5.0,10.
It can be seen that, as the noise correlation time increases,
a better agreement between both results is obtained. A very
similar behavior happens between the theoretical result given
by Eq. (45) and the numerical simulation, as shown in
Fig. 2. In both cases we simulate the Langevin Eq. (5) with
the GWN algorithm, taking into account the corresponding
renormalization of the involved parameters. As we can see,
the agreement between the theory and simulation results are
excellent as the noise correlation time is larger than one. This
is so because the larger τ is, the better is the approximation
�̃τ � 1 + ãτ .

In the coupled case the situation is different due to the
additional coupling effect appearing in the third term of
Eq. (28). In this case, we simulate the Langevin Eq. (5)
using the Gaussian colored noise (GCN) algorithm for an OU
process. Both the theory given by Eq. (46) and numerical
simulation are displayed in Fig. 3. Again, both results are in
very good agreement, with a similar behavior as that shown
in the previous figures. We notice that the agreement for the
larger τ value considered in the GCN case is better than in the
GWN case. However, for the given values of the parameters,
the values of the noise correlation time cannot be greater than
τ = 0.6 for the GCN case.

10-6 10-5 10-4 10-3 10-2

De

2

4

6

8

10

T d
ic

τ = 0.5
τ = 5
τ = 10

FIG. 2. (Color online) Decoupled case with distributed initial
conditions. Same parameter values and symbols as in Fig. 1. Curves
shifted upward for clarity.

IV. CONCLUDING REMARKS

In this work we have shown that the presence of the
magnetic field in the non-Markovian time characterization
of the decay of the unstable states of a charged Brownian
particle driven by OU noise is strongly coupled to the noise
correlation time. The coupling effect is actually quantified by
the term (�̃τ )2 appearing in Eqs. (A6), (A7), and (A15)–(A18),
when the correlation matrix of effective initial conditions is
calculated. It is shown in the three herein studied cases that
such a correlation matrix given by Eq. (14) does not satisfy the
requirements demanded by the joint probability density (13)
and then also by the QD approach. Under these circumstances,
the non-Markovian time characterization of the decay process
cannot be achieved. However, by assuming a weak coupling
effect between the magnetic field and the noise correlation time

10-6 10-5 10-4 10-3 10-2 10-1

De

2

4

6

8

10

12

T c
ic

τ = 0.2
τ = 0.4
τ = 0.6

FIG. 3. (Color online) Coupled case with distributed initial
conditions. Same a, b, α, and C values as in the previous figures,
but now with M2 = 0.997 5. Same symbols as in previous figures
now corresponding, in the upward direction, to τ = 0.2 (continuous
line and circles), τ = 0.4 (dot-dashed line and triangles), and τ = 0.6
(double-dash dot line and squares). Curves shifted upward for clarity.
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such that τ � 1 + ã0τ and �̃τ � 1 + ãτ , then the correlation
matrix σij becomes a diagonal one, as shown in Eqs. (20), (23),
and (28). The weak coupling condition allows the QD approach
to successfully achieve the dynamical characterization of the
present problem, as shown in Eqs. (44), (45), and (46).

The interesting result appearing in the weak coupling
limiting case is the following: The two decoupled cases can
be considered as a GWN problem, wherein the influence
of the colored noise, in the presence of a magnetic field,
induces a renormalization of the rescaled noise intensity De =
D/(1 + C2) by a factor 1/(1 + ãτ ), as shown in Eqs. (44),
(45), (47), and (48). For the coupled case, the comparison is
given between the influence of the magnetic field with respect
to the ordinary Brownian motion colored noise case. Here,
as can be corroborated in Eqs. (28) and (30), the magnetic
field induces a rescaling in the noise intensity D and in the
control parameters a0 and a by the factor 1/(1 + C2), leading,
respectively, to De, ã0, and ã. Our theoretical results given
by Eqs. (44), (45), and (46) have been compared with the
numerical simulation results, showing very good agreement
for the given values of the involved parameters.

APPENDIX A: EFFECTIVE INITIAL CONDITIONS
CORRELATION MATRIX σi j

1. Decoupled case

For a fixed initial condition r′
0 = 0, we have from Eq. (8)

that h′ = g′, and thus 〈g′
i〉 = 0 and the correlation matrix is

σ
g

ij = 〈g′
ig

′
j 〉, where

〈g′
ig

′
j 〉 = 1

α2
e

∫ ∞

0

∫ ∞

0
e−ã(t+t ′)�ik�jlR−1

km(t)R−1
ln (t ′)

×〈μm(t)μn(t ′)〉 dtdt ′. (A1)

By substituting Eq. (3), the matrix elements of R−1(t), as well
as those of �, it can be shown, after a long but straightforward
algebra, that

σ
g

11 = 〈g′
1g

′
1〉 = 〈g′

2g
′
2〉 = σ

g

22, (A2)

σ
g

12 = 〈g′
1g

′
2〉 = −〈g′

2g
′
1〉 = −σ

g

21 , (A3)

where

〈g′
1g

′
1〉 = 2K

( ∫ ∞

0
dt e−A1t sin �̃t

∫ t

0
dt ′ e−A2t

′
sin �̃t ′

+
∫ ∞

0
dt e−A1t cos �̃t

∫ t

0
dt ′ e−A2t

′
cos �̃t ′

)
, (A4)

〈g′
1g

′
2〉 = 2K

( ∫ ∞

0
dt e−A1t cos �̃t

∫ t

0
dt ′ e−A2t

′
sin �̃t ′

−
∫ ∞

0
dt e−A1t sin �̃t

∫ t

0
dt ′ e−A2t

′
cos �̃t ′

)
, (A5)

with K = D(1 + C2)/τ α2
e , A1 = (̃a + τ−1), and A2 = (̃a −

τ−1). Performing explicitly the integrals we arrive at

σ
g

11 = D(1 + ãτ )

a [(1 + ãτ )2 + (�̃τ )2]
, (A6)

σ
g

12 = − D �̃τ

a [(1 + ãτ )2 + (�̃τ )2]
. (A7)

In this case, the correlation matrix σij does not satisfy the
requirements established in the Gaussian probability density
given by Eq. (13).

2. Coupled case

For this physical situation we must calculate the additional
terms of Eq. (14), that is, σ 0

ij , σ
0g

ij , and σ
0g

ji . It is clear from
Eqs. (10) and (27) that we have the mean values 〈g′

i〉 = 0
and 〈x ′

0i〉 = 0; thus the following correlation functions are
defined:

σ 0
ij = 〈x ′

0ix
′
0j 〉, σ

0g

ij = 〈x ′
0ig

′
j 〉, σ

0g

ji = 〈x ′
0j g

′
i〉 , (A8)

where

〈x ′
0ix

′
0j 〉 = 1

α2
e

∫ 0

−∞

∫ 0

−∞
eã0(t+t ′)�ik�jlR−1

km(t)R−1
ln (t ′),

×〈μm(t)μn(t ′)〉 dtdt ′, (A9)

〈x ′
0ig

′
j 〉 = 1

α2
e

∫ ∞

0

∫ 0

−∞
e−ãt+ã0t

′
�ik�jlR−1

km(t)R−1
ln (t ′)

×〈μm(t)μn(t ′)〉 dtdt ′. (A10)

We substitute again Eq. (3) and the matrix ele-
ments of R−1(t) and � to show that σ 0

11 = 〈x ′
01x

′
01〉 =

〈x ′
02x

′
02〉 = σ 0

22, σ 0
12 = 〈x ′

01x
′
02〉 = −〈x ′

02x
′
01〉 = −σ 0

21, σ
0g

11 =
〈x ′

01g
′
1〉 = 〈x ′

02g
′
2〉 = σ

0g

22 , and σ
0g

12 = 〈x ′
01g

′
2〉 = −〈x ′

02g
′
1〉 =

−σ
0g

21 , where

〈x ′
01x

′
01〉 = 2K

( ∫ 0

−∞
dt eA1t sin �̃t

∫ t

−∞
dt ′ eA2t

′
sin �̃t ′

+
∫ 0

−∞
dt eA1t cos �̃t

∫ t

−∞
dt ′ eA2t

′
cos �̃t ′

)
,

(A11)

〈x ′
01x

′
02〉 = 2K

( ∫ 0

−∞
dt eA1t cos �̃t

∫ t

−∞
dt ′ eA2t

′
sin �̃t ′

−
∫ 0

−∞
dt eA1t sin �̃t

∫ t

−∞
dt ′ eA2t

′
cos �̃t ′

)
,

(A12)

〈x ′
01g

′
1〉 = K

( ∫ ∞

0
dt e−B1t sin �̃t

∫ 0

−∞
dt ′ eA2t

′
sin �̃t ′

+
∫ ∞

0
dt e−B1t cos �̃t

∫ 0

−∞
dt ′ eA2t

′
cos �̃t ′

)
,

(A13)

〈x ′
01g

′
2〉 = K

( ∫ ∞

0
dt e−B1t cos �̃t

∫ 0

−∞
dt ′ eA2t

′
sin �̃t ′

−
∫ ∞

0
dt e−B1t sin �̃t

∫ 0

−∞
dt ′ eA2t

′
cos �̃t ′

)
,

(A14)
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where now B1 = (̃a0 − τ−1) and B2 = (̃a0 + τ−1). After eval-
uating the integrals we get

σ 0
11 = D(1 + ã0τ )

a0[(1 + ã0τ )2 + (�̃τ )2]
, (A15)

σ 0
12 = D�̃τ

a0[(1 + ã0τ )2 + (�̃τ )2]
, (A16)

σ
0g

11 = Deτ [(1 + ã0τ )(1 + ãτ ) − (�̃τ )2]

[(1 + ã0τ )2 + (�̃τ )2][(1 + ãτ )2 + (�̃τ )2]
, (A17)

σ
0g

12 = − De �̃τ 2[2 + (̃a0 + ã)τ )]

[(1 + ã0τ )2 + (�̃τ )2][(1 + ãτ )2 + (�̃τ )2]
, (A18)

with De = D/(1 + C2). Now, the matrix elements σij of
Eq. (14) are then

σ11 = σ 0
11 + σ

g

11 + 2σ
0g

11 , (A19)

σ22 = σ 0
22 + σ

g

22 + 2σ
0g

22 , (A20)

σ12 = σ 0
12 + σ

g

12 + σ
0g

12 + σ
0g

21 , (A21)

σ21 = σ 0
21 + σ

g

21 + σ
0g

21 + σ
0g

12 . (A22)

However, due to the results obtained in this Appendix we
see that σ11 = σ22 and σ12 = −σ21, where σ12 = σ 0

12 + σ
g

12

because of σ
0g

12 + σ
0g

21 = 0. We conclude that the correlation
matrix σij does not actually satisfy the properties established
in the joint probability density (13). If, however, we suppose
that �̃τ � 1 + ãτ and �̃τ � 1 + ã0τ , then it can be shown
approximately that σ 0

12 = 0, σ
g

12 = 0, and therefore σ12 =
−σ21 = 0, as well as

σ 0
11 = σ 0

22 = De

ã0(1 + ã0τ )
, (A23)

σ
g

11 = σ
g

22 = De

ã(1 + ãτ )
, (A24)

σ
0g

11 = σ
og

22 = Deτ

(1 + ã0τ )(1 + ãτ )
. (A25)

Therefore, the correlation matrix of effective initial conditions
σij becomes diagonal with elements defined by σ 2 = σii ,
where σ 2 = σ 0

11 + σ
g

11 + 2σ
0g

11 .
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