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Generalized Hurst exponent and multifractal function of original and translated texts
mapped into frequency and length time series
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A nonlinear dynamics approach can be used in order to quantify complexity in written texts. As a first step,
a one-dimensional system is examined: two written texts by one author (Lewis Carroll) are considered, together
with one translation into an artificial language (i.e., Esperanto) are mapped into time series. Their corresponding
shuffled versions are used for obtaining a baseline. Two different one-dimensional time series are used here: one
based on word lengths (LTS), the other on word frequencies (FTS). It is shown that the generalized Hurst exponent
h(q) and the derived f (α) curves of the original and translated texts show marked differences. The original texts
are far from giving a parabolic f (α) function, in contrast to the shuffled texts. Moreover, the Esperanto text
has more extreme values. This suggests cascade model-like, with multiscale time-asymmetric features as finally
written texts. A discussion of the difference and complementarity of mapping into a LTS or FTS is presented.
The FTS f (α) curves are more opened than the LTS ones.
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I. INTRODUCTION

The Hurst (or equivalently Hölder) exponent [1], measuring
the so-called self-affinity of signals, in short the roughness
exponent, can be generalized to some generalized fractal
dimension D [1,2]. However, multifractals [3] seem to better
describe an object through its evolving geometrical or struc-
tural features. One has to recognize that there is some debate on
whether multifractality exists because of finite-size effects [4].
The discussion on such a point should arise in some review
article outside the present paper. Let it be simply recalled
that through a generator and from an initiator, one can easily
produce a fractal object with a given dimension [1]. Note that to
produce realistic and meaningful multifractal models is still a
challenge [5]. Next, one can ask what to do with the knowledge
that a dynamical object is a multifractal; even more, how can
this nonlinear measure of knowledge be useful? Nevertheless,
the first question is: Is there any multifractality evidence?

Many authors have discussed the origin, characteristics,
content, and role of multifractals. Let me point to a pioneering
experimental one [5], a theoretical one [6], a conceptual one
[7], and a few so-called applications [8–10] in order to set
up some wide perspective. Let us also recall that one has
to obtain a h(q) function, which is a generalized Hurst or
Hölder exponent or a D(q) generalized dimension, where q

represents the degree of some moment distribution of some
time evolving variable. Subsequently one can obtain a f (α)
spectrum, in which f (α) is the distribution of the exponent
α(≡ d

dq
[qh(q)]) of the object.

A written text can be considered as a physical signal [11,12]
because it can be decomposed through level thresholds, which
are like a set of characters taken from an alphabet. As such,
writings belong to the top-level class of complexity [13]. One
question immediately follows—Are multifractals found in real
texts?—a question already raised in Ref. [14] when studying
the distribution of letters in Moby Dick (see also Refs. [15–18]).
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In Refs. [19,20] it was claimed that long-range order
correlations (LROCs) between words in texts express an
author’s ideas, and in fine even consist in some authors’
signatures [21,22]. Comparisons of written texts translated
from one to another language [23], in particular from the point
of view of word LROCs, are of interest from the complexity
point of view. The more so if the number of words in two
languages is markedly different. In fact, since Shannon himself
[24], writings and codings are of interest in statistical physics.
Writings are systems practically composed of a large number
of internal components (the words, signs, and blanks in printed
texts).

Texts, used here for investigating some a priori unknown
structure, were chosen for their rather wide diffusion and
incidentally being representative of a famous scientist, Lewis
Carroll’s Alice’s Adventures in Wonderland (AWL) [25,26]
and Through the Looking Glass (TLG) [27]. Knowing the
mathematical quality of this author’s mind, one might expect
to find some special, unusual, unknown features of his
texts. Interestingly, a translation of AWL into Esperanto is
available online; here below, such text will be referred to
as ESP.

Having no previous baseline for such investigations, the
three texts have been shuffled in order to serve as baseline. This
should allow one to check the robustness of the investigation
methods and, if they exist, findings about multifractality of
such written texts..

In Sec. II, the data downloading and preliminary manipu-
lations are explained. Next, the methodology is exposed: one
can distinguish frequency time series (FTS) from length time
series (LTS). Different techniques exist to investigate such
supposedly multifractal signals. Those are briefly recalled
for completeness. Such techniques are complementary; the
presently used one sticks to the classical box counting method
[3]. The resulting data does not show any anomaly that would
put into question the simplest method, and would request more
fancy or advanced techniques.

More importantly, in this author’s opinion, one has to
remain within a statistical physics framework. In order to do
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so, one aim consists in searching for correlations between
fluctuations, in the spirit of the linear response theory [28,29].
Thus, the 12 time series are transformed into fluctuations (i.e.,
series based on the signs of the derivatives of the texts) before
calculating the multifractal features.

In Sec. III, the results for the generalized Hurst exponent
h(q) and the corresponding f (α) function [3] are presented and
discussed. In Sec. IV, one comments about indicators [i.e., the
shape and extreme values of h(q), α, and f (α) characterizing
the texts]. Those suggest how to analyze (dis)order and
correlations, whence so-called text complexity, along cascade-
like models [30], with multiscale time-asymmetric features. In
Sec. V, a summary induces a conclusion.

II. DATA AND METHODOLOGY

The time series are made from a mapping of texts, here
above mentioned, downloaded from a freely available website
[31]. The chapter heads have first been removed before
analysis. Three files are considered: (i) the English version
of AWL, in short AWL; (ii) its translation into Esperanto,
in short ESP; and (iii) and the chronologically later written
(English) text TLG. Note that even though the series are to be
transformed (see below) the same notation is kept thereafter,
referring as such to the original (o) text without any ambiguity
or to their shuffled version (s) (i.e., AWLo,..., TGLs).

The shuffle algorithm is one found on wikipedia.org. In
brief, the first data point is exchanged with some following
one, its location chosen from a generated random number.
The second data point is exchanged with some following one,
chosen from another random number, etc. The random number
generator was checked to lead to a rather uniform distribution,
for a number between 0 and 1. The algorithm was applied
ten times on the texts to get the final shuffled texts hereby
used for analysis, comparison, and discussion. In so doing,
the six documents have been transformed into 12 numerical
one-dimensional nonlinear maps in two ways [32]: (i) The
number of occurrences of each word in the whole document
is counted, deducing its frequency f . The words are ranked
accordingly, giving rank 1 to the most frequent word. Then, the
text is “rewritten” into a series of numbers, such that at each
appearance of a word a number equal to its rank is replacing the
word. Such a series is called the frequency time series (FTS).
(ii) The length l (number of letters) of a word is considered.
One records the word of length l at each successive “time” in
the document (i.e., the first word is considered to be emitted at
time t = 1, the second at time t = 2, etc.). A time series based
on the amplitude l(t) is so constructed. It is called a length
time series (LTS).

Let it be mentioned that punctuation and other typological
signs are disregarded [e.g., a word such as don’t is considered
as leading to don (three letters) and t (one letter)]. The same
goes for singular and plurals, giving two distinct words, or
verbs. For completeness, let it be mentioned that the frequency,
for example, of only lemmatized nouns or verbs could be
studied [23,33]. Note that it should be obvious that the above
mappings lead to a continuouslike series (i.e., without blanks
or gaps between words) now being numbers or a time index.

There are several techniques to demonstrate multifractality
in time series, as nicely and recently reviewed in Ref. [34] or

by Schumann and Kantelhardt [35]. Although the multiscaling
features can be studied using different algorithms, each method
provides complementary information about the complex struc-
ture of the time series. One can be analyzing either the statistics
or the geometry, as well described in Ref. [36].

A statistical approach consists of defining an appropriate
intensive variable depending on a resolution parameter, then
its statistical moments are calculated by averaging over an
ensemble of realizations and at random base points. It is said
that the variable is multifractal if those moments exhibit a
power-law dependence in the resolution parameter. On the
other hand, geometrical approaches [37–42] try to assess
a local power-law dependency on the resolution parameter
for the same intensive variables at every particular point.
The geometrical approach is informative about the spatial
localization of self-similar (fractal) structures, but leads to
some difficulty when having to justify the retrieval of scaling
exponents.

The oldest multifractal analysis method is the multifractal
box counting (MF-BOX) technique [3], which fails in the pres-
ence of nonstationarities, such as trends. This deficiency led
to the development of the wavelet transform modulus maxima
(WTMM) method, a generalized box counting approach based
on a wavelet transform by Muzy-Bacry-Arneodo [43–47].
Another approach to study multifractality in time series is the
multifractal generalization of detrended fluctuation analysis
(MF-DFA) of which Kantelhardt et al., on one hand, and
Zunino et al., on the other hand [48–51] are the most
prolific representatives. It based on the traditional DFA [52] or
extensions [53,54].

Practically, MF-DFA is less complicated and demands less
presumption than the WTMM algorithm. For comparisons
of these multifractal analysis methods, see Refs. [48,55–57].
Such comparisons indicate that MF-DFA is at least equivalent
to WTMM, while an application of WTMM needs more care
and yields spurious multifractality more often. In the present
case, since there is no trend in such series, the simplest box
counting technique is workable. Thus, the present study sticks
to the classical box counting method [3].

III. RESULTS

A. Multifractal analysis

The simplest type of multifractal analysis, based upon
the standard partition function multifractal formalism [3], is
summarized here below. However, it is relevant to emphasize
which variables are used in calculating the partition function.
Since I want to stick to statistical physics ideas and methods,
through, the usual linear response theory concepts [28,29]
for calculating long-range order features through quantities,
usually called susceptibilities, it is useful to define the
fluctuations of interest before calculating the correlations
between those. The most basic or primary fluctuations are in
the derivative of a signal (or deviations from the mean, indeed).
In order to enhance the role of fluctuations in the time series
(i.e., the text) each series is transformed as follows, according
to the most primary set of thresholds: if the length of a word
in LTS (or its frequency or rank in FTS) is smaller than the
next one, the former word gets a value = 2; if it is greater, it
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TABLE I. Basic statistical data for the three original texts of
interest. The number of words gives the size of the length time series.
The number of different words gives the size of the frequency time
series.

AWLo ESPo TLGo

Number of words 27 342 25 592 30 601
Number of different words 2958 5368 3205
Number of characters 144 927 154 445 164 147
Number of sentences 1633 2016 2059
Number of punctuation marks 4531 4752 4828

gets the value = 1; and 0 if both are equal. The resulting series
is called Mi (1 � i � N − 1). Next, each Mi is cut into Ns

subseries of size s, where Ns is the smallest integer in N/s.
The ordering starts from the beginning of the text, dropping
out the last data points if necessary. For either the original or
shuffled text, each FTS (or LTS) has the same number of data
points, 1 � i � N . The number of words gives the size of the
length time series. The number of different words gives the
size of the frequency time series. See such values and other
informative data in Table I.

Next, one calculates the probability [3]

P (s,ν) = �s
i=1M(ν−1)s+i

�
Ns

ν=1�
s
i=1M(ν−1)s+i

(1)

in windows of size ν, for every ν and s. Thereafter one
calculates the so-called partition function [3]

χ (s,q) = �
Ns

ν=1P (s,ν)q (2)

for each s value. A power-law behavior is expected

χ (s,q) ∼ sτ (q). (3)

The generalized Hurst exponent, h(q), is obtained through

h(q) = 1 + τ (q)

q
. (4)

from the best linear fit to Eq. (3) on a log-log plot to get τ (q).
The generalized fractal dimension D(q) [3] follows next:

D(q) = τ (q)

q − 1
. (5)

Let

α = dτ (q)/dq, (6)

from which, by inversion, one obtains q(α) and τ [q(α)],
whence the f (α) function [58]

f (α) = qα − τ (q), (7)

as usual [3].
In the present work, χ (s,q) has been calculated for a very

large s range (i.e., between 2 and 5000) but the forthcoming
below reported data takes into account only the values for 2 <

s < 200 (i.e., when 0.3 < log10 s < 2.3). In such a range, the
error bands are undistinguishable from the (mean of the) data
(see Figs. 3–7). Moreover, the τ (q) values must be measured in
s ranges where a power law, as in Eq. (3), is found. Practically,
one could do better in letting the extremal values of the s

interval be flexible, and, for example, let them be varied in
each possible fit, but this is much too time consuming for the
final output, the more so if one attempts to cover a large set of q

values. The above mentioned extremal values were obtained,
or rather considered as acceptable, along the above criteria
plus some respect of computer time, after many trial plots.

The τ (q) values were calculated by a linear best fit on a
log-log plot of χ (s,q) vs s, for all (integer) q values ranging
between −40 and +80. Note that there are about 6 × 120 data
set to fit. Thus, the number of q values examined was reduced to
those such that −35 < q < 75, for FTS and to −25 < q < 80,
for LTS. This allows one to obtain smooth curves (see below)
with negligible error bars.

Another (technical) comment in advance of the reported
results in the following section is in order: a too broad interval
of q might sometimes cast doubts on reported multifractality
[59]. It has been discussed that in the analysis of multifractality
in turbulence or high-frequency financial data, the interesting
moment orders q should not be greater than 8 in order to

TABLE II. Characteristic slope values, for q = 2, for the original (o) and shuffled (s) texts, according to the type of series (FTS or LTS) so
examined.

Original texts 0–200 std. dev. 200–5000 std. dev. 0–5000 std. dev.

AWLoFTS 0.491 2E-3 0.561 2E-3 0.561 2E-3
ESPoFTS 0.519 2E-3 0.544 1E-3 0.545 1E-3
TLGoFTS 0.501 2E-3 0.777 3E-3 0.774 3E-3

AWLoLTS 0.538 2E-3 0.686 1E-3 0.684 1E-3
ESPoLTS 0.516 2E-3 0.619 2E-3 0.620 2E-3
TLGoLTS 0.531 2E-3 0.560 1E-3 0.560 2E-3

Shuffled texts 0–200 std. dev. 200–5000 std. dev. 0–5000 std. dev.
AWLsFTS 0.525 1E-3 0.534 1E-3 0.533 1E-3
ESPsFTS 0.518 1E-3 0.474 1E-3 0.478 1E-3
TLGsFTS 0.524 1E-3 0.480 1E-3 0.480 1E-3

AWLsLTS 0.461 2E-3 0.584 1E-3 0.581 1E-3
ESPsLTS 0.519 4E-3 0.507 1E-3 0.506 1E-3
TLGsLTS 0.504 3E-3 0.587 1E-3 0.584 1E-3
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FIG. 1. The so-called partition function χ (s,q) vs s, the subseries
size in Eq. (1), on log-log plot graphs, in order to obtain τ (q) [Eq. (3)]
in the best possible power-law regime (see text) and subsequently the
generalized Hurst exponent h(q) [Eq. (4)] or the generalized fractal
dimension D(q) [Eq. (5)] in the case of FTS, for the (a) original (o)
and (b) shuffled (s) texts. Only three representative q values (−10, +2,
+20) in each case are shown for space savings. Shorthand notations
to understand the illustrating data are on the left axis; F → FTS;
E→ESP, T→TLG, and A→AWL, respectively. In the display, the
data has been arbitrarily displaced along the y axis since only the
slope from a linear fit is relevant.

make the partition function converge [59]. However, as an
example, the size of intraday high-frequency data is such that
the moment order can be taken to be −120 � q � 120 [59].
In brief, depending on the size of the time series, the partition
function can be computed for rather large values of q, if the
convergence makes sense. In other words, the error bars should
become negligible or irrelevant for the discussion purpose. As
in other papers on multifractals [60–62] or critical exponent
search [63,64] by the authors and coworkers, great care has
thus been taken such that the here below presented data is

FIG. 2. The so-called partition function χ (s,q) vs s, the subseries
size in Eq. (1), on log-log plot graphs, in order to obtain τ (q) [Eq. (3)]
in the best possible power-law regime (see text) and subsequently the
generalized Hurst exponent h(q) [Eq. (4)] or the generalized fractal
dimension D(q) [Eq. (5)] in the case of LTS, for the (a) original and
(b) shuffled texts. Only 3 representative q-values (−10, +2, +20) in
each case are shown for space savings. Only three representative q

values (−10, +2, +20) in each case are shown for space savings.
Shorthand notations to understand the illustrating data are on the left
axis; F → FTS; E→ESP, T→TLG, and A→AWL, respectively. In
the display, the data has been arbitrarily displaced along the y axis
since only the slope from a linear fit is relevant.

reliable both from physics and statistics criteria. No need to
say that it takes much time to do so and all steps are not
recorded. The fit code (MULTIFRACTALMA.JAVA) is available
from the author upon request.

B. h(q) plots: Figures 3–4

For space savings, not all χ (s,q) [Eq. (2)] are shown
here, as mentioned here above. However, for a preliminary
quantifying purpose, a summary of values, for q = 2, and its
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FIG. 3. Generalized Hurst h(q) exponent of three original (o)
texts, AWL, ESP, and TLG, analyzed through FTS (a) and LTS (b)
mapping. Lines are smooth guides to the eyes.

standard deviation, found of the order of 10−3 are found in
Table II. Recall that q = 2 in fact corresponds to the standard
DFA procedure. It is seen that the number of data points (i.e.,
the number of boxes of size s) taken in order to estimate the
slope of the straight line has some quite mild influence. The
latter might be a specific effect of time series based on written
texts, or on the preliminary transformation of the time series
into some sort of series of fluctuations. The matter has not
been investigated further.

A few examples of plots of the partition function χ (s,q)
vs the subseries size s [see Eq. (1)] are shown in Figs. 1 and 2
on log-log graphs. As explained above, the s range is chosen
to be appropriate in order to obtain τ (q), from Eq. (3). In
each display, the raw data has been arbitrarily displaced along
the y axis for good visualization purpose; only the slope
from a linear fit is relevant. It is already remarkable that the
(positive or negative) slope values will be of the same order
of magnitude for the different but corresponding cases, either
the original or shuffled series, with an expected evolution, as
in many other studies. Also it is seen that there is hope for
some possible distinction to be made between FTS and LTS
cases depending on the original text.

FIG. 4. Generalized Hurst exponent h(q) of three shuffled (s)
texts, AWL, ESP, and TLG, analyzed through FTS (a) and LTS (b)
mapping. Lines are smooth guides to the eyes.

From Eq. (4), the resulting h(q) curves of the generalized
scaling Hurst exponents are given in Figs. 3 and 4 for the
various texts, for q values ranging between −40 and +80.
Observe that a marked numerical instability exists at q =
0—as usual, in fact—better seen for the FTS than LTS. For
monofractal time series, h(q) should be independent of q. A
multifractal structure is markedly observed, thus indicating
that the scaling behaviors of small and large fluctuations are
different. It is known that the generalized Hurst exponent for
negative q can be shown to describe the scaling of small
fluctuations, because the windows ν in Eq. (1) with small
variance dominate for this q range. In contrast, the windows
ν with large variance have a stronger influence for positive q.
Whence small fluctuations are usually characterized by larger
scaling exponents than those related to large fluctuations,
thereby inducing a Fermi or step-function-like shape of h(q).

C. Note on D(q)

Obviously,

D(q) = 1

q − 1
[qh(q) − 1]. (8)
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First, observe the values of h(2). For stationary signals,
h(2) should coincide with the Hurst exponent H if the system
is monofractal, and D = 2H − 1. The h(2) values, as, for
example, can be read from Figs. 1–2, are given in Table III
The values for the the shuffled texts lead to a doubtless fractal
dimension = 1. The slight deviations from unity for the original
texts might be due to so called finite size effects. Recall that
the topology of the time series is a smooth line, without gaps.

Next, it can be deduced that the generalized fractal
dimension for the FTS has a similar set of values for both
English texts, decaying from ∼1.2 to 1.0 for q increasing but
negative; D(q) decays slowly for q positive, barely reaching
a value 0.95 for q = 80. The value of D(q) is much greater
along the negative q axis, in particular for ESPo but is identical
to the other two for q � 0. In LTS, the form of D(q) is that to
be expected and is similar to the FTS form.

The shuffled texts have remarkably similar h(q), thus D(q)
values, both in range and variations, as those of the original
texts, but the D(q) values are closer to 1.0, as could be
expected. Very slightly quantitative differences occur, more
markedly for the EPSsFTS [see Fig. 4(a)] than for others.
Along a Baeysian reasoning, these differences can be attributed
to the finite size of the sample.

By the way, [65]

C1 = dτ (q)

dq

∣
∣
∣
∣
q=1

(9)

a measure of the intermittency lying in the signal y(n), can be
numerically estimated by measuring τq around q = 1. In each
case, the value of C1 is close to unity (table of data not shown
for space savings). Some comment on the role or meaning of
C1, a sort of information entropy on the structural complexity
of a signal, can be found in Ref. [66].

D. f (α) plots: Figures 5–7

The f (α) spectra are shown in Figs. 5–7. Instead of
presenting graphs based on FTS and LTS mappings, the data
is presented for the three original texts and their shuffled
counterparts. In so doing one can better compare for a given
sample the methods and the subsequent results.

TABLE III. Characteristic h(q = 2), α−, and α+ values (see
Figs. 1–5) for the original, translated, and shuffled texts, according to
the type of series (FTS or LTS) so examined.

Original Texts h(2) α− α+

AWLoFTS 0.997 0.95 1.19
ESPoFTS 0.997 0.94 1.30
TLGoFTs 0.997 0.95 1.19

AWLoLTS 0.994 0.92 1.23
ESPoLTS 0.994 0.92 1.21
TLGoLTS 0.994 0.92 1.34

Shuffled Texts h(2) α− α+
AWLsFTS 1.0 0.95 1.13
AESPsFTS 1.0 0.96 1.16
TLGsFTS 1.0 0.94 1.13

AWLsLTS 0.999 0.91 1.25
ESPsLTS 0.999 0.92 1.24
TLGsLTS 0.999 0.91 1.25

FIG. 5. f (α) for AWL, original (o) or shuffled (s) text along FTS
or LTS mapping. Lines are smooth guides to the eyes.

Before discussing the original texts or series, it can be
observed that the shuffling does not fully symmetrize the
spectra. The rather finite size of these dynamical systems is
likely the cause of such an imperfection. However, there is no
doubt that all spectra are markedly nonsymmetric. This was at
first found for DLA simulations in [6], with very high positive
skewness, without much discussion. Note that for all series,
the FTS curves are wider than the LTS. In all cases also the
original and its shuffled series lead to a quasi-identical f (α)
spectrum, for any α � 1 and up to α � 1.1. Above α � 1.2,
some departure occurs, for several series, indicating a marked
effect of large fluctuations.

IV. DISCUSSION

Let us stress linguistics-like implications derived from the
above time series analysis of linguistics samples:

(i) h(q) and D(q): In LTS, even though the form of D(q) is
that to be expected and is similar to the FTS form, it has to be
stressed that the AWLo and ESPo are very quantitatively simi-
lar, but markedly differ from TLGo. This already indicates that

FIG. 6. f (α) for ESP, original (o) or shuffled (s) text along FTS
or LTS mapping. Lines are smooth guides to the eyes.
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FIG. 7. f (α) for TLG, original (o) or shuffled (s) text along FTS
or LTS mapping. Lines are smooth guides to the eyes.

one can observe a high structural complexity of the author’s
style of writing through these two books. Moreover the mul-
tifractal analysis clearly shows that a translation effect on the
text style is much better observed through an FTS than an LTS.

Finally, note that the shuffled texts have remarkably similar
D(q) values. This means that the multifractality could be a
distributional one and not due to nonlinear correlations for the
shuffled texts.

(ii) f (α): The curve rises very sharply: starting from
negative values for α � 1.0, it reaches a maximum (=1.0)
at 1.0, at the maximum so-called box dimension, and decays
less rapidly for α � 1. The not fully parabolic, to say the
least, f (α) curve indicates nonuniformity and strong LROC
between long words and small words, evidently arising from
strong short-range order correlations between these. In fact,
the (right-)left-hand side of the f (α) curve corresponds to
fluctuations of the q � 0 (q � 0) correlation function. In
other words, they correspond to correlated fluctuations in
small (large) word distributions. It would be a nice conjecture
that such distributions are personal features of the vocabulary
grasped by an author.

In so doing, the the extremal α values (i.e., α− and α+)
should be quantifying the somewhat systemic way used by
an author in his or her writings. These extreme values for
the 12 examined texts are given in Table III Observe that
the Esperanto text differs from both English texts in such a
consideration, the English texts presenting the same.

A short final note: the Esperanto text curves behave
differently from the English texts in FTS, though TLGo
is different from the others in the LTS case. However, the
shuffled texts’ f (α) spectra behave in a very similar way, both
qualitatively and quantitatively. I conjecture the effect to be
due to the number of punctuation marks in such cases (see
Table I). Again, LROC and the related structural complexity,
style, and creativity, are well exemplified.

V. CONCLUSION

In summary, one has studied three samples, written texts,
and mapped as in fine 12 time series, due to introducing shuf-

fled series as surrogate data for comparison. One can observe
qualitative similarities between the original and shuffled texts
and their translations and quantitative differences. The English
texts look more similar with each other than with respect to
the Esperanto translation. The sharpness of f (α) indicates a
high lack of uniformity of each text LROC.

The multifractal scheme has been indicated to provide
a measure of these correlations, thus a new indicator of a
writer’s style. Of course, one might argue that only texts
written by a single author, Lewis Carroll, are examined,
not proving whether the so-obtained f (α) is text dependent,
writer dependent, or both. That is why criteria suggested
for estimating a text’s semantic complexity as if it is a time
series are of interest. It remains to be seen through more
investigations whether the f (α) curve and the cascade model
hold in other cases, and do in general characterize authors
and/or texts, and other time series. Note that the multifractal
method should additionally be able to distinguish a natural
language signal from a computer code signal [32] and should
help in improving translations by suggesting perfection criteria
and indicators of a translated text qualitative values, similar to
those of the original one.

Let it be re-emphasized the remarkable difference for the
Esperanto text [Fig. 3(a)] with the English texts in the FTS
analysis. Linguistics input should be searched at this level and
is left for further discussion. The origin of differences between
TLG and AWL needs more work also at the linguistic level.

On the other hand, one physics conclusion arises from
the above: the existence of a multifractal spectrum found for
the examined texts indicates a multiplicative process in the
usual statistical sense for the distribution of word length and
frequency in the text considered as a time series. Thus lin-
guistic signals may be considered indeed as the manifestation
of a complex system of high dimensionality, different from
random signals or from systems of low dimensionality such
as the financial and geophysical (climate) signals. In so doing
one can consider the behavior of the atypical f (α) curve as
originating from a binomial multiplicative cascade process as
in fully developed turbulence [30], here for short and long
words, on a support [0,1].

Extensions to higher dimensions (e.g., in image recognition
[67] or in hypertext studies) are thus quite possible. In relation
to these remarks, work on fractal analysis of paintings should
be mentioned [67,68], on handwriting [69], and on japanese
garden patterns [70] to indicate directions for further research.
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