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Fluctuations of current in nonstationary diffusive lattice gases
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We employ the macroscopic fluctuation theory to study fluctuations of integrated current in one-dimensional
lattice gases with a steplike initial density profile. We analytically determine the variance of the current fluctuations
for a class of diffusive processes with a density-independent diffusion coefficient. Our calculations rely on
a perturbation theory around the noiseless hydrodynamic solution. We consider both quenched and annealed
types of averaging (the initial condition is allowed to fluctuate in the latter situation). The general results for
the variance are specialized to a few interesting models including the symmetric exclusion process and the
Kipnis-Marchioro-Presutti model [Kipnis, Marchioro, and Presutti, J. Stat. Phys. 27, 65 (1982)]. We also probe
large deviations of the current for the symmetric exclusion process. This is done by numerically solving the
governing equations of the macroscopic fluctuation theory using an efficient iteration algorithm.
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I. INTRODUCTION

Fluctuations around equilibrium states of matter is a
classical subject of statistical physics. Close to equilibrium,
fluctuations of macroscopic observables are fully described in
terms of the free energy [1]. An important recent advance is the
elucidation of the behavior of fluctuations, including large de-
viations, of macroscopic observables in nonequilibrium steady
states (NESS) of driven lattice gases: simple diffusive transport
systems with particle conservation [2–9]. The distribution of
fluctuations in NESS, as described by the large deviation
functional [10], can exhibit qualitatively new features, such
as nonlocality and phase transitions (see Refs. [11,12] for
reviews). So far, large fluctuations in NESS have only been
studied in a very few simple lattice gas models. These studies,
however, have greatly increased the general understanding of
fluctuations around NESS.

Over the last decade a powerful framework, the macro-
scopic fluctuation theory (MFT) of Bertini et al. [13], has
been developed for NESS of diffusive lattice gases driven
by reservoirs at the boundaries. The MFT is a classical
Hamiltonian field theory [13,14] which describes macroscopic
fluctuations in these systems. The MFT formalism is a further
development of the low-noise Freidlin-Wentzell theory [15]
which in turn is a variant of the WKB (after Wentzel, Kramers,
and Brillouin) approximation. A celebrated analog of the MFT
for continuous stochastic systems is the Martin-Siggia-Rose
field-theoretical formalism [16] which has been employed in
numerous works. Related approaches for lattice gases deal
with, in addition to diffusive transport, on-site reactions among
particles [17–19].

The MFT has been successfully applied to NESS in dif-
ferent systems [13,14,20–22], including those driven not from
the boundaries. Large fluctuations around NESS have also
been studied at the microscopic level using exact [23–26] and
numerical [27–29] approaches. A perfect agreement between
the predictions of the MFT and the long-time asymptotes of
the microscopic calculations has been observed whenever the
results of the two approaches were available.

With the continuing progress in the studies of NESS, a
natural next step is to probe fluctuations of macroscopic
observables around nonstationary states. Fortunately, the MFT
framework is readily extendable to nonstationary settings, such
as the evolution of a steplike initial density profile [30]. There
is, however, a major technical hurdle which slows down the
progress in using the MFT for the analysis of both stationary
and nonstationary problems. Already in the simplest setting of
a single species of particles, the MFT involves two coupled
nonlinear partial differential equations: the field-theoretical
Hamilton equations for the density field (a “coordinate”) and
a conjugate momentum field. With a few exceptions, these
equations are not soluble analytically. Still, there are several
important factors that make the MFT a viable alternative to
other approaches.

(1) The MFT is stripped of unnecessary details of mi-
croscopic interactions, so it directly probes the large-scale,
long-time asymptotic regime that is of the most interest.

(2) The MFT provides the “optimal path”: the density
profile history which gives a dominant contribution to the
probability of observing, say, a given current.

(3) The Hamilton equations underlying the MFT can be
solved numerically with an iteration algorithm [31]. Alter-
natively, a numerical minimization of the mechanical action,
intrinsic in the MFT, can be performed [32]. These numerical
algorithms are much more computationally efficient than
microscopic stochastic simulations.

(4) As we show here, a perturbative analytic solution is
possible which probes, for a whole class of models, small
fluctuations.

The main objective of this work is to demonstrate these
advantages. We investigate, within the MFT formalism, the
noisy evolution of a steplike initial density profile in a class
of lattice gas models in one dimension, where the transport
is symmetric and diffusionlike. Two nontrivial examples
are the simple symmetric exclusion process (SSEP) which
has been extensively studied (see, e.g., Refs. [2–9] and
references therein) and the Kipnis-Marchioro-Presutti (KMP)
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model [33–35]. (In the SSEP each particle can hop to a
neighboring site at rate 1 if that site is unoccupied by
another particle. If it is occupied, the move is forbidden.
The KMP model is a one-dimensional chain of mechanically
uncoupled harmonic oscillators which randomly redistribute
energy among neighbors.) The steplike initial condition for the
particle density,

ρ(x,t = 0) =
{
ρ−, x < 0,

ρ+, x > 0,
(1)

provides a good “litmus test” for theory of fluctuations in
nonstationary systems. As in Refs. [30,36], we are interested
in the statistics of integrated current—the total number of
particles or the total energy—passing into the half-line x > 0
during a given time T . The precise mathematical formulation
of the problem in the framework of the MFT was given
a few years ago [30], but the problem has defied solution
except for the completely integrable case of noninteracting
random walkers. Our strategy here is to solve the problem
perturbatively around the noiseless hydrodynamic solution,
thus probing typical, small fluctuations of the current. In
addition, we show how large current fluctuations can be
efficiently simulated numerically.

We consider a class of models whose hydrodynamic
description is provided by a diffusion equation,

∂tρ = ∂x[D(ρ)∂xρ] , (2)

with the diffusion coefficient D(ρ). Having solved this
equation with the initial condition (1), one can compute

〈J (T )〉 =
∫ ∞

0
dx [ρ(x,T ) − ρ(x,0)], (3)

the average integrated current for the underlying microscopic
model. At the level of the MFT, the class of microscopic models
that we consider here is fully characterized, in addition to
the diffusion coefficient D(ρ), by the function σ (ρ) which
describes equilibrium fluctuations [2]. Our formalism can
handle, in a simple way, systems with a density-independent
diffusion coefficient (which we set to D = 1 without loss of
generality) but an arbitrary σ (ρ).

The total current J = J (T ) into the right half-line is a
random quantity. The average total current grows as

√
T in

the long-time limit, T � 1. The variance of the total current,
〈J 2〉c = 〈J 2〉 − 〈J 〉2, also exhibits a diffusive growth with
time:

〈J 2〉c = V (ρ−,ρ+,σ )
√

T . (4)

The quantity V depends on the densities ρ± and, through
σ = σ (ρ), on the model. Intriguingly, one has to be careful
in defining the averaging procedure [30,37]. In the quenched
setting the initial condition (1) is deterministic. In the annealed
setting one allows equilibrium fluctuations in the initial
condition (1). More precisely, the initial density profile in
the left (correspondingly, right) part of the system is chosen
from the equilibrium probability distribution corresponding
to density ρ− (correspondingly, ρ+). As a result, the most
probable initial density profile, see below, is different from a
step function.

The main analytical results of this work are explicit
expressions for V for diffusive processes with D = 1 and

arbitrary σ (ρ). In the quenched setting we obtain

Vquenched =
∫ 1

0

dt

4πt

∫ ∞

−∞
dx σ [ρ(x,1 − t)] e−x2/2t , (5)

where ρ(x,t) is the solution of the classical diffusion equation
with D = 1 and initial condition (1) [see Eq. (36) below]. In
the annealed setting we obtain

Vannealed = Vquenched +
√

2 − 1

2
√

2π
[σ (ρ−) + σ (ρ+)] . (6)

Since σ (ρ) is intrinsically positive (for ρ > 0), the second term
on the right-hand side of Eq. (6) is positive. Hence Vannealed >

Vquenched, as expected on physical grounds.
The rest of this paper is organized as follows. Section II in-

cludes important preliminaries that are used in the subsequent
sections: We briefly discuss the moment-generating function
of the current and its long-time behavior, formally introduce
the functions D(ρ) and σ (ρ), and outline the MFT formulation,
due to Derrida and Gerschenfeld [30], of the problem of
statistics of the current for the steplike initial condition (1). In
Secs. III and IV we develop a perturbation theory around the
noiseless hydrodynamic solution and determine the variance
of current, along with the optimal paths, in the quenched and
annealed settings. Particular examples of these results for the
symmetric state, ρ− = ρ+, for the SSEP and KMP models,
and for the noninteracting random walkers are presented in
Sec. V. Section VI is devoted to a numerical calculation,
within the MFT, of the optimal path conditioned on observing
a large deviation of the current. Concluding remarks appear
in Sec. VII. Finally, in one of the appendices we present an
alternative way of calculating the variance in the quenched
setting: by employing fluctuating hydrodynamics.

II. PRELIMINARIES AND GOVERNING EQUATIONS

A. Moment-generating function

A complete description of the current fluctuations is
provided by the probability distribution P (J,T ). Often it is
more convenient to deal with the moment-generating function

〈eλJ 〉 =
∑
J�0

eλJ P (J,T ) ≡ 1 +
∑
n�1

λn

n!
〈J n〉 (7)

that encapsulates P (J,T ) and provides the moments of the
distribution. Alternatively, by taking the logarithm of Eq. (7),
one can rewrite this expression as

ln〈eλJ 〉 =
∑
n�1

λn

n!
〈J n〉c , (8)

which defines the cumulants of the distribution. The first two
cumulants are 〈J 〉c = 〈J 〉 and 〈J 2〉c = 〈J 2〉 − 〈J 〉2.

In diffusive systems with the steplike initial condition (1),
the moment-generating function exhibits the following long-
time behavior:

〈eλJ 〉 ∼ e
√

T μ(λ,ρ−,ρ+). (9)

For noninteracting random walkers (RWs), the function
μ(λ,ρ−,ρ+) was calculated [30], both in the quenched and
in the annealed settings, from the MFT formalism. For the
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SSEP it was also calculated [36], from the microscopic model,
in the annealed setting:

μSSEP
annealed = 1

π

∫ ∞

−∞
dk ln(1 + �e−k2

), (10)

where

�=ρ−(eλ − 1)+ρ+(e−λ − 1)+ρ−ρ+(eλ − 1) (e−λ − 1).

In the special case of ρ− = 1 and ρ+ = 0, the initial condition
in the SSEP cannot fluctuate. As a result, μ(λ,1,0) is the same
for both annealed and quenched settings.

Expanding the integrand in Eq. (10) in powers of λ, we
can extract the cumulants for the SSEP. They have a universal
long-time behavior,

〈Jp〉c = Cp(ρ−,ρ+)
√

T , (11)

with
√

π C1 = ρ− − ρ+, (12)

√
π C2 = ρ− + ρ+ − ρ2

− − ρ2
+

+
(

1 − 1√
2

)
(ρ− − ρ+)2, (13)

etc. Although obtained via an expansion in small λ, the
cumulants C1 and C2 provide a surprisingly good approxi-
mation of μ for |λ| comparable to or even greater than 1.
As an example, Fig. 1 shows two plots for μSSEP

annealed/
√

T

versus λ: the exact long-time result from Eq. (10) and
the two-cumulant approximation μ = C1λ + (1/2) C2λ

2, for
ρ− = 0.6 and ρ+ = 0.2. As one can see, a discrepancy appears
only at |λ| 	 5. Correspondingly, deviations of the probability
distribution P (J,T ) from Gaussianity only occur in far tails of
the distribution.

Derrida and Gerschenfeld [30] also found the function
μannealed(λ,ρ−,ρ+) for the KMP model. They showed, within
the MFT formalism, that it is related to μannealed for the SSEP,
so it can be established without a new calculation:

μKMP
annealed = − 1

2π

∫ ∞

−∞
dk ln(1 + �e−k2

), (14)

where

� = 2λ(ρ+ − ρ−) − 4λ2ρ−ρ+. (15)

10 5 0 5 10
0

5
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15

λ

T

FIG. 1. (Color online) Plotted versus λ are the exact long-time
result for μSSEP

annealed/
√

T from Eq. (10) (the solid curve) and the
two-cumulant approximation C1λ + (1/2) C2λ

2 with C1 and C2 from
Eqs. (12) and (13) (the dashed curve) for ρ− = 0.6 and ρ+ = 0.2. The
two circles are numerical results obtained with the iteration algorithm
described in Sec. VI.

Expanding the integrand in Eq. (14) in powers of λ yields
Eq. (11), with the same C1 as for the SSEP, and

√
π CKMP

2 = 4ρ−ρ+ +
√

2 (ρ− − ρ+)2 . (16)

Notably, the average current,

〈J 〉 = ρ− − ρ+√
π

√
T , (17)

is the same for the annealed and quenched averages and for
any model with D(ρ) = 1, including noninteracting random
walkers, the SSEP, and the KMP model. The variance is
already model dependent, and it also depends on the type of
averaging. The above expressions for C2 for the SSEP and
KMP models refer to the annealed case. To our knowledge, in
the quenched case even the variances are unknown; they are
a focus of this work.

B. D, σ , and F

Here is a brief recap of the formal definitions of the
quantities D(ρ) and σ (ρ) and of their relation to the free
energy density in equilibrium, F (ρ) [2]. The functions D(ρ)
and σ (ρ) characterize the flux and its variance, respectively, in
a simple stationary setting. Consider a one-dimensional system
of a finite (but very large) length L which is in contact with
reservoirs of particles (or energy) with density ρ− on the left
and ρ+ on the right. When these densities are close to each
other, ρ± 	 r , with

|ρ+ − ρ−| 
 r, (18)

the average flux per unit time is proportional to D(r) and the
density difference:

lim
t→∞

〈J 〉
t

= D(r)

L
(ρ− − ρ+). (19)

In its turn, σ (r) can be extracted from the growth law of the
variance of the flux evaluated at the equilibrium state ρ± = r:

lim
t→∞

〈J 2〉c
t

= σ (r)

L
. (20)

Therefore, the quantities D(r) and σ (r) characterize small
deviations from equilibrium. The equilibrium origin of D(r)
and σ (r) is additionally emphasized by the equation

d2F

dr2
= 2D(r)

σ (r)
, (21)

relating D(r) and σ (r) to the equilibrium free energy density
F (r). Equation (21) follows [2,11] from the fluctuation-
dissipation theorem. It also appears naturally in the MFT
formalism (see Appendix A).

TABLE I. Functions D(r), σ (r), and F (r) for noninteracting
random walkers and for two interacting particle systems, the SSEP
and the KMP.

Model D(r) σ (r) F (r)

RW 1 2r r ln r − r

SSEP 1 2r(1 − r) r ln r + (1 − r) ln(1 − r)
KMP 1 4r2 −(1/2) ln r
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Table I lists the functions D(r), σ (r), and F (r) for three
specific models: the RW, the SSEP, and the KMP.

C. MFT formalism

The MFT formalism [13,14,30] describes large deviations
of macroscopic quantities in diffusive lattice gases. Math-
ematically, one must solve two coupled partial differential
equations,

∂tq = ∂x [D(q) ∂xq] − ∂x [σ (q) ∂xp] (22)

and

∂tp = −D(q)∂xxp − 1
2σ ′(q)(∂xp)2 , (23)

for the density field q(x,t) and the conjugate momentum
field p(x,t). Here and in the following the prime denotes
the derivative with respect to the argument. Solutions with
p(x,t) = 0 are called relaxation solutions. For the relaxation
solutions Eq. (23) is satisfied, and Eq. (22) reduces to the
hydrodynamic equation (2), so q(x,t) = ρ(x,t). Solutions
with p(x,t) = 0 are called activation solutions; here q(x,t) =
ρ(x,t). Equations (22) and (23) are Hamiltonians,

∂tq = δH/δp , ∂tp = −δH/δq , (24)

with the Hamiltonian

H [q(x,t),p(x,t)] =
∫ ∞

−∞
dx H, (25)

where

H(q,p) = −D(q) ∂xq ∂xp + 1
2σ (q)(∂xp)2 . (26)

For a given model, specified by D and σ , Eqs. (22) and
(23) can describe large deviations of different quantities in
different settings. The problem of statistics of current during
time T , starting from a steplike density profile, is specified
by certain boundary conditions in x and t . To begin with, by
virtue of mass conservation, a given integrated current implies
an integral constraint:

J =
∫ ∞

0
dx [q(x,T ) − q(x,0)]. (27)

The boundary conditions in t are different for the quenched
and annealed settings. (The term “boundary” emphasizes here
that these are conditions at the boundaries of the time interval
[0,T ].) In the quenched setting, the initial condition for the
density coincides with Eq. (1):

q(x,t = 0) = ρ−θ (−x) + ρ+θ (x), (28)

where θ (x) is the Heaviside step function. The conjugate
momentum is constrained by the condition at t = T [30]:

p(x,t = T ) = λθ (x), (29)

where the Lagrangian multiplier λ = λ(J ) is fixed by Eq. (27).
Once q(x,t) and p(x,t) are found for 0 � t � T , one can
calculate [30] the function μ that enters Eq. (9) for the long-

time asymptote of the moment-generating function:

μquenched = λ

∫ ∞

0
dx [q(x,T ) − q(x,0)]

− 1

2

∫ T

0
dt

∫ ∞

−∞
dx σ (q)(∂xp)2. (30)

The first term in μquenched comes from the constraint (27),
whereas the second one is equal to −S(T ), where S(T ) is the
mechanical action of the Hamiltonian system (22) and (23).
Indeed,

S(T ) =
∫ T

0
dt

∫ ∞

−∞
dx (p ∂tq − H) . (31)

Using Eqs. (22) and (26) and performing integration by parts
in the spatial integral in Eq. (31), one can rewrite the action as

S(T ) = 1

2

∫ T

0
dt

∫ ∞

−∞
dx σ (q)(∂xp)2. (32)

In the annealed setting, the boundary condition at the final
time t = T is again given by Eq. (29). The initial condition is
now different from Eq. (28), it involves both q and p [30]:

p(x,0) = λθ (x) + 2
∫ q(x,0)

ρ(x,0)
dr

D(r)

σ (r)
. (33)

Once q(x,t) and p(x,t) are found, the function μ can be
calculated [30] from the equation

μannealed = −2
∫ ∞

−∞
dx

∫ q(x,0)

ρ(x,0)
dr

D(r)

σ (r)
[q(x,0) − r]

+ λ

∫ ∞

0
dx [q(x,1) − q(x,0)]

− 1

2

∫ T

0
dt

∫ ∞

−∞
dx σ (q)(∂xp)2. (34)

The second and third terms here are the same as those in the
quenched setting, except that q(x,t) and p(x,t) are different.
The first term is specific to the annealed setting: it describes
the cost of creating the optimal initial condition for the given
value of the current.

III. VARIANCE IN THE QUENCHED CASE

From now on, we only consider a class of models where
D = 1 (such as in all three examples in Table I). Here the
governing equations (22) and (23), become

∂tq = ∂xxq − ∂x [σ (q)∂xp] , (35a)

∂tp = −∂xxp − 1
2σ ′(q)(∂xp)2. (35b)

The exact solution of Eqs. (35a) and (35b), subject to the
boundary conditions (28) and (29), is unknown except for
the noninteracting random walkers, when σ (q) is proportional
to q. Fortunately, the variance of current can be found for
arbitrary σ (q) by using a perturbation expansion around the
hydrodynamic solution (q0,p0) = (ρ,0), where

ρ(x,t) = ρ− + ρ+
2

+ ρ+ − ρ−
2

erf

(
x√
4t

)
(36)
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solves Eq. (2), with D = 1, subject to the initial condition (28).
The Lagrangian multiplier λ plays the role of a small parameter
in this expansion. As one can justify a posteriori, a small λ

implies a small deviation of the current from its average value
〈J 〉. We expand

q = q0 + λq1 + λ2q2 + · · · , (37a)

p = λp1 + λ2p2 + · · · , (37b)

and we plug these expansions into Eqs. (35a) and (35b). In
the zeroth order we recover (q0,p0) = (ρ,0). The first-order
equations are

(∂t − ∂xx)q1 = −∂x[σ (ρ)∂xp1], (38a)

∂tp1 = −∂xxp1. (38b)

The boundary conditions for q1 and p1 follow from Eqs. (28)
and (29):

q1(x,t = 0) = 0, p1(x,t = T ) = θ (x). (39)

Solving the antidiffusion equation (38b) with the boundary
condition (39) for p1, we obtain

p1(x,t) = 1

2
+ 1

2
erf

[
x√

4(T − t)

]
. (40)

Now we need to solve Eq. (38a): a diffusion equation with a
known source term. The form of equation suggests to seek q1

as a gradient:

q1 = −∂xψ. (41)

The potential ψ satisfies the equation

(∂t − ∂xx)ψ = F, (42)

where F = σ (ρ)∂xp1, and

∂xp1 = 1√
4π (T − t)

exp

[
− x2

4(T − t)

]
. (43)

The solution of Eq. (42) is

ψ(x,t) =
∫ t

0
dτ

∫ ∞

−∞
dy

F (y,τ )√
4π (t − τ )

exp

[
− (x − y)2

4(t − τ )

]
.

In particular,

ψ(0,T ) =
∫ T

0
dt

∫ ∞

−∞
dx

σ (ρ)∂xp1√
4π (T − t)

exp

[
− x2

4(T − t)

]

=
∫ T

0
dt

∫ ∞

−∞
dx σ (ρ)(∂xp1)2. (44)

The function μ from Eq. (30) becomes

μquenched = λ〈J 〉 + λ2ψ(0,T ) − λ2

2
ψ(0,T ) + · · ·

= λ〈J 〉 + λ2

2
ψ(0,T ) + O(λ3). (45)

Using μ = λ〈J 〉 + 1
2λ2〈J 2〉c + · · · [see Eq. (7)], we extract

the variance:

〈J 2〉c = ψ(0,T ) =
∫ T

0
dt

∫ ∞

−∞
dx σ (ρ)(∂xp1)2. (46)

This result holds, for the quenched setting, for all diffusion
processes with D(ρ) = 1 and arbitrary σ (ρ).

The T dependence of 〈J 2〉c can be easily extracted via
the transformation t → t/T and x → x/

√
T , which reduces

Eq. (46) to

〈J 2〉c = V
√

T , V =
∫ 1

0
dt

∫ ∞

−∞
dx σ (ρ)(∂xp1)2. (47)

Here ρ(x,t) is still given by Eq. (36), whereas ∂xp1 is obtained
from Eq. (43) by setting T = 1. Plugging these expressions
into Eq. (47) yields the announced result (5).

The variance 〈J 2〉c corresponds to a Gaussian asymptotic
of the current distribution:

P (J,T ) 	 1√
2π〈J 2〉c

exp

[
− (J − 〈J 〉)2

2〈J 2〉c

]
. (48)

One can see from Eq. (47) that the variance 〈J 2〉c depends
on the model only through σ (ρ). In simple models σ (ρ) is
a low-degree polynomial (see Table I). Consider now a more
general case when σ (ρ) admits the representation

σ (ρ) =
∑
n�0

Anρ
n. (49)

[The zeroth term in the series (49) vanishes, A0 = 0, since
σ (0) = 0.] Combining Eqs. (36) and (49) we get

Vquenched = 1

4π

∑
n�p�0

An

2n

(
n

p

)
dpsn−pEp, (50)

where d = ρ+ − ρ−, s = ρ+ + ρ−, and

Ep =
∫ 1

0

dt

t

∫ ∞

−∞
dx exp

(
−x2

2t

)[
erf

(
x√

4(1 − t)

)]p

.

The spatial integrals in Ep vanish when p is odd, while for
even p one finds E0 = √

8π , E2 = (3 − 2
√

2)
√

8π , etc. The
knowledge of Ep with p � 3 suffices to determine the variance
for the three-parameter class of models:

σ = A1ρ + A2ρ
2 + A3ρ

3.

Here one obtains

Vquenched = 1

8
√

2π
(4A1 s + 2A2 s2 + A3 s3)

+ 3 − 2
√

2

8
√

2π
(2A2 d2 + 3A3 d2s). (51)

We have also calculated the variance in the quenched setting
from fluctuating hydrodynamics (see Appendix B).

IV. VARIANCE IN THE ANNEALED CASE

In the annealed case, the calculations are very similar,
albeit somewhat more cumbersome. Employing the same
perturbation expansion, Eqs. (37a) and (37b), we recast the
initial condition (33) into

p(x,0) = λ

[
θ (x) + 2q1(x,0)

σ [ρ(x,0)]

]
+ O(λ2),
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which yields

p1(x,0) = θ (x) + 2q1(x,0)

σ [ρ(x,0)]
. (52)

On the other hand, Eq. (40) is still valid, and therefore

p1(x,0) = 1

2
+ 1

2
E(x), E(x) ≡ erf

(
x

2

)
. (53)

(The T dependence here is the same as that in the quenched
case, so we set T = 1.) Comparing Eqs. (52) and (53), we can
deduce the initial condition on q1:

q1(x,0) = 1

4
×

{
σ (ρ−) [E(x) + 1] , x < 0,

σ (ρ+) [E(x) − 1] , x > 0.
(54)

As in the quenched case, we employ the gradient
representation (41) and find that the potential ψ satisfies the
same inhomogeneous diffusion equation (42). In the quenched
case we had q1(x,0) = 0, which led to ψ(x,0) = 0. In the
annealed case the initial condition (54) leads to a nontrivial
initial condition for ψ :

ψ(x,0) = θ (−x) σ (ρ−)

[
1 − e−x2/4

2
√

π
− x

E(x) + 1

4

]

+ θ (x) σ (ρ+)

[
1 − e−x2/4

2
√

π
− x

E(x) − 1

4

]
, (55)

where we have demanded that ψ(x,0) be continuous at x = 0
and chosen the arbitrary constant so that ψ(0,0) = 0. We now
plug the λ expansions into Eq. (34) for μannealed and obtain

μannealed = −λ2
∫ ∞

−∞
dx

[q1(x,0)]2

σ [ρ(x,0)]
+ λ〈J 〉 + λ2ψ(0,1)

− λ2

2

∫ 1

0
dt

∫ ∞

−∞
dx σ (ρ)(∂xp1)2 + · · · , (56)

with the same average current 〈J 〉 as in the quenched setting.
The variance is again extracted by using the expansion μ =
λ〈J 〉 + 1

2λ2〈J 2〉c + · · · . The result is

Vannealed = −1

8

∫ 0

−∞
dx σ (ρ−) [E(x) + 1]2

− 1

8

∫ ∞

0
dx σ (ρ+) [E(x) − 1]2

+ 2ψ(0,1) −
∫ 1

0
dt

∫ ∞

−∞
dx σ (ρ)(∂xp1)2.

After some algebra we find

ψ(0,1) =
∫ 1

0
dt

∫ ∞

−∞
dx σ (ρ)(∂xp1)2

+
∫ ∞

−∞
dx

ψ(x,0)√
4π

e−x2/4,

where ψ(x,0) is given by Eq. (55). Combining everything and
evaluating integrals, we arrive at the announced result (6) for
the variance.

V. EXAMPLES

We now specialize the results to the three well-known
models presented in Table I. Prior to that, however, we
consider, for an arbitrary σ (ρ), the symmetric case ρ− = ρ+ =
ρ.

A. Symmetric case

For ρ− = ρ+ = ρ the expression σ (ρ) can be taken out of
the integral in Eqs. (5) and (6), and we arrive at

Vquenched = σ (ρ)√
2π

, (57a)

Vannealed = σ (ρ)√
π

. (57b)

Hence in the symmetric case Vannealed = √
2 Vquenched indepen-

dently of ρ and for arbitrary σ (ρ). In the particular case
of SSEP, Eq. (57b) has been known for a long time (see
Ref. [38] and references therein), whereas Eq. (57a) (again,
for the SSEP) has been obtained only recently [38]. Derrida
and Gerschenfeld [30] noticed that, in models obeying the
particle-hole symmetry, there is a symmetry relation between
the optimal profiles in the quenched and annealed cases. For
the SSEP, this relation leads to

μannealed(λ,1/2) =
√

2 μquenched(λ,1/2), (58)

for ρ− = ρ+ = 1/2 [30]. We emphasize that relation
Vannealed = √

2 Vquenched, which follows from Eqs. (57a) and
(57b), is valid for any ρ and it does not require the particle-hole
symmetry, although we have derived it for only the variances.

B. RWs

For random walkers the variance is linear in the densities
ρ− and ρ+:

Vquenched = ρ+ + ρ−√
2π

,
Vannealed

Vquenched
=

√
2, (59)

in agreement with Ref. [30].

C. SSEP

Specializing Eq. (51) to A1 = 2, A2 = −2, and A3 = 0, we
find the variance for the SSEP in the quenched setting:

√
2π Vquenched = ρ+ + ρ− − (ρ+ + ρ−)2

2

− 3 − 2
√

2

2
(ρ+ − ρ−)2. (60)

To our knowledge, this result is new. In the annealed setting
we get

√
π Vannealed = ρ− + ρ+ − ρ2

− − ρ2
+

+
(

1 − 1√
2

)
(ρ− − ρ+)2, (61)
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in agreement with Eq. (13). In the extreme asymmetric case
(ρ−,ρ+) = (ρ,0) the variance reads

Vquenched = ρ√
2π

− 2 − √
2√

2π
ρ2,

(62)

Vannealed = ρ√
π

− ρ2

√
2π

.

One can see that Vquenched < Vannealed for all 0 < ρ < 1; the
equality occurs only when ρ = 0 or ρ = 1.

D. KMP

For the KMP model we have A2 = 4 and A1 = A3 = 0. As
a result,

Vquenched = (ρ+ + ρ−)2 + (3 − 2
√

2)(ρ+ − ρ−)2

√
2π

,

Vannealed = 4ρ−ρ+√
π

+ 2(ρ− − ρ+)2

√
2π

.

The expression for Vannealed coincides with C2 from Eq. (16),
the expression for Vquenched is new.

VI. LARGE DEVIATIONS: A NUMERICAL SOLUTION

What happens when λ is not small or, in other words, the
current J (T ) is not close to the average current 〈J 〉? As we
cannot solve the MFT equations (22) and (23), analytically, we
resort to a numerical solution. Bunin et al. [32] have recently
developed a numerical algorithm based on minimization of the
mechanical action. In their algorithm, the boundary conditions
in time involve the knowledge of the density profiles at some
initial and final times. In the context of integrated current
fluctuations, one needs an algorithm that would deal with a
boundary condition on the momentum at t = T . Fortunately,
classical field-theoretic Hamilton equations have previously
appeared in many different contexts. It is hardly surprising,
therefore, that an efficient and simple numerical algorithm,
with the required type of boundary condition at t = T , already
exists. It was originally suggested by Chernykh and Stepanov
[31] for evaluating the probability distribution of large negative
velocity gradients in the Burgers turbulence. Later on it was
employed by Elgart and Kamenev [17] and Meerson and
Sasorov [18] for evaluating the mean time to extinction in
finite-size lattice gas systems involving random walk and
on-site reactions.

The algorithm iterates the diffusion-type equation (22),
forward in time and the antidiffusion-type equation (23),
backward in time. Consider first the quenched case. In a simple
version of the algorithm, each iteration of q(x,t) starts at t = 0
from the initial condition (28) and solves Eq. (22) forward in
time until time t = 1 is reached. In this calculation the previous
iteration for p(x,t) is used. Then Eq. (23) for p is solved
backward in time starting, at t = 1, from p(x,1) = λθ (x)
[see Eq. (29)], and continuing until t = 0. Here the previous
iteration for q(x,t) is used. The very first iteration for p is
simply the desired final state p(x,1) = λθ (x).

Unfortunately, the simple version of the algorithm suffers
from a numerical instability: after an initial transient, the
numerical solution alternates between two different sets of

q and p, instead of converging to a unique (q,p) solution
[39]. Similarly to Ref. [31], we suppressed this instability by
replacing p, in the iterations for q, by a linear combination of
the values of p obtained in two previous iterations. Similarly,
we replaced q, in the iterations for p, by the same linear
combination of the values of q obtained in two previous
iterations. The relative weights of these two values of p and
q (the coefficients of the linear combination) must sum up to
unity. In the examples shown below we chose the previous
iteration with weight 0.75 and the iteration before previous
with weight 0.25. The first two iterations of q and p are
performed with the simple version of the algorithm.

For the annealed setting we have to use the initial condition
(33) which involves both q and p which are a priori unknown.
Therefore, in the very first iteration we solve Eq. (22) for
q forward in time, starting from a “wrong” (quenched)
initial condition, Eq. (28). Then, after solving Eq. (23) for
p backward in time until t = 0, we determine q(x,0) from
Eq. (33), feed it into the forward-in-time solution for q, and
continue iterations. Here too we use, starting from the third
iteration, the values from two previous iterations to suppress
the numerical instability.

We implemented this algorithm in MATHEMATICA. We
worked with a finite-size system, |x| < L/2, and imposed
the boundary conditions q(−L/2,t) = ρ−, q(L/2,t) = ρ+,
p(−L/2,t) = 0, and p(L/2,t) = λ. The step functions en-
tering the boundary conditions at t = 0 and t = 1 were
smoothed a bit. The iterations converged very rapidly. Having
computed q(x,t) and p(x,t), one can evaluate the large-
deviation function μ by numerically evaluating the integrals
in Eqs. (30) and (34) for the quenched and annealed settings,
respectively.

Figure 2 shows an example of the numerically found
optimal path q(x,t), and the corresponding p(x,t), for the
SSEP in the annealed setting. In this case the function μ is
known [see Eq. (10)]. λ = 4 corresponds to a positive current
about five times greater than the average current. The optimal
initial profile facilitates hydrodynamic transport which does
not cost action. The optimal fluctuation grows toward t = 1,
when the hydrodynamic flow weakens. In this example our
numerically computed values of the function μ and rescaled
integrated current [using Eqs. (34) and (3), respectively] are
within 3% and 4%, respectively, of their theoretical values. The
numerically found values of μ for λ = 4 and −4 are shown in
Fig. 1 along with the exact and approximate analytical results
for μ(λ).

Figures 3 to 5 show three examples of numerically found
optimal paths q(x,t), p(x,t) for the SSEP in the quenched
setting. Here no analytic results are available beyond the
small fluctuations [see Eq. (5)], except for the special cases
of ρ− = ρ+ = 1/2 and ρ− = 1, ρ+ = 0. The case of λ = 4
corresponds to a positive current a few times greater than the
average current. Here too the optimal fluctuation grows toward
t = 1 and facilitates transport of the material from left to right.
Notice a striking similarity between the p profiles for λ = 4 in
the annealed and quenched settings, for which we do not have
a good explanation.

For λ = −4 the optimal fluctuation reverses the current
compared with the hydrodynamic flow. Finally, for λ 	 −1.34
the integrated current is equal to zero. Here, after an initial
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FIG. 2. (Color online) A numerically computed optimal path for
the SSEP with a steplike initial density profile (ρ− = 0.6, ρ+ = 0.2)
in the annealed setting. Shown are the particle density q(x,t) (upper
panel) and the conjugate momentum density p(x,t) (lower panel)
at rescaled time moments t = 0 (solid line), 1/3 (dashed line), 2/3
(dotted line), and 1 (dash-dotted line). The Lagrangian multiplier
λ = 4 corresponds to the rescaled current J = μ′(λ)|λ=4 = 1.118 . . . ,
where μ(λ) is taken from Eq. (10). For comparison, the rescaled
average current is 〈J 〉 = (ρ− − ρ+)/

√
π = 0.2256 . . . .

release of material from left to right, the fluctuation pushes
the material back. Still, as one can see from Fig. 5, the final
density profile q(x,1) is different from the initial profile.

Finally, Fig. 6 shows the λ dependence of μSSEP
quenched/

√
T

that we found numerically in a moderate range of λ for
ρ− = 0.6 and ρ+ = 0.2. Also shown is the two-cumulant
approximation μ = C1λ + (1/2) Vquenchedλ

2, with C1 from

6 3 0 3 6
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0.8

x

q

6 3 0 3 6
0

1

2

3

4

x

p

FIG. 3. (Color online) Same as Fig. 2, but in the quenched setting.
Here λ = 4 corresponds to the rescaled current J 	 0.9, as found
numerically.
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FIG. 4. (Color online) Same as Fig. 3, but with λ = −4 which
corresponds to a negative rescaled current J 	 −0.3, as found
numerically.

Eq. (12) and Vquenched from Eq. (60). One can see that, as in
the annealed setting, the two-cumulant approximation is quite
accurate well beyond small λ. That is, both in the annealed
and in the quenched settings, deviations of the probability
distribution P (J,T ) from a Gaussian only occur in relatively
far tails of the distribution.

VII. CONCLUDING REMARKS

We have investigated the long-time fluctuations of inte-
grated current in diffusive lattice gases in one dimension, when
the initial density is a steplike function. Our analysis relies
on the MFT [13], more precisely on its implementation [30]

6 3 0 3 6

0.2

0.4

0.6

x

q

6 3 0 3 6

0

0.5

1

x

p

FIG. 5. (Color online) Same as Figs. 3 and 4, but with λ = −1.36
which corresponds to J 	 0. The rescaled time moments are t = 0
(solid line), 1/2 (dashed line), and 1 (dotted line).
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4 2 0 2 4
0

1

2

3

λ

T

FIG. 6. (Color online) μSSEP
quenched/

√
T versus λ for ρ− = 0.6

and ρ+ = 0.2. Circles: Our numerical results. Dashed curve: The
two-cumulant approximation C1λ + (1/2) Vquenchedλ

2 with C1 from
Eq. (12) and Vquenched from Eq. (60).

which allows one to examine the fluctuations of the current in
a nonstationary situation of a steplike initial density profile.
For the quenched and annealed settings we have calculated
the variance of the current fluctuations by developing a per-
turbation theory around the noiseless hydrodynamic solution.
Our results for the variance hold for a whole family of
lattice gas models which, at the coarse-grained level of the
MFT, can be characterized by a constant diffusion coefficient
and an arbitrary σ (q). Particular examples of our results
include the variance for the noninteracting random walkers,
for the symmetric exclusion process, and for the KMP model.
For the annealed setting these particular results agree with
previous results. For the quenched setting these results are
new.

We have also investigated numerically the regime of
large deviations of the current. Using the SSEP as a representa-
tive example, we have solved the MFT equations by using the
Chernykh-Stepanov numerical iteration algorithm. We have
found the optimal paths corresponding to an unusually large
current, to a current that flows in the “wrong” direction, and
to zero current. We have also computed numerically the large
deviation function μ(λ) and observed that the two-cumulant
approximation (and, correspondingly, the Gaussian asymptotic
of the integrated current distribution) remain quite accurate
well beyond the small-λ regime. These numerical results are
important because an analytical solution of the MFT equations,
beyond small fluctuations, is presently unavailable except for
noninteracting random walkers [30].

An important task for a future work is an asymptotic
analysis of the MFT equations in the large current limits,
|J | � 〈J 〉. Here the iteration algorithm may help in getting
insight into the type of perturbation expansion needed for
that.
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APPENDIX A: FREE ENERGY FROM
THE MFT FORMALISM

Here we show how Eq. (21) appears in the MFT formalism.
(See also Ref. [14] for a similar derivation in the particular
case of the SSEP.) Consider a lattice gas in equilibrium at
average density ρ̄ = const . The probability of observing a
given density profile q(x) is described by the equilibrium
Boltzmann-Gibbs distribution:

− lnP[q(x)]∼
∫ ∞

−∞
dx[F (q(x)) − F (ρ̄) − F ′(ρ̄)(q(x) − ρ̄)],

(A1)
see e.g., Ref. [30]. In the MFT formalism, this expression
should coincide with the mechanical action,

S0 =
∫ 0

−∞
dt

∫ ∞

−∞
dx (p ∂tq − H) , (A2)

calculated along the activation trajectory of the MFT
equations (22) and (23) obeying the following boundary
conditions in time: q(x,t = −∞) = ρ̄ and q(x,t = 0) = q(x)
[14]. We will now see how it happens, and how F (q) emerges.

It is very simple to find the activation trajectory here
because, in equilibrium, it coincides with a time-reversed
relaxation trajectory. That is, the optimal fluctuation q(x,t)
must obey the time-reversed version of Eq. (2):

∂tq = −∂x[D(q) ∂xq] . (A3)

Combining this equation with Eq. (22), we obtain

σ (q)∂xp = 2D(q)∂xq + f (t), (A4)

where f (t) = 0 because of the boundary conditions in x. Now
we introduce function F (q) that satisfies Eq. (21). Integrating
Eq. (A4) over x yields

p = F ′(q) − F ′(ρ̄), (A5)

where we have demanded that p = 0 at q = ρ̄. A straight-
forward algebra shows that p = F ′(q) − F ′(ρ̄) also solves
Eq. (23). This local relation between p and q implies
complete integrability of the MFT problem for equilibrium.
Furthermore, here H = 0, and the action S0 becomes

S0 =
∫ 0

−∞
dt

∫ ∞

−∞
dx p ∂tq

=
∫ ∞

−∞
dx

∫ 0

−∞
dt[F ′(q) − F ′(ρ̄)]∂tq (A6)

which, upon integration over time, yields Eq. (A1) as expected.
In non-equilibrium situations the local relation p =

F ′(q) − F ′(ρ̄) breaks down, as it does not satisfy some
or all of the boundary conditions. As a result, the MFT
equations become, in general, non-integrable, whereas the
mechanical action explicitly depends on the system dynamics
at intermediate times.

APPENDIX B: QUENCHED VARIANCE
FROM FLUCTUATING HYDRODYNAMICS

Equation (5) for the variance in the quenched setting can be
also obtained in the framework of fluctuating hydrodynamics,
by solving a linearized Langevin equation. Once D = 1 and
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σ (ρ) are known, the Langevin equation for the fluctuating
particle density field q(x,t) can be written as [2,4]

∂tq = ∂xxq + ∂x[
√

σ (q) ξ (x,t)]. (B1)

Here ξ (x,t) is a zero-average Gaussian noise, δ-correlated in
space and in time:

〈ξ (x,t)ξ (x1,t1)〉 = δ(x − x1) δ(t − t1), (B2)

and the brackets denote ensemble averaging. Lineariz-
ing the Langevin equation (B1) around the hydrodynamic
solution (36), we write q = ρ + q1, where q1 
 ρ. This yields

∂tq1 − ∂xxq1 = ∂x[
√

σ (ρ) ξ (x,t)]. (B3)

Plugging in q1 = ∂xφ, we can rewrite this equation as

∂tφ − ∂xxφ =
√

σ (ρ) ξ (x,t). (B4)

The solution is

φ(x,t) =
∫ t

0
dt1

∫ ∞

−∞
dy

√
σ (ρ) ξ (y,t1)√
4π (t − t1)

e
− (x−y)2

4(t−t1) . (B5)

The current J (T ) from Eq. (27) can be represented as

J (T ) = 〈J 〉 +
∫ ∞

0
q1(x,T ) dx.

The variance of the current is, therefore,

〈J 2〉c =
〈∫ ∞

0
dx

∫ ∞

0
dy q1(x,T )q1(y,T )

〉

=
〈∫ ∞

0
dx

∫ ∞

0
dy ∂xφ(x,T ) ∂yφ(y,T )

〉

= 〈φ2(0,T )〉. (B6)

Combining Eqs. (B5) and (B6), we obtain

〈J 2〉c = 1

4π

∫ T

0
dt1

∫ T

0
dt2

∫ ∞

−∞
dx

∫ ∞

−∞
dy e

− x2

4(T −t1) − y2

4(T −t2)
√

σ [ρ(x,t1)] σ [ρ(y,t2)] 〈ξ (x,t1)ξ (y,t2)〉

= 1

4π

∫ T

0
dt1

∫ T

0
dt2

∫ ∞

−∞
dx

∫ ∞

−∞
dy e

− x2

4(T −t1) − y2

4(T −t2)
√

σ [ρ(x,t1)] σ [ρ(y,t2)] δ(x − y)δ(t1 − t2)

= 1

4π

∫ T

0
dt

∫ ∞

−∞
dx

e
− x2

2(T −t)

T − t
σ (ρ), (B7)

which coincides with Eq. (46) obtained, in the quenched setting, from the MFT.
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[28] P. I. Hurtado, C. Pérez-Espigares, J. J. del Pozo, and P. L. Garrido,
Proc. Natl. Acad. Sci. USA 108, 7704 (2011); P. I. Hurtado and
P. L. Garrido, Phys. Rev. Lett. 107, 180601 (2011); A. Prados,
A. Lasanta, and P. I. Hurtado, ibid. 107, 140601 (2011).

[29] M. Gorissen, J. Hooyberghs, and C. Vanderzande, Phys. Rev. E
79, 020101(R) (2009).

[30] B. Derrida and A. Gerschenfeld, J. Stat. Phys. 137, 978 (2009).
[31] A. I. Chernykh and M. G. Stepanov, Phys. Rev. E 64, 026306

(2001).
[32] G. Bunin, Y. Kafri, and D. Podolsky, Europhys. Lett. 99, 20002

(2012).
[33] C. Kipnis, C. Marchioro, and E. Presutti, J. Stat. Phys. 27, 65

(1982).

[34] L. Bertini, D. Gabrielli, and J. L. Lebowitz, J. Stat. Phys. 121,
843 (2005).

[35] A. Imparato, V. Lecomte, and F. van Wijland, Phys. Rev. E 80,
011131 (2009).

[36] B. Derrida and A. Gerschenfeld, J. Stat. Phys. 136, 1
(2009).

[37] M. Prähofer and H. Spohn, in In and Out of Equilibrium,
edited by V. Sidoravicious (Birkhäuser, Basel, 2002).
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