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Narrow-escape-time problem: The imperfect trapping case

Félix Rojo,1 Horacio S. Wio,2 and Carlos E. Budde1
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We present a master equation approach to the narrow escape time (NET) problem, i.e., the time needed for
a particle contained in a confining domain with a single narrow opening to exit the domain for the first time.
We introduce a finite transition probability, ν, at the narrow escape window, allowing the study of the imperfect
trapping case. Ranging from 0 to ∞, ν allowed the study of both extremes of the trapping process: that of
a highly deficient capture and situations where escape is certain (“perfect trapping” case). We have obtained
analytic results for the basic quantity studied in the NET problem, the mean escape time, and we have studied
its dependence in terms of the transition (desorption) probability over (from) the surface boundary, the confining
domain dimensions, and the finite transition probability at the escape window. Particularly we show that the
existence of a global minimum in the NET depends on the “imperfection” of the trapping process. In addition to
our analytical approach, we have implemented Monte Carlo simulations, finding excellent agreement between
the theoretical results and simulations.

DOI: 10.1103/PhysRevE.86.031105 PACS number(s): 05.40.Fb

I. INTRODUCTION

The time needed for a particle contained in a confining
domain with a single small opening to exit the domain for the
first time, usually referred to as the narrow-escape-time (NET)
problem (see [1] and references therein), finds a prominent
place in many domains and fields. For instance, in cellular
biology, it is related to the random time needed by a particle
released inside a cell to activate a given mechanism on the cell
membrane [2–4]. Generally speaking, the NET problem is part
of so-called intermittent processes, which are used to explain
scenarios ranging from animal search patterns [5], through the
solutions or melts of synthetic macromolecules [6,7], to the
manufacture of self-assembled mono- and multilayers [8,9].
Since the work of Berg and Purcell [10], research in the NET
problem area has experienced a steady growth over time and
motivated a great deal of work [1,11–21].

In [19], we have introduced an analytical Markovian model
that showed the impact of geometrical parameters and the
interplay between surface and boundary paths in the studied
confining domain, of a discrete and rectangular-shaped nature,
for the perfect trapping case. By “perfect trapping” we refer to
the particle’s impossibility of return to the system; i.e., once
the particle reaches the narrow opening the escape becomes
certain. In that work we presented a phase diagram which
showed that some combinations of the geometrical parameter
and the transport mechanism were required for the existence
of an optimal transport (a global minimum in the NET).

In this work we consider the same confining domain
and the transport properties that we dealt with in Ref. [19].
However, we eliminate the assumption of perfect escape by
introducing a finite transition probability at the narrow escape
window. It is well known that system descriptions through the
“imperfect trapping case” (i.e., once in the trap site capture is
not certain) are suitable whenever the surface contains “deep
traps,” capture and re-emission from a surface that contains
sites with several internal states such as the “ladder trapping
model,” proteins with active sites deep inside its matrix,
etc. [22–25].

The aim of this work is to study the influence of the
“imperfection” in the passage through the escape window
on the effective diffusion process and its effect on the NET
problem. For that purpose we calculate the time required by
the particle to escape from the system. In order to perform
our research we exploit Dyson’s theory [26] and the notions
of absorption probability density (APD) [23]. Under the
assumption of imperfect trapping, we have discovered some
very interesting results. Particularly, we show that the existence
of a global minimum in the NET depends on the existence of
an imperfection in the trapping process.

The outline of this paper is as follows. In the following
section we introduce some general results regarding imperfect
trapping process as well as our model, and we provide the
basic definitions and concepts. We also describe the proposed
analytical approach and present the main results. Section III
depicts several assorted illustrations for the mean escape
time to the narrow opening for different configurations of
the system through a comparison between our analytical
framework and Monte Carlo simulations. In Sec. IV we discuss
our conclusions and perspectives. Finally, in the Appendices
we present the calculations indicated in Sec. II.

II. ANALYTICAL APPROACH

A. Some general results regarding imperfect trapping

Let us consider the problem of a walker making a random
walk in some finite domain with a trap or sink present in
the system. We will follow the walker evolution through
the system considering the “unrestricted” or “homogeneous”
conditional probability P (�s,t |�s0,t = 0), that is, the probability
that a walker is at �s at time t given it was at �s0 at t = 0. By
“unrestricted” (or homogeneous) we identify a situation with
no traps or sinks present in the system.

1. Absorption probability density and mean absorption time

We will consider a first-order trapping process of parameter
ν [23]. That is, the entrance to the trap site is regulated at the
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FIG. 1. Finite domain with a trap or sink present. The entrance
to the trap site (empty circle) is regulated at the escape “window” by
the transition rate ν.

escape “window” by the transition rate ν (see Fig. 1). As we
are interested in the imperfect trapping process, let us define
A(�s,t |�s0,0) as the APD through the site �s at time t , given that
the walker was at �s0 at time t = 0, i.e., A(�s,t |�s0,0) dt gives
the trapping probability of the walker, through �s, between t

and t + dt given that it started at t = 0 from �s0. It is worth
mentioning that the first-passage-time approach is not fully
applicable since an “excursion” to the trapping site does
not necessarily end the process. However, we show in the
following lines that an interesting relation could be established
between A(�s,t |�s0,0) and F (�s,t |�s0,0), the first-passage-time
density (FPTD) through the site �s at time t , given that the
walker was at �s0 at time t = 0.

From now on we will denote the Laplace transform of a
function f (t) by its argument,

L{f (t)} = f (u) =
∫ ∞

0
e−utf (t) dt.

The connection between the APD and the unrestricted
conditional probability P (�s,t |�s0,t = 0) could be obtained by
resorting to the local inhomogeneity technique [23,27]. This
approach in the Laplace domain gives

A(�0,u|�s0,t = 0) = νP (�0,u|�s0,t = 0)

1 + νP (�0,u|�0,t = 0)
; (1)

this equation is also known as the generalized Siegert formula.
Let us make a brief digression regarding the relation

between the APD and the FPTD. For this we rewrite Eq. (1)
in the form

A(�0,u|�s0,t = 0) = P (�0,u|�s0,t = 0)

P (�0,u|�0,t = 0)

ν

ν + 1
P (�0,u|�0,t=0)

. (2)

The connection between the FPTD and the “unrestricted”
(homogeneous) conditional probability P (�s,t |�s0,t = 0) is es-
tablished (in the Laplace domain) through the “renewal” or
Siegert approach [28],

F (�0,u|�s0,t = 0) = P (�0,u|�s0,t = 0)

P (�0,u|�0,t = 0)
. (3)

We recognize in Eq. (2) the FPTD (3) and using the re-
lation F (�0,u|�0,t = 0) = 1 − �(�0,u)P (�0,u|�0,t = 0)−1, where
�(�s,τ ) is the probability that the walker remains at �s until time
τ since it arrived at �s at time 0 (in the unrestricted case) [29],
we rewrite Eq. (2) as

A(�0,u|�s0,t = 0) = F (�0,u|�s0,t = 0)
ν

�(�0,u)−1 + ν

× 1

1 − �(�0,u)−1

�(�0,u)−1+ν
F (�0,u|�0,t = 0)

. (4)

The term ν(�(�0,u)−1 + ν)−1 in (4) gives the fraction of
walkers that are trapped while �(�0,u)(�(�0,u)−1 + ν)−1 gives
the ones that are not absorbed. Further considerations could
be made regarding (4), and we write it as

A(�0,u|�s0,t = 0) =
∞∑

j=1

Aj (�0,u|�s0,t = 0), (5)

where

Aj (�0,u|�s0,0) = F (�0,u|�s0,0)

(
F (�0,u|�0,0)�(�0,u)−1

�(�0,u)−1 + ν

)j−1

×
(

ν

�(�0,u)−1 + ν

)
. (6)

Notice that Aj (·) accounts for walkers that are absorbed in
the j visit (j = 2,3, . . .) and not before; i.e., the walkers
arrive for the first time at site �0 from �s0 but these are not
absorbed until they return to site �0 for the (j − 1) time (see
Appendix A).

The probability of being absorbed in the j visit at site �0 is∫ ∞

0
Aj (�0,t |�s0,0)dt

= Aj (�0,u = 0|�s0,0) =
(

�(�0,0)−1

�(�0,0)−1 + ν

)j−1

×
(

ν

�(�0,0)−1 + ν

)
, (7)

where �(�0,u = 0) is the mean residence time at site �0 in the
unrestricted system and we have used F (�s,u = 0|�s0,t = 0) =
1 for a finite (unrestricted) system. As Eq. (7) shows, when
ν → 0 independently of the j value, we have no absorption,
while in the limit ν → ∞ the absorption is certain in the first
“visit” to the site (i.e., j = 1).

The mean absorption time, i.e., the mean time until the
walker is absorbed, is evaluated in terms of A(·) as

T =
∫ ∞

0
t
∑
�s0

A(�0,t |�s0,0)g(�s0) dt

= − ∂

∂u

⎧⎨
⎩
∑
�s0

A(�0,u|�s0,0)g(�s0)

⎫⎬
⎭
∣∣∣∣∣∣
u=0

, (8)

where g(�s0) denotes the probability density of initially finding
the walker at a position �s0 [28].

B. The model

For our model we consider the problem of a walker making
a random walk in a finite rectangular N × (M + 1) lattice
(see Fig. 2). The surface is bounded in the y direction where
the walkers can move from y = 0 to y = M , and periodic
boundary conditions are assumed in the x direction so x and
x + N denote the same place in space. As we mentioned
before, we follow the walker’s evolution through the system
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FIG. 2. Schematic transitions of the walker to or from the baseline
and to or from a generic surface site. Notice that the entrance to the
trap or escape site (empty circle) is regulated by the transition rate
ν; also notice that it could be reached both from the surface (with
transition rate γ ) and from the baseline (with transition rate β).

by considering the conditional probability P (n,m,t |n0,m0,t =
0) ≡ P (n,m,t), where (n,m) are discrete coordinates in
(x,y) space. P (n,m,t) satisfies the following master
equations:

Ṗ (n,0,t) = γP (n,1,t) − δP (n,0,t) + β(P (n + 1,0,t)

+P (n − 1,0,0,t) − 2P (n,0,t)), m = 0;

Ṗ (n,1,t) = δP (n,0,t) − 4γP (n,1,t) + γ (P (n + 1,1,t)

+P (n − 1,1,t) + P (n,2,t)), m = 1;

Ṗ (n,m,t) = γ (P (n − 1,m,t) + P (n + 1,m,t)

+P (n,m + 1,t) + P (n,m − 1,t))

− 4γP (n,m,t), 2 � m � M − 1;

Ṗ (n,M,t) = γ (P (n − 1,M,t) + P (n + 1,M,t)

+P (n,M − 1,t)) − 3γP (n,M,t), m = M,

(9)

where γ is the surface transition probability per unit time in the
x and y directions, β is the transition probability over the line
m = 0 in the x direction, and δ is the desorption probability
per unit time from the boundary line m = 0.

We introduce the imperfect escape case by allowing a finite
transition probability (ν) at the narrow escape window. Varying
from 0 to ∞, ν allowed the study of both a deficient trapping
and situations where escape is certain (i.e., the perfect trapping
case).

In the following we will say that the walker “escapes” when
it gets trapped or adsorbed, without the possibility of returning
to the system. This terminology matches the one used in the
NET area. Hence, adsorption → escape, and so on.

1. Escape probability density

We now make a brief comment regarding the escape
probability density. Taking into account the parameters of our

model, �(�0,0) = (u + δ + 2β)−1, we could write Eq. (7) as∫ ∞

0
Aj (�0,t |�s0,0)dt = Aj (�0,u = 0|�s0,0)

=
(

2β + δ

2β + δ + ν

)j−1 (
ν

2β + δ + ν

)
.

(10)

Notice that as ν grows (ν � 2β + δ) each Aj becomes smaller
except for A1, with A1 → 1; i.e., the escape is certain in the first
visit. However, when ν � 2β + δ, the probability of escape
A(·) has contributions from each j visit. This can best be
understood considering

Aj (·)
Aj+1(·)

∣∣∣∣
u=0

= 1 + ν

2β + δ
(j �= 1), (11)

which gives the relative contribution of successive terms in (5).
When ν gets smaller the contribution is spread all over j

values, as Eq. (11) shows. In contrast, each Aj → 0 (j �= 1)
as ν grows, concentrating all the probability in A1.

2. Mean escape time

Following the ideas exposed in [19] and by resorting
to the matrix formalism and Dyson’s procedure [26] we
were able to obtain the probability P (n,m,t |n0,m0,t = 0) (in
the Fourier-Laplace space), which is the building block for
the mean escape time (MET). For the detailed calculation
see Appendix B.

We will denote the (finite) Fourier transform by its
argument, as we did in the Laplace transform case. Thus for
example the transform on a coordinate, say x, would read

P (k,m,t |n0,m0,0) ≡ F {P (n,m,t |n0,m0,0)}

=
N−1∑
n=0

eiknP (n,m,t |n0,m0,0).

From P (k,m,u|n0,m0,t = 0) (obtained in the Fourier-Laplace
space), the probability that a walker is on the surface at
site (n,m) at time t given it was at (n0,m0) at t = 0,
P (n,m,t |n0,m0,t = 0), is derived by using the inverse Laplace
transform on u and the inverse Fourier transform on k (for
the x coordinate) for each [P (k,u)]m,m0

. However, as we are
interested in the calculation of (8), we only need to perform
the inverse Fourier transform on P (0,0,u|n0,m0,t = 0); i.e.,
we need the elements F−1{[P (k,u)]0,m0

}. We obtain for
[P (k,u)]0,m0

[P (k,u)]0,m0
= ηm0 +ηM̃−m0

δ(1−η)(1−ηM̃−1)+(u − A1(k))(1 + ηM̃ )
,

(12)

where η = 1 + (ũ −
√

ũ2 + 4γ ũ)/2γ , M̃ = 2M + 1, and ũ =
u − A(k). The inverse Fourier transform on [P (k,u)]0,m0

is
carried out in the following way:

P (0,0,u|n0,m0,0) = 1

N

N−1∑
q=0

ei
2πn0q

N

[
P

(
2πq

N
,u

)]
0,m0

. (13)
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Thus we have obtained the required expression for the
calculation of the MET through the narrow escape window
and it only remains to choose the initial distribution. We
now evaluate the MET for a walker with a uniform initial
distribution on the baseline (y = 0). This means that the initial
distribution is given by g(n,m) = (1 − δn,0)δm,0/(N − 1).
Notice that we explicitly exclude the possibility of having
a walker at (0,0) at t = 0 [30]. In this way we obtain

T = N

[
M

γ
+ 1

δ

]{
δ

ν
+ δ

N − 1

N−1∑
q=1

[
P

(
2πq

N
,u = 0

)]
0,0

}
.

(14)

We make some comments regarding Eq. (14) which constitutes
one of our main results. Notice that (14) adequately provides
the limits of the perfect escape case, ν → ∞ (obtained in [19])
and the no escape window, ν → 0, T → ∞. Observe that, as
is commented in [1], for a perfect escape case, T could be
expressed in the following way:

T = NM

γ

[
δ

ν
+ δ

∑
q

[
P
( 2πq

N
,u = 0

)]
0,0

N − 1

]

+ N

2β

[
2β

ν
+ 2β

∑
q

[
P
( 2πq

N
,u = 0

)]
0,0

N − 1

]
, (15)

or T = Tsurface + Tline; (15) provides an interesting physical
insight into the problem. Simply notice how the mean
escape time is constructed from the mean duration of surface
excursions and the mean duration of border or line excursions
[first and second terms of (15), respectively].

3. The existence of a minimum in T

The mean time T could be enhanced with respect to
δ provided we are able to find δ∗ = δ∗(β,γ,ν,N,M)—the
optimal desorption probability—that satisfies

∂T

∂δ

∣∣∣∣
δ=δ∗

= NM

γν
+ N

N − 1

N∑
q=1

Mγ −12βα2 − α1

(α1δ∗ + α22β)2
= 0, (16)

where the αi = αi(q,N,M) for i = 1,2 are defined in
Appendix C. Notice that (16) defines an implicit equation for
δ∗, which, although we could not solve, provided us with some
general conclusions as it approaches certain limits. Consider
first β → 0, with the other parameters held fixed. In this case
(a finite value for) δ∗ exists whenever we have a finite escape
probability rate ν and

δ∗ =
√√√√ νγ

M(N − 1)

N−1∑
q=1

α−1
1 . (17)

This is a highly interesting result since in the perfect escape
case (ν = ∞) this minimum disappears, as δ∗ is pushed toward
∞. Thus the “imperfect” escape window enables a region that
was absent in the perfect case. On the other hand, in the limit
β � δ it could be shown that Eq. (16) cannot be satisfied
for any δ∗ value. In this case, and taking into account the
walker’s initial distribution, the transport is performed on the
baseline (lower boundary) of the confining domain, so this is
an expected behavior.

In the following section we will make more remarks regard-
ing the minimum in T , while introducing some illustrations
corresponding to δ∗.

III. ILLUSTRATIONS

Here we illustrate the general framework introduced in
the previous section and compare our theoretical results to
independent Monte Carlo simulations. A brief review of our
simulation methodology is appropriate at this point. Basically
we follow a continuous time random walk (CTRW) [22]
simulation scheme while the theory follows a master equation
approach. We uniformly distribute the searchers on the
baseline [except on the escape window, which is placed
at (x,y) = (0,0)] of a two-dimensional N × (M + 1) lattice
with periodic boundary conditions. The propagation of the
walkers in the presence of the “imperfect” escape window
is implemented as follows: each walker is independent of
the others (and we have used 106 of them) and is assigned
an internal clock that is updated according to its waiting
time probability distribution. We define an indicator function
that records the needed information: if the window was
“crossed” (the walker left the system) and the time in which
this happened. The walker’s jump probabilities are evaluated
in terms of the transition rates: on the surface (γ ), on the
baseline—but not in the escape window—(β,δ), and in the
escape window (β,δ,ν). We check whether the trapping
conditions are fulfilled (for each walker), and if they are, we
update our indicator function. If the trapping conditions are
not fulfilled, the dynamics continues until trapping is achieved.
Once all walkers succeed in crossing the window the averaged
indicator function produces the output of interest, the MET.

In the next figures, lines indicate analytical calculations
while symbols correspond to Monte Carlo (MC) simulations.
We will be interested in situations in which a mixed type of
transport generates a global minimum in the mean escape time.

In Fig. 3 we present curves corresponding to the MET
as a function of the desorption rate δ, with parameters
N = 20, M = 10, and β = 0.1, for different values of the
escape “strength” ν, which is the “transition rate” at the
escape window. We have included for comparison the “perfect
escape case,” i.e., once in the escape window the escape is
instantaneous, with no dwelling time. Notice how ν regulates
the existence of a minimum in the MET: as ν gets smaller the
imperfection raises the T curve until it becomes monotonic.
Hence, for this situation we could say that ν affects negatively
the “mixed” type of transport (journey’s along the boundaries
and the surface). However, it is worth remarking that the
transition rate at the escape window can contribute positively
as well. This behavior is well depicted in Fig. 4.

Figure 4 presents curves corresponding to the MET as a
function of the desorption rate δ, with N = 10, M = 2, and
β = 0.01, for different values of the transition rate ν. As can be
inferred from the figure, ν significantly influences the MET as
it varies from 0 to ∞. Changes in the location of the extrema
values of the MET can be seen ranging from a monotonic
behavior (ν → ∞ extrema in δ → ∞) to a situation with
a global minimum, and then back again into a monotonic
behavior (ν → 0 extrema in δ → 0). So in this case the
transition rate to the escape window contributes “positively”

031105-4



NARROW-ESCAPE-TIME PROBLEM: THE IMPERFECT . . . PHYSICAL REVIEW E 86, 031105 (2012)

FIG. 3. MET as a function of the desorption rate δ (on a log
scale), with M = 10, N = 20, and β = 0.1, for different values of the
transition rate at the escape window ν. From top to bottom ν = 0.05,
0.1, 1, 10, and 100. For comparison, we have also included the perfect
escape window case (ν = ∞) (thick solid line).

to the mixed type of transport, since it turns a situation without
a minimum (perfect escape case) into a situation of enhanced
transport (minimum in T for some values of ν).

In Fig. 5 we present curves corresponding to the δ value that
minimizes MET, δ∗, as a function of β for different values of
ν, obtained from the numerical solution of Eq. (16). All lines
depict quite a similar trend for finite ν; δ∗(β◦,N,M,γ,ν) = 0
values marked by empty circles are not included in the curves
and mark the end of the β interval in which δ∗ exists. In other
words T is not monotonic while β ∈ [0,β◦). As we show in

FIG. 4. MET as a function of the desorption rate δ (on a log-log
scale), with β = 0.01, N = 10, and M = 2, for different values of ν

(transition rate at the escape window). From bottom to top ν = ∞,

100, 10, 1, 0.1, and 0.05. Lines correspond to analytical calculations
and symbols to Monte Carlo simulations.

FIG. 5. (Color online) δ∗ as a function of β (on a log-log scale)
for fixed N , M, and γ for different values of ν. The cuts of δ∗ on the
β axis [δ∗(β◦) = 0] for different ν, indicated by red empty circles,
are not included in the curve; β◦ points are obtained from Eq. (18).
Vertical dashed lines are the asymptotes for the perfect escape case
obtained from Eqs. (19) and (20).

Appendix C β◦ satisfies

2β◦ = γ

M

∑N−1
q=1 α1α

−2
2

(N−1)2β◦
ν

+∑N−1
q=1 α−1

2

. (18)

For values larger than β◦ the T curve reaches a minimum at
δ = 0. However, this is found at the beginning of the δ interval
and without change of sign of ∂T /∂δ. We decided to rule it
out as long as it does not represent a true interplay between
surface and boundary paths. In these situations all particles
stay on the baseline and eventually escape trough the escape
window without excursions into the surface.

The behavior of δ∗ considerably changes in the perfect case
(ν = ∞). Particularly, the range of β values where a minimum
exists in T shrinks, as indicated by the dashed asymptotes in
the figure. The left and right asymptotes indicate the limit in
which T becomes monotonic, extrema for δ∗ → ∞ and δ∗ →
0, respectively. The left and right asymptotes are, respectively,
located at

2βδ∗→∞ = γ

M

N−1∑
q=1

α−1
1

⎛
⎝N−1∑

q=1

α2α
−2
1

⎞
⎠

−1

, (19)

2βδ∗→0 = γ

M

N−1∑
q=1

α1α
−2
2

⎛
⎝N−1∑

q=1

α−1
2

⎞
⎠

−1

. (20)

For clarity sake in the inset we have magnified the entry points
to the β axis of δ∗ curves for ν = 10, 100, and ∞.

Figure 6 shows the phase diagrams that summarize the
existence and nonexistence of enhanced transport, analyzed
from the perspective of the existence of a minimum in the
mean escape time. The diagrams are plotted for fixed N ,
M, and ν as a function of the transition probability over
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FIG. 6. (Color online) Phase diagrams that summarize the exis-
tence and nonexistence of enhanced transport for ν = 0.01, 1, 100,
and ∞, respectively, for fixed system sizes N = 20 and M = 10.
White regions correspond to nonoptimal transport, while filled
regions (red patterns) identify regimes of enhanced transport. Regions
enclosed by black lines correspond to enhanced transport in the
perfect trapping case (ν = ∞) while dashed (green) lines correspond
to the bound from Eq. (18), after which T becomes monotonic.

the baseline, β, and the surface transition probability γ .
White regions correspond to nonoptimal transport (absence of
minimum—monotonic—in the MET), while filled regions (red
patterns) identify regimes with enhanced transport. We have
also included in Fig. 6, enclosed by black lines, the region

corresponding to enhanced transport in the perfect window
escape case. Dashed curves are obtained from the solution of
Eq. (18) with β◦ > 0,

2β◦ = −ν
∑

q α−1
2

2(N − 1)
+

√√√√
γ

ν
∑

q α−1
2

M(N − 1)
+
(

ν
∑

q α1α
−2
2

2(N − 1)

)2

.

(21)

As expected, when ν grows the regions approach the perfect
case and the escape, once in the window, becomes certain
and instantaneous. Notice that we obtain quite a good
agreement between the region of optimal transport, evaluated
from Eq. (14), and the corresponding bounds derived from
relations (21) for finite ν and (19) and (20) for ν = ∞.

In Fig. 7 we include the relative error [ε = √
var(T )/T ] of

the MET as a function of the starting position of the walker for
different values of δ and ν obtained through MC simulations
for system parameters N = 20, M = 10, and β = 0.1. In
this figure we only show s0 = 1, . . . ,10 [with the escape
window located at (0,0)] since s0 = 11, . . . ,19 produces the
same output due to the symmetry imposed by the boundary
conditions. We observe that ε depends on the starting position
(s0) and the ν parameter. The s0 dependence would indicate
that this may be considered as an additional parameter in the
MET optimization. Figures 7(a) and 7(b) show that when ε > 1
the MET may be an insufficient measure for characterizing the
escape process [31] while when ε < 1 the MET is a suitable
magnitude. In the former case (ε > 1) other magnitudes, e.g.,
the coverage territory [21], may be considered in order to fully
characterize the efficiency of the mixed type of transport.

IV. CONCLUSIONS

We have presented a model based on a master equation
approach to the narrow-escape-time problem. In this study
we introduced a finite transition probability, ν, at the narrow
escape window which allowed us to study the imperfect escape

FIG. 7. (a) Relative error as a function of the starting position for different values of δ and ν = ∞. (b) Relative error as a function of the
starting position for different values of ν and δ = 1. All points corresponds to system parameters N = 20, M = 10, and β = 0.1. All data
correspond to MC simulation.
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case. Varying from 0 to ∞, ν allowed the study of both ex-
tremes of the trapping process: that of a highly deficient capture
and situations where escape is certain (perfect trapping case).

By resorting to Dyson’s technique we have obtained
analytic results for the primary quantity studied in the NET
problem, the mean escape time, and we have studied its
dependence in terms of the transition (desorption) probability
over (from) the surface boundary, the confining domain
dimensions, and the finite transition probability at the escape
window. Particularly, we showed that the existence of a global
minimum in the NET is controlled by the “imperfection” of
the escape process. A very interesting result was that the
“imperfect” escape window enabled a region where T could
be minimized, something the perfect case lacked.

We have also presented bounds—Eqs. (18), (19), and (20)—
between which an optimal minimum value of T could be
found, improving previous bounds derived in [19]. The phase
diagrams introduced in the last section deserve a special
word, for not only do they present a compact summary of
the situations of enhanced transport, whenever some exist,
but they also can lead to a better understanding of the relations
among the parameters that characterize the system. In addition
to our analytical approach, we have implemented Monte
Carlo simulations, finding excellent agreement between the
theoretical results and simulations.

We consider that the presented scheme is an analytically
manageable model, which could be used to study the impact
of several (domain dimension, different rates of transition,
etc.) parameters in the interplay between surface and boundary
pathways and could also serve as a forerunner for the study of
more general and complex systems. This work contributes to
an area of growing interest, providing a more general overview
of a previous work [19] and showing a plausible physical
insight into the surface-mediated diffusion mechanisms in the
presence of an imperfect escape window.

The current approach to the narrow-escape-time problem
can be generalized in several directions: higher dimensions,
dynamical behavior of the narrow escape window, non-
Markovian desorption, etc. All of these aspects will be the
subject of future work.
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APPENDIX A: ABSORPTION AT VISIT j ,
THE A j (·) INTERPRETATION

By using the convolution property of Laplace trans-
forms [32], Eq. (6) can be expressed in the temporal domain
as

Aj (�0,t |�s0,0) =
∫ t

0
L−1

{
ν

�(�0,u)−1 + ν

}
(t − t ′)dt ′

×
∫ t ′

0

j−1(t ′ − t ′′)F (�0,t ′′|�s0,0)dt ′′ (A1)

(with the time order 0 < t ′′ � t ′ � t), where


j−1(t) = L−1

⎧⎨
⎩
(

F (�0,u|�0,0)
�(�0,u)−1

�(�0,u)−1 + ν

)j−1
⎫⎬
⎭ (t) (A2)

accounts for the (j − 1) returns until the walker is trapped. Let
us focus on 
j−1(t); for example, we set j = 1, so in this case

0(t) = L−1{1}(t) = δ(t+) (Dirac’s delta function) and get

A1(�0,t |�s0,0) =
∫ t

0
L−1

{
ν

�(�0,u)−1 + ν

}
(t − t ′)dt ′

×
∫ t ′

0
δ(t ′ − t ′′)F (�0,t ′′|�s0,0)dt ′′

=
∫ t

0
L−1

{
ν

�(�0,u)−1 + ν

}
(t − t ′)F (�0,t ′|�s0,0)dt ′;

i.e., the walker arrives at the origin at t ′ for the first time and
is trapped between t ′ and t in its first visit; for j = 2 we get

A2(�0,t |�s0,0) =
∫ t

0
L−1

{
ν

�(�0,u)−1 + ν

}
(t − t ′)dt ′

×
∫ t ′

0

1(t ′ − t ′′)F (�0,t ′′|�s0,0)dt ′′, (A3)

where


1(t) = L−1

{(
F (�0,u|�0,0)

�(�0,u)−1

�(�0,u)−1 + ν

)1}
(t)

=
∫ t

0
L−1

{
�(�0,u)−1

�(�0,u)−1 + ν

}
(t − τ )F (�0,τ |�0,0)dτ

is the probability of a single return until time t with out
trapping. So, A2(·) involves a first visit at t ′′, makes a unique
return between t ′′ and t ′, and finally gets trapped between t ′
and t . For the general term Aj (·), notice that the probability

j−1(t) (for j � 2) could be written as


j−1(t) = L−1{
j−1(u)} = L−1{(
1(u))j−1}
= L−1{
1(u)(
1(u))j−2}
=
∫ t

0

1(t − τ )L−1{(
1(u))j−2}(τ ) dτ.

In the last line of the equation the second factor in the
integral accounts for the (j − 2) returns to the origin without
trapping until time τ and the first factor gives the last return
between τ and t , i.e., (j − 1) returns until time t . Following
similar reasoning (to j = 1,2) and by iterating the convolution
property of Laplace transforms on Eq. (A4), we are able to
construct the whole hierarchy of return probabilities in terms
of the first return probability 
1(t) while we get a clear physical
interpretation of the Aj (·) terms.

APPENDIX B: MET CALCULATION

In this Appendix we focus on the calculation of the
probability P (n,m,t |n0,m0,t = 0), which is the building block
for the mean escape time. Taking the (finite) Fourier transform
with respect to the x variable and the Laplace transform with
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respect to the time t in Eq. (9), we obtain

m = 0,

uP (k,0,u) − P (k,0,t = 0)

= γP (k,1,u) − (δ − A1(k))P (k,0,u);

m = 1,

uP (k,1,u) − P (k,1,t = 0)

= δP (k,0,u) + γP (k,2,u) − (2γ − A(k))P (k,1,u);

2 � m � M − 1,

uP (k,m,u) − P (k,m,t = 0)

= A(k)P (k,m,u) + γ (P (k,m + 1,u)

+P (k,m − 1,u) − 2P (k,m,u));

m = M,

uP (k,M,u) − P (k,M,t = 0)

= A(k)P (k,M,u) + γP (k,M − 1,u) − γP (k,M,u).

(B1)

Here we have defined A1(k) = 2β(cos k − 1) and A(k) =
2γ (cos k − 1). By using the matrix formalism, Eq. (B1) can
be written as

[uI − H]P = I, (B2)

where I is the identity matrix, H is an (M + 1) × (M + 1)
tridiagonal matrix with elements

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C1 γ 0 . . . . . . 0
δ C γ 0 . . . 0

0 γ C γ 0
...

. . . 0
. . .

. . .
. . .

...
. . . . . . . . . γ C γ

0 . . . 0 γ γ + C

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (B3)

C and C1 are defined as C = −2γ + A(k) and C1 = −δ +
A1(k), and P is an (M + 1) × (M + 1) matrix with compo-
nents

[P (k,u)]m,m0
= P (k,m,u|n0,m0,t = 0).

In order to find the solution to Eq. (B2) we decompose the H
matrix in the following way:

H = A(k)I + H0 + H1 + H2, (B4)

where

H0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−γ γ 0 .. 0
γ −2γ γ .. 0
0 γ −2γ γ 0
.. .. .. ..

.. .. γ −2γ γ

.. 0 γ −γ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(B5)

corresponds to the transition matrix for a symmetric random
walk to nearest neighbors in a finite lattice (M + 1 sites)
with reflective boundary conditions at the ends. On the other
hand,

H1 = (γ − δ + A1(k)−A(k))δi,0δ0,j =�1δi,0δ0,j , (B6)

H2 = −(γ − δ) δi,1 δ0,j = �2 δi,1 δ0,j . (B7)

A formal solution to Eq. (B2) is

P = [uI − H]−1 . (B8)

By applying the Dyson procedure [26] a general expression in
the Fourier-Laplace space for [P (k,u)]m,m0

can be found:

[P (k,u)]m,m0

= [P 0(k,u)]m,m0 + [P 0(k,u)]m,0[P 0(k,u)]0,m0

× �1

1 − �1[P 0(k,u)]0,0
+ [P 0(k,u)]0,m0 · �2

1 − (�1 + �2)[P 0(k,u)]0,0

×
(

[P 0(k,u)]m,1 + [P 0(k,u)]m,0[P 0(k,u)]0,1 · �1

1 − �1[P 0(k,u)]0,0

)
,

(B9)

where

[P 0(k,u)]m,m0 = η|m−m0| + ηM̃−(m+m0)

2γ (1 − η) + ũ
,

ũ = u − A(k), M̃ = 2M + 1, and

η = 1 + (ũ −
√

ũ2 + 4γ ũ)/2γ.

From (B9), the probability that a walker is at site (n,m) at
time t given it was at (n0,m0) at t = 0, P (n,m,t |n0,m0,t = 0),
is derived by using the inverse Laplace transform on u and the
inverse Fourier transform on k (for the x coordinate) for each
matrix element [P (k,u)]m,m0

. Notice that, as we are interested
in the calculation of (8), we only need to perform the inverse
Fourier transform on P (0,0,u|n0,m0,t = 0); i.e., we need
the elements F−1{[P (k,u)]0,m0

}. In this case expression (B9)
reduces to

[P (k,u)]0,m0
= ηm0 + ηM̃−m0

δ(1 − η)(1 − ηM̃−1) + [u − A1(k)](1 + ηM̃ )
.

The inverse Fourier transform on [P (k,u)]0,m0
is carried out in

the following way:

P (0,0,u|n0,m0,t = 0) = 1

N

N−1∑
q=0

ei
2πn0q

N

[
P

(
2πq

N
,u

)]
0,m0

.

(B10)

Thus we have obtained all the required expressions for the
calculation of the MET. We now proceed to evaluate the mean
escape time for a walker with an uniform initial distribution on
the baseline (y = 0), i.e., g(n,m) = (1 − δn,0)δm,0/(N − 1).
Notice that we explicitly exclude the possibility of having a
walker at (0,0) at t = 0. We obtain

T = N

[
M

γ
+ 1

δ

]{
δ

ν
+ δ

N − 1

N−1∑
q=1

[
P (

2πq

N
,u = 0)

]
0,0

}

(B11)
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or

T = N

[
M

γ
+ 1

δ

]{
δ

ν
+ δ

N − 1

N−1∑
q=1

1

α1δ + α22β

}
, (B12)

where

α1 = α1(q,N,M) = (1 − ηu=0)
(
1 − η2M

u=0

)
(1 + ηu=0)2M+1

, (B13)

α2 = α2(q,N ) = 1 − cos
2π

N
q. (B14)

APPENDIX C: δ∗, OPTIMAL DESORPTION PROBABILITY

In this Appendix we present some results regarding the
desorption probability rate value that minimizes T , δ∗. For
this recall Eq. (16),

∂T

∂δ

∣∣∣∣
δ=δ∗

= NM

γν
+ N

N − 1

N∑
q=1

Mγ −12βα2 − α1

(α1δ∗ + α22β)2
= 0. (C1)

Let us focus on the relation between δ and β as these are the
parameters of interest, since the former enables the transport
on the surface, and the latter regulates the movement on the
boundary line where the escape window is located. Although
we will keep track of all variables, it could be shown that (C1)
can be written in terms of the scaled variables β ′ = βγ −1,
ν ′ = νγ −1, and δ′ = δγ −1. So a modification in γ would result
in an enlargement or shrinkage (if we let γ get smaller or larger,
respectively) of the former variables. We will consider the
behavior of ∂δ∗/∂β. Even though we were not able to obtain
an explicit expression for δ∗, its derivative with respect to β

could be evaluated in closed form. To do this recall Eq. (C1)
and differentiate it with respect to β by considering δ∗ = f (β)
(with the other parameters held fixed). Then after some algebra
we obtain

∂δ∗

∂β
=
∑N−1

q=1
2(Mγ −1δ∗+1)α1α2

(α1δ∗+α22β)3 −∑N−1
q=1

Mγ −1α2

(α1δ∗+α22β)2∑N−1
q=1

(Mγ −1δ∗+1)α2
1

(α1δ∗+α22β)3 −∑N−1
q=1

Mγ −1α1

(α1δ∗+α22β)2

. (C2)

From (C2) we could obtain the entry points to the β axis of
δ∗ curves. The forerunner for this is the sharp growth on the
δ∗ curves in Fig. 5. As a matter of fact the abrupt increase is

in ∂ log10 δ∗/∂ log10 β. However, it is not difficult to show that
this happens only if the denominator in (C2) → 0 for some β◦
(also notice that in this situation δ∗ ∼ 0), so

N−1∑
q=1

α2
1

(α22β◦)3
= Mγ −1

N−1∑
q=1

α1

(α22β◦)2

= (Mγ −1)2

(
(N − 1)

ν
+ 2β◦

N−1∑
q=1

α1

(α22β◦)2

)
,

(C3)

where we have used (C1) to replace the sum on the right-hand
side. We could go even further and replace the sum on the
left-hand side. For this we differentiate (C1) with respect to δ∗
and get Mγ −12β

∑
q α1α2(α1δ

∗ + α22β)−3 =∑q α2
1(α1δ

∗ +
α22β)−3. By using this relation and rearranging some terms
in (C3) we finally obtain

2β◦ = γ

M

∑N−1
q=1 α1α

−2
2

(N−1)2β◦
ν

+∑N−1
q=1 α−1

2

. (C4)

The solution of Eq. (C4) in terms of β◦ that makes
δ∗(β◦,N,M,γ,ν) = 0 marks the end of the interval in which
δ∗ exists, i.e., the T curve becomes monotonic.

For the perfect escape case we obtain one of the asymptotes
between which δ∗ exits, outside of which the extrema is pushed
either to 0 or to ∞, by letting ν → ∞ in (C4):

2βδ∗→0 = γ

M

∑N−1
q=1 α1α

−2
2∑N−1

q=1 α−1
2

. (C5)

For the second asymptote we go back to (C2), follow similar
reasoning that led us to Eq. (C3) (here ν = ∞ and δ∗ → ∞),
and obtain

2βδ∗→∞ = γ

M

∑N−1
q=1 α−1

1∑N−1
q=1 α2α

−2
1

. (C6)

Equations (C5) and (C6) constitute an improvement to the
bounds derived in [19] and the solution of Eq. (C4) gives
a bound regarding the existence of a minimum in the
MET.
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