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We analyze equilibration times of subsystems of a larger system under a random total Hamiltonian, in which the
basis of the Hamiltonian is drawn from the Haar measure. We obtain that the time of equilibration is of the order
of the inverse of the arithmetic average of the Bohr frequencies. To compute the average over a random basis, we
compute the inverse of a matrix of overlaps of operators which permute four systems. We first obtain results on
such a matrix for a representation of an arbitrary finite group and then apply it to the particular representation of
the permutation group under consideration.
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I. INTRODUCTION

The phenomenon of convergence to equilibrium despite
an underlying deterministic dynamics was usually justified
by referring to subjective lack of knowledge, i.e., by putting
probabilities by hand. However, already in 1929, von Neumann
(see [1] for an English translation and commentary) put
forward an argument for relaxation without referring to an
ensemble: For a typical initial pure quantum state, averages of
macroscopic observables will be for most of the time around
their equilibrium value. In this approach, thermalization is
implied by statistical properties of quantum states themselves;
namely it is due to the fundamental lack of knowledge
represented by quantum probability. This “individualist” ap-
proach to equilibrium (as phrased in [1]) has been recently
intensively developed; see, e.g., [2–7]. More broadly, new
theoretical and experimental developments on the question
of subsystem equilibration in close quantum systems have
also been achieved [8–19]. However the time of equilibration,
a very important aspect of equilibration and thermalization,
has not been considered so far. A natural time scale that
appears from the analysis of [4] is the inverse of the smallest
energy gap of the Hamiltonian. However the latter is typically
exponentially small in the size of the system, and thus cannot
offer an explanation for the fast nature of thermalization.

In this paper we consider the issue of equilibration time.
As in [4] we consider a system S and a bath B, and we
are interested in equilibration of the system, given that the
bath is sufficiently large. We evaluate the distance of the state
ρSB(t) of the system and the bath, evolving according to a
random Hamiltonian, from the state ωSB which is obtained by
removing the blocks of ρSB (0) which are off-diagonal with
respect to the Hamiltonian spectral decomposition.

Our main result amounts to showing that if we choose the
eigenbasis of the Hamiltonian randomly according to the Haar
measure, then the equilibration time depends on the (weighted)

average distance between the energies of the Hamiltonian
rather than on the worst case gap.

Computing the average over the random choice of the eigen-
basis of the Hamiltonian is reduced to evaluating averages of
the sort Tr[U⊗4X(U⊗4)†Y ] over the Haar distributed unitary
transformations U , with X,Y being some operators. This leads
us to a general problem of inverting a matrix Mgh = χ (g−1h),
where g,h are elements of a finite group G and χ is a character
of some given representation of the group. It turns out that
such a matrix enjoys certain nice properties, which allow us to
obtain the inverse in the case of interest (i.e., for G = S4). We
also present some other properties of the above matrix.

The main results of the work can be summarized in the
following statement (see Sec. III):

Main result. For an ensemble of random Hamiltonians with
eigenbases distributed according to the corresponding Haar
measure and a not too big level degeneracy [see Eq. (24)], the
following holds:

(1) For an additionally not too big energy gap degeneracy
[see Eq. (25)], the convergence to equilibrium happens at the
time scale of the order of the (weighted) average inverse energy
gap |Ei − Ej |−1 and the (weighted) average inverse second
gap |Ei − Ej − Ek + El|−1 [see Eqs. (28), (29)].

(2) For a simplified model with the energies distributed
according to independent Gaussian measures with variance
of the order of log10 d, where d is the total dimension of the
system and bath, the convergence to equilibrium happens at
the time scale of the order of 1/(log10 d).

In what follows we prove the above results in the following
steps: In Sec. II we calculate the Haar measure average of the
distance from the equilibrium state over a random basis of a
Hamiltonian. Then in Sec. III we investigate the dependence
of the equilibration time on the eigenvalues of a random
Hamiltonian and derive our main results. We conclude with
some general remarks and connections to other works. In the
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FIG. 1. (Color online) The composite system consisting of a
system and a bath, governed by a random Hamiltonian with the
eigenbasis drawn according to the Haar measure.

appendices we present the group theoretical machinery needed
to perform the Haar measure average from Sec. II.

II. AVERAGING OVER A RANDOM CHOICE OF
THE EIGENBASIS

Let us introduce some notation. We consider two systems
S (the system) and B (the bath), with the latter playing the
role of a heat bath (see Fig. 1). The composite system SB is
in an arbitrary initial state ρSB(0) = |ψ〉SB〈ψ |. Since we shall
consider random Hamiltonians, whose eigenbases are chosen
according to the Haar distribution, we can equally well take
a standard product initial state: |ψSB〉 = |0〉S |0〉B . We now
consider the evolved state ρSB (t) given by

ρSB(t) = e−iH tρSB(0)eiHt , (1)

where H is the total Hamiltonian of the system and the bath.
We also define a state ωSB as

ωSB =
∑

i

PiρSB(0)Pi, (2)

where Pi are eigenprojectors of the Hamiltonian

H =
∑

i

EiPi. (3)

We set

H = UH0U
†, Pi = UP 0

i U †, (4)

where H0 denotes the diagonal Hamiltonian with the elements
being (possibly degenerated) eigenenergies, connected to a
given eigenprojector. We assume that the probability measure
over random Hamiltonians splits into two parts

dμ(H ) = dUdμ2(H0), (5)

where dU is the Haar measure, while μ2 is some distribution
over the eigenenergies (such a separation holds, e.g., for
Gaussian unitary ensembles). Therefore for the averages we
have that 〈. . .〉H = 〈(〈. . .〉U )〉H0 . Let us also introduce the
following notation: W = eiHt , W0 = eitH0 , W = W0 ⊗ W

†
0 ,

and P = ∑
i P

0
i ⊗ P 0

i . By VX1:X2 we will denote the operator
which swaps the systems X1 and X2.

We consider the distance between the reduced state
ρS(t) = TrBρBS(t) and the corresponding reduced equilibrium
state ωS = TrB(ωSB), induced by the Hilbert-Schmidt norm
||A||2 =

√
Tr(A†A). Our main goal is to average it over random

Hamiltonians. In this section we will compute the average over
the Haar measure. To this end we will need the following:

Proposition 1. The following relation holds:

Tr[ρS(t) − ωS]2 = Tr[YU⊗4XU †⊗4
], (6)

where

X = (W − P)13 ⊗ (W† − P)24, (7)

Y = V12:34(σ1 ⊗ σ2 ⊗ F34), (8)

with σ = ρSB(0), F34 = VS3:S4 ⊗ IB3:B4 , and the label i =
1,2,3,4, denoting a copy of the composite system SiBi .

The proof is based on the following easy-to-check relation,
coming from the basic properties of the swap operator and true
for any two systems 1 and 2, and for arbitrary operators A1,
B2, C12, and D12 [20]:

Tr[(C12A1 ⊗ B2)(D12A
†
1 ⊗ B

†
2)]

= Tr[V12:34(C12 ⊗ D34)(A1 ⊗ B2 ⊗ A
†
3 ⊗ B

†
4)] (9)

(here 3 and 4 are auxiliary systems, isomorphic to 1 and 2,
respectively). The details of the proof are given in Appendix A.
Using Proposition 1 we now prove the main result of this
section:

Theorem 1. The Haar measure average of the distance (6)
is given by

〈||ρS(t) − ωS ||22
〉
U

= |η|2
d2

1

dS

+
( |ξ |2

d2
− γ

d2

)2

+ O

(
1

dB

)
,

(10)

where

ξ = TrW0 =
∑

j

dj e
iEj t , η = TrW 2

0 =
∑

j

dj e
2iEj t ,

γ =
∑

j

d2
j , d = dSdB,

∑
j

dj = d; (11)

index j = 1, . . . ,N enumerates the nondegenerate energy
levels of the random Hamiltonian H , dj ’s are (fixed) energy
degeneracies, and 〈·〉U denotes the average according to the
corresponding Haar measure.

Remark 1. Note that in Refs. [21–23], similar bounds were
obtained for the expected distance of ρS(t) to the equilibrium
state ωS .

Before we proceed with the proof, we briefly note that in
the nondegenerate case, i.e., when all di = 1, Eq. (10) reduces
to

〈||ρS(t) − ωS ||22
〉
U

= |η|2
d2

1

dS

+ |ξ |4
d4

+ O

(
1

dB

)
. (12)

Proof of Theorem 1. Thanks to Proposition 1, calculation of
the Haar measure average of the distance

∫
dU ||ρS(t) − ωS ||22

is reduced to a computation of a trace Tr[Yτ4(X)], where
τ4(·) = ∫

dUU⊗4(·)U⊗4† is a twirling operator and X,Y are
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given by (7) and (8), respectively:∫
dU ||ρS(t) − ωS ||22 = Tr[Yτ4(X)]. (13)

Such traces can be dealt with in a systematic manner using
group theory, in this case the representation theory of the
permutation group of four elements S4 (see Appendix B),
which greatly simplifies the calculations.

Our main tool will be Proposition 3 from Appendix B. To
apply it, we first express the operators X and Y in terms of
product operators:

X = C1 − C2 − C3 + C4, (14)

where

C1 = W0 ⊗ W
†
0 ⊗ W0 ⊗ W

†
0 ,

C2 =
∑

i

W0 ⊗ W
†
0 ⊗ P 0

i ⊗ P 0
i ,

(15)
C3 =

∑
i

P 0
i ⊗ P 0

i ⊗ W0 ⊗ W
†
0 ,

C4 =
∑
ij

P 0
i ⊗ P 0

i ⊗ P 0
j ⊗ P 0

j ,

and

Y =
∑
ij

σ1 ⊗ σ2 ⊗ A
ij

3 ⊗ A
ji

4 , (16)

where Aij = |i〉S〈j | ⊗ IB and |i〉S , |j 〉S form an orthonormal
basis of the system. Note that in each case we have ordered
the systems in the following way: (3,4,1,2).

For operators Ck , k = 1, . . . ,4, and Y given above, we de-
fine vectors �c(k) by c(k)

π = TrCkVπ−1 and �a by aπ = Tr(YVπ−1 ),
where π runs through the elements of the permutation group
S4. In order to compute the above vectors, we decompose a
given permutation π into cycles, so that for product operators
the vector components break into products of separate terms,
associated with the cycles. For a single cycle we then use
Proposition 2 from Appendix B. We obtain

�c1 = (|ξ |4,|ξ |2d,|ξ |2d,|ξ |2,|ξ |2,ηξ 2,|ξ |2d,d2,|ξ |2,d,d,|ξ |2,
|ξ |2,d,ηξ

2
,|ξ |2,|η|2,d,d,|ξ |2,|ξ |2,|ξ |2d,d,d2),

�c2 = (γ |ξ |2,d,pξ ∗,γ,γ,p∗ξ,d|ξ |2,d2,|ξ |2,d,d,|ξ |2,
|ξ |2,d,pξ ∗,γ,γ,d,d,|ξ |2,γ,p∗ξ,d,γ ),

�c3 = (γ |ξ |2,d,pξ ∗,γ,γ,p∗ξ,d|ξ |2,d2,|ξ |2,d,d,|ξ |2,|ξ |2,d,

pξ ∗,γ,γ,d,d,|ξ |2,γ,p∗ξ,d,γ ),

�c4 = (γ 2,γ d,ι,γ,γ,ι,γ d,d2,γ,d,d,γ,

γ,d,ι,γ,γ,d,d,γ,γ,ι,d,γ ),

�a = (1,1,dS,dS,dB,dB,1,1,dS,dS,dB,dB,

dB,dB,dB,dB,ddB,ddB,dS,dS,dS,dS,ddS,ddS). (17)

Here, ξi = Tr(PiW0) = die
iEi t , p = ∑

i diξi , γ = ∑
i d

2
i , and

ι = ∑
i d

3
i .

Now, we proceed to compute the matrix M−1 from Propo-
sition 3 from Appendix B. We refer to Sec. 2 of Appendix C,
where we consider the general properties of the matrix M

defined for representation of any group. In our case, for d � 4
the matrix is invertible, and its inverse is given by (C37). We
can now use formulas (13)–(17) and (C37) to finally obtain

〈||ρS(t) − ωS ||22
〉
U

= − 1

d2(2 + d)(−3 − d + 3d2 + d3)
{4d + 4d2 + 2d3 − 4ddB + 4d3dB + d4dB

− |ξ |4(2 + d)(1 + d − dB − dS) − 4ddS − 2d3dS − 4d4dS − d5dS − b[2 + (−2 + 2d + 4d2 + d3)dB

− (2 + 4d + d2)dS] + 4γ − 4dγ − 6d2γ − 2d3γ − 4dBγ + 2ddBγ + 5d2dBγ + d3dBγ − 4dSγ

+ 2ddSγ + 5d2dSγ + d3dSγ − 2γ 2 − 3dγ 2 − d2γ 2 + 2dBγ 2 + ddBγ 2 + 2dSγ
2 + ddSγ

2

+ 2|ξ |2(1 + d − dB − dS)(d + 2γ + dγ ) + 4ι + 4dι − 4dBι − 4dSι + ξ
2
η + dξ

2
η − dBξ

2
η

− dSξ
2
η + ξ 2η + dξ 2η − dBξ 2η − dSξ

2η − 4p∗ξ − 4dp∗ξ + 4dBp∗ξ + 4dSp
∗ξ − 4pξ ∗

− 4dpξ ∗ + 4dBpξ ∗ + 4dSpξ ∗}. (18)

One then finds that up to the order of 1/dB and a constant
factor, this gives the right-hand side of (10). �

We finish this section with two remarks. First, we note that
using ideas of measure concentration [24] it is easy to show
that Theorem 1 can be extended to say that the vast majority of
unitaries U will have the distance ||ρS(t) − ωS ||22 close to the
average and hence the corresponding Hamiltonian will equili-
brate quickly. Moreover, we can pass to the trace norm by using
the norm inequality [25] ||A||1 �

√
D||A||2, valid for any op-

erator A acting on C
D , which adds a factor of dS (recall that we

consider dB � dS). Second, let us recall Levy’s lemma [26]:

Theorem 2. For a Lipschitz continuous function f , the
following holds:

Pr
U∼μHaar

(|f (U ) − 〈f 〉U | � δ) � Ce−cdδ2
, (19)

where Pr is the probability, C,c are constants and d is the
dimension of the total system.

We apply Levy’s lemma to the average of Theorem 1,
putting δ = d−1/3. After passing to the trace norm, we then
obtain that with a high probability (according to the Haar
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measure) the following holds:

||ρS(t) − ωS ||1
� c

{ |η|
d

+
√

dS

|ξ |2
d2

−
√

dS

γ

d2
+ O

(
dS

dB

)
+

√
dS

d1/3

}
,

(20)

where c is an absolute constant and the other notation is as in
Theorem 1.

III. AVERAGE OVER TIME AND ENERGIES

In the previous section we have obtained expression (10),
which depends only on eigenvalues. Here we will consider the
average over time, for a fixed spectrum, and also the average
over the Gaussian distributed spectrum.

Using Eq. (10) and averaging over a fixed time interval
[0,T ], we find

1

T

∫ T

0
dt

〈||ρS(t) − ωS ||22
〉
U

= γ

d2dS

+ 2γ 2

d4
+ 1

T d2

∑
j>k

(
djdk

dS

+ d2
j d2

k

d2

)
sin[2T (Ej − Ek)]

(Ej − Ek)

+ 2

T d4

∑
j>k

∑
r > s

(rs) 
= (jk)

djdkdrds

{
sin[T (Ej − Ek + Er − Es)]

(Ej − Ek + Er − Es)
+ sin[T (Ej − Ek − Er + Es)]

(Ej − Ek − Er + Es)

}
.

(21)

From the above it is clear that one has to take into account
not only the level degeneracies dj , but also gap degeneracies.
We order the energies E1 < E2 < · · ·, so that for j > k, �jk ≡
(Ej − Ek) > 0, and introduce the following gap degeneracy
related constants:

γjk ≡
∑
r > s

(rs) 
= (jk)
�rs = �jk

drds. (22)

Then the average (21) can be rewritten as

1

T

∫ T

0
dt

〈||ρS(t) − ωS ||22
〉
U

= γ

d2dS

+ 2γ 2

d4
+ 2

∑
j>k

γjkdjdk

d4

+ 1

T d2

∑
j>k

(
djdk

dS

+ d2
j d2

k

d2
+ γjkdjdk

d2

)
sin(2T �jk)

�jk

+ 2

T d4

∑
j>k

∑
r > s

(rs) 
= (jk)
�rs 
= �jk

djdkdrds

{
sin[(T (�jk + �rs)]

�jk + �rs

+ sin[T (�jk − �rs)

�jk − �rs

}
. (23)

From (23) it follows that the system will have a chance to
equilibrate if both the energy and the energy gap degeneracies
are not too big, i.e., when

γ

d2
= O

(
1

d

)
, (24)

1

d4

∑
j>k

γjkdjdk = O

(
1

d

)
. (25)

Assuming the above, we obtain the following upper bound
[using the trivial estimates | sin x| � 1 and 1/(�jk + �rs) �

1/|�jk − �rs |; by our convention all �jk > 0]:

1

T

∫ T

0
dt

〈||ρS(t) − ωS ||22
〉
U

� 1

T

{ ∑
j>k

djdk

d2dS

1

�jk

+ 4
∑
j>k

∑
r > s

(rs) 
= (jk)
�rs 
= �jk

djdkdrds

d4

1

|�jk − �rs |

}
+ O

(
1

d

)
.

(26)

Thus for T greater than the bigger of the weighted averages,

T � max

{
1

dS

〈
�−1

jk

〉
,〈|�jk − �rs |−1〉

}
, (27)

where

〈
�−1

jk

〉 ≡ 1

d2

∑
j>k

djdk

�jk

, (28)

〈|�jk − �rs |−1〉 ≡ 1

d4

∑
j>k

∑
r > s

(rs) 
= (jk)
�rs 
= �jk

dj dkdrds

|�jk − �rs | , (29)

the state of the subsystem is close to the asymptotic state
ωS . This proves the first part of our main result, stated in the
Introduction.

Next, we proceed to calculate the average of Eq. (10) over
the eigenenergies Ei . For the purpose of this work, we will only
consider a simplified situation (see Ref. [22] for a more general
albeit asymptotic result), where the probability measure over
Ei is (i) a product of the energies (we neglect energy repulsion);
(ii) Gaussian; i.e., we consider the following distribution:

�(E1, . . . EN ) = �0(E1) . . . �0(EN ), (30)
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where N is the number of nondegenerate energy levels and

�0(Ej ) ≡ 1√
2πσ

e−E2
j /2σ 2

. (31)

As the energy scale σ for the purpose of this work we choose
σ = log10 d.

The latter choice is motivated by the following reasoning.
We may view a d-dimensional space as composed of log10(d)
abstract elementary systems (qubits). Since we want the energy
to be extensive, it should then scale as log10(d). Assuming the
worst case scenario that the uncertainty in the energy is of the
order of the energy itself leads to σ = log10(d) and we obtain

Theorem 3. For an ensemble of random Hamiltonians,
satisfying (24) and described by the Haar measure and the
energy distribution (30), we have

N2 − N

dS

e−4t2(log10 d)2 + O

(
1

d

)
�

〈||ρS(t) − ωS ||22
〉
H

� (N2 − N )2e−t2(log10 d)2 + O

(
1

d

)
. (32)

In the above we used the following average:

〈f (t,E1 . . . EN )〉H0 ≡ 〈f (t,E1 . . . EN )〉{Ek}

≡
∫

f (t,E1 . . . EN )�0(E1) . . . �0(EN )dE1 . . . dEN, (33)

where �0(Ej ) are of the form (31).
This theorem proves our second main result, stated in point

(2) in the Introduction. As mentioned there, it shows that, under
the above conditions, the time of convergence of the state ρS(t)
to equilibrium scales roughly as the inverse of log10 d, i.e., as
the inverse of the volume of the total system (in contrast,
in [27], it was argued that the time for the sparse random
ensemble scales like the volume, i.e., t ∼ log10 d).

Proof. From Theorem 1 we need to compute the average:〈 |η|2
d2

1

dS

+
( |ξ |2

d2
− γ

d2

)2〉
(34)

over the distribution (30). Straightforward calculations, relying
on the assumption that the levels are independently, identically
distributed give

〈||ρS(t) − ωS ||22
〉
H

= γ

d2dS

+
∑
j 
=k

d2
j d2

k

d4
+ 2

∑
j 
=k 
=s

d2
j dkds

d4
〈eiEt 〉2 +

∑
j 
=k 
=r 
=s

dj dkdrds

d4
〈eiEt 〉4

+ 2
∑

j 
=k 
=s

d2
j dkds

d4
〈e2iEt 〉〈eiEt 〉2 +

∑
j 
=k

(
djdk

d2dS

+ d2
j d2

k

d4

)
〈e2iEt 〉2. (35)

Substituting 〈e±iEt 〉 = e−σ 2t2/2, we obtain

〈||ρS(t) − ωS ||22
〉
H

= γ

d2dS

+
∑
j 
=k

d2
j d2

k

d4
+ 2

∑
j 
=k 
=s

d2
j dkds

d4
e−t2σ 2 +

∑
j 
=k 
=r 
=s

dj dkdrds

d4
e−2t2σ 2

+ 2
∑

j 
=k 
=s

d2
j dkds

d4
e−3t2σ 2 +

∑
j 
=k

(
djdk

d2dS

+ d2
j d2

k

d4

)
e−4t2σ 2

. (36)

The assumed condition of a not too big degeneracy (24)
implies that (i) ∑

j 
=k

djdk

d2
= O(1), (37)

which follows from the identity 1 = γ /d2 + ∑
j 
=k djdk/d

2

and assumed γ /d2 � 1; (ii) by the same reasoning,∑
j 
=k

∑
r 
=s

dj dkdrds

d4
= O(1), (38)

which follows from 1 = γ 2/d4 + 2(γ /d2)
∑

j 
=k djdk/d
2 +∑

j 
=k

∑
r 
=s dj dkdrds/d

4 and the first two term are O(1/d2)
and O(1/d), respectively; (iii)

∑
j 
=k d2

j d2
k /d2 < γ 2/d4 =

O(1/d2).
Thus the constant terms in (36) are of the order 1/d and

hence negligible. The lower bound in (32) is obtained by
neglecting in (36) everything but the leading part of the last
term and using (37). To get the upper bound, we use (38)

and substitute all the exponents in (36) with the biggest one
e−t2σ 2

. �

IV. CONCLUSIONS

We have shown that the equilibration time of a small
subsystem under the dynamics of a random Hamiltonian is
fast, being determined by the mean inverse of the energy gaps
of the Hamiltonian, which in typical cases scales as the number
of particles in the system. This should be contrasted with
the time scale that can be obtained from the results of [4],
which is given by the inverse of the smallest energy gap of the
Hamiltonian. The main message of this work is that in order
to understand the equilibration time in quantum systems, one
must consider more than the eigenvalues of the Hamiltonian.
Indeed, the structure of the eigevectors of the Hamiltonian
appears to be of crucial importance for equilibration to happen
quickly. Interestingly, asymptotic equilibration can be inferred
just from the knowledge of the eigenvalues of the model, this
being the main result of [4].
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FERNANDO G. S. L. BRANDÃO et al. PHYSICAL REVIEW E 86, 031101 (2012)

In our work we have shown that for almost any choice
of the eigenvectors (when picked from the Haar measure),
the equilibration will happen quickly. A direct consequence
of our result is that we can replace the Haar measure when
choosing the basis by any quantum unitary 4-design, since we
only used averages over four moments of the distribution in
our arguments. As random quantum circuits of the order n4

gates form a unitary 4-design [28], this means in particular
that most Hamiltonians whose eigenbases are determined by a
sufficiently large quantum circuit [with more than O(n4) gates]
are such that small subsystems equilibrate fast. A drawback of
the result is that typically a Hamiltonian chosen in this way will
be very different from realistic Hamiltonians, which should be
formed by a sum of few-body terms.

Comparing our result with other works, we want to say
that a similar bound to this from Eq. (10) was also obtained
in [21–23], where in [23], the author used his result to prove
thermalization of some classes of local Hamiltonians. What
is more, the time scale of the phenomena, obtained in these
works, is similar to ours, namely, that the time is given by the
Fourier transform of the function of the energy and that this
time is, in fact, quite short.

In particular, using our approach, one can check that with
high probability, the stationary state of the system ωS is close
to the maximally mixed one. In a future work we aim to add
some locality constraints to the Hamiltonian in order to become
closer to the thermodynamical regime, where the system is
weakly coupled to the bath, so that it is meaningful to talk
about a self-Hamiltonian of the system, and the latter would
equilibrate to a Gibbs state determined by that Hamiltonian. It
is an interesting open problem whether one can say something
about the generic case of some more realistic types of models.

Note added. Recently we became aware that similar results
have been reported in [21] and [22].
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APPENDIX A: PROOF OF PROPOSITION 1

We rewrite Tr[ρS(t) − ωS]2 as follows (we will not put the
dependence on time explicitly to shorten the notation):

Tr(ρS − ωS)2 = Trρ2
S − 2TrρSωS + Trω2

S

= Tr
[
(ρS1 ⊗ ρS2 − ρS1 ⊗ ωS2 − ωS1 ⊗ ρS2

+ωS1 ⊗ ωS1 )VS1:S2

]

= Tr(ρ1 ⊗ ρ2 F) − Tr(ρ1 ⊗ ω2 F)

− Tr(ω1 ⊗ ρ2 F) + Tr(ω1 ⊗ ω2 F), (A1)

where the label i = 1,2,3,4 denotes copies of the original
system SiBi , so that, e.g., ρ1 = ρS1B1 .

Consider now the first term. Writing ρSB = e−iH tσSBeiHt

we obtain

Tr(ρ1 ⊗ ρ2F) = Tr(e−iH tσ eiHt ⊗ e−iH tσ eiHt
F)

= Tr(σ1 ⊗ σ2W1 ⊗ W2FW
†
1 ⊗ W

†
2 ). (A2)

We can now use Eq. (9), putting C12 = σ1 ⊗ σ2, D12 = F,
A = B = W . As a result we obtain

Tr(ρ1 ⊗ ρ2F) = Tr[V12:34(W1 ⊗ W2 ⊗ W
†
1 ⊗ W

†
2 )]

= Tr[V12:34U
⊗4(W0 ⊗ W0 ⊗ W

†
0 ⊗ W

†
0 )U †⊗4

]. (A3)

In a similar way we get

Tr(ρ1 ⊗ ω2F)

=
∑

i

Tr[V12:34U
⊗4(W0 ⊗ Pi ⊗ W

†
0 ⊗ Pi)U

†⊗4
],

Tr(ω1 ⊗ ρ2F) (A4)

=
∑

i

Tr[V12:34U
⊗4(Pi ⊗ W0 ⊗ Pi ⊗ W

†
0 )U †⊗4

]

Tr(ω1 ⊗ ω2F)

=
∑
ij

Tr[V12:34U
⊗4(Pi ⊗ Pj ⊗ Pi ⊗ Pj )U †⊗4

].

If we now insert (A4) and (A3) into (A1) we obtain the desired
result (6).

APPENDIX B: AVERAGES

We prove here a few auxiliary facts.
Proposition 2. For π ∈ Sn being a cycle, we have

Tr(VπA1 ⊗ . . . ⊗ An) = Tr(Aπ(1) . . . Aπ(n)). (B1)

Proof. By direct inspection.
Proposition 3. Consider the twirling operation τn given by

τn(·) = ∫
dUU⊗n(·)U⊗n†. Then for any operators A and B

acting on (Cd )⊗n we have

Tr[Aτn(B)] = 〈�a|M−1|�b〉, (B2)

where �a = (aπ )π∈Sn
, �b = (bπ )π∈Sn

, with aπ = TrAVπ−1 , bπ =
TrBVπ−1 . The matrix M is given by Mπ,σ = 〈Vπ |Vσ 〉 =
Tr(Vπ−1Vσ ).

Proof. It is easy to check that the twirling operation is an
orthogonal projector in the Hilbert-Schmidt space of operators,
with the scalar product 〈A|B〉 = Tr(A†B). It projects onto the
space spanned by the permutation operators Vπ . Then from
Proposition 4 we have that

Tr[A†τ (B)] =
∑
π,σ

〈A|Vπ 〉(M−1)π,σ 〈Vσ |B〉. (B3)

However 〈A|Vπ 〉 = Tr(A†Vπ ) = a∗
π and similarly 〈Vσ |B〉 =

bσ , where ∗ stands for complex conjugate. This ends the proof.
Proposition 4. Let {ψi} be an arbitrary set of vectors from

the Hilbert space H. Let M be the matrix of the elements
from the set: Mij = 〈ψi |ψj 〉, and let us denote by M−1
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the pseudoinverse of M , i.e., the unique matrix satisfying
M−1M = MM−1 = Q, where Q is an orthogonal projection
onto a support of the matrix M (Q is the orthogonal projection
onto the range of M). Then the orthogonal projector P onto
the subspace spanned by {ψi} can be written as

P =
∑
ij

Xij |ψi〉〈ψj |, (B4)

where Xij are elements of matrix X and by X we mean X =
M−1, so the pseudoinverse of matrix M .

Proof. We must show that the operator P is indeed an
orthogonal projection, i.e., that P = P 2. Let start our proof by
writing the following expression for the P 2:

P 2 =
∑
ijkl

XijXkl|ψi〉〈ψj |ψk〉〈ψl|

=
∑
ijkl

XijXkl|ψi〉〈ψl |Mjk

=
∑
ij l

Xij |ψi〉〈ψl|
∑

k

MjkXkl, (B5)

where we use definition of M from Proposition 4. We can now
express our equation in terms of Q and use this to obtain the
desired result

P 2 =
∑
ij l

Xij |ψi〉〈ψl|Qjl =
∑
il

( ∑
j

XijQjl

)
|ψi〉〈ψl |

=
∑
il

(XQ)il|ψi〉〈ψl| =
∑
il

Xil|ψi〉〈ψl | = P, (B6)

since according to Proposition 4 MQ = QM = M and XQ =
QM = X.

APPENDIX C: INVERSE OF THE MATRIX M

In this section we derive properties of the matrix M which
were needed in the proof of Theorem 1.

1. Properties of M matrix for general representations

We will first introduce some notation. Denote by G an
arbitrary finite group, |G| = n. Let

Dα : G → Hom(Hα); α = 1,2,....,r; dimHα = dα

(C1)

be all inequivalent, irreducible representations (irrep) (not
necessarily unitary) of G and let

Dα(g) = (
Dα

ij (g)
)
; i,j = 1,2,....,dα (C2)

be their matrix forms where D1(g) = 1 is the trivial represen-
tation. By

χα(g) = Tr
[
Dα

ij (g)
]
, (C3)

we denote the corresponding irreducible character (ICH). We
now define our main object, the matrix MD .

Definition 1. Let D : G → Hom(H) be any representation
(not necessarily unitary) of G. Define a matrix M ∈ M(n,C):

MD = (mgh) = (Tr[D−1(g)D(h)])

= (Tr[D(g−1h)]) = (χD(g−1h)). (C4)

We apply this definition to irreducible representations Dα:
Definition 2. For irreducible representations Dα we define

the corresponding matrices

Mα = (
mα

gh

) = (Tr(Dα)−1(g)Dα(h))

= (Tr[Dα(g−1h)]) = (χα(g−1h)). (C5)

Thus from the definition of Mα , it follows that in order to
calculate the entries of Mα we do not need to know explicitly
irrep Dα , but only ICH χα .

Now we shall express the matrix MD by means of the
matrices Mα . Namely, from the decompositions

D = ⊕r
α=1kαDα; kα ∈ N ∪ {0} ⇒ χD =

r∑
α=1

kαχα, (C6)

where kα is the multiplicity of irrep Dα in D and from the
character properties we get

Proposition 5. Matrices Mα are Hermitian and

MD =
r∑

α=1

kαMα ⇒ (MD)+ = MD. (C7)

The sum of elements in each row and column of the matrix
MD is equal to nk1. Further, using orthogonality relations for
ICH,

1

n

∑
g∈G

χα(g)χβ(g−1) = δαβ, (C8)

which one can derive from Schur’s lemma, one can prove
Proposition 6. The matrices Mα are proportional to orthog-

onal projectors:

MαMβ = n

dα

δαβMα, (C9)

whereas the matrices P α = dα

n
Mα form the complete set of

orthogonal projectors:

P αP β = δαβP α;
r∑

α=1

P α = 1; (P α)+ = P α. (C10)

In particular the matrices Mα and P α mutually commute.
This already gives us eigenvalues of the matrix MD in terms

of dimensions dα and multiplicities of the irreps, which allows
us to derive the formula for the inverse of MD , whenever it
exists (see Theorem 5). We can however also find eigenvectors
in terms of matrix elements of irreps. Namely, consider n

vectors in C
n whose entries are defined by the matrix elements

of irrep Dα in the following way:

Uα
ij = (

Dα
ij (g−1)

) ∈ C
n; g ∈ G; α = 1,2,....,r;

i,j = 1,2,....,dα, (C11)

where α, i, j label the vectors Uα
ij and g ∈ G label the entries

of the vector Uα
ij ∈ C

n, i.e., the vector Uα
ij has the form(

Uα
ij

)T = (
Dα

ij

(
g−1

1

)
, Dα

ij

(
g−1

2

)
,..., Dα

ij

(
g−1

n

)) ∈ C
n,

(C12)
and in particular

(U 1)T = (1,1,...,1) ∈ C
n. (C13)
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It turns out that these vectors are eigenvectors of the matrices
Mα:

Proposition 7. The Uα
ij are linearly independent and they

are eigenvectors for matrices Mα and P α; i.e.,

MαU
β

ij = δαβ n

dα

U
β

ij ; P αU
β

ij = δαβU
β

ij . (C14)

If the irrep Dα are unitary then the vectors Uα
ij are orthogonal

with respect to the standard scalar product in C
n.

Proof. In order to prove this Proposition we will need:
Proposition 8. Let χ : G → C be any character of the group

G (or even any central function on G) and Dα be an irrep of
G. Then

� : Hα → Hα; �ij =
∑
g∈G

χ (g)Dα
ij (g) = n

dα

(χα,χ )δij ,

(C15)
where (·,·) is a scalar product in the space C

G.

Now we can prove Proposition 7.
Proof. (

MαU
β

ij

)
g

=
∑

h

χα(g−1h)Dβ

ij (h−1). (C16)

We set

u−1 = g−1h, (C17)

then (
MαU

β

ij

)
g

=
∑

u

χα(u)Dβ

in(u)Dβ

nj (g−1). (C18)

Now we use the above proposition and the fact that ICH of G

are orthonormal, i.e., (χα,χβ) = δαβ , and we get(
MαU

β

ij

)
g

=
∑

n

δαβ n

dα

δinD
β

nj (g−1) = δαβ n

dα

D
β

ij (g−1)

(C19)
= δαβ n

dα

(
U

β

ij

)
g
.

As an easy corollary from Proposition 7 we get the following
theorem concerning the eigenproblem for the matrix MD:

Theorem 4. The vectors U
β

ij are eigenvectors for the matrix
MD , i.e.,

MDU
β

ij = kβ

n

dβ

U
β

ij , (C20)

and the eigenvalues of MD are the following:

λβ ≡ kβ

n

dβ

. (C21)

The spectral decomposition of MD thus reads

MD =
r∑

α=1

λαP α, (C22)

where the eigenprojectors P α are defined in Proposition 6.
Directly from this theorem follows

Corollary 1.
(1) The matrix MD is invertible if each multiplicity kα in

the decomposition

χD =
r∑

α=1

kαχα ⇔ MD =
r∑

α=1

kαMα (C23)

is nonzero.
(2) For a given α the vectors Uα

ij , i,j = 1,2,....,dα , span the
eigenspace for the eigenvalue λα, so the multiplicity of λα is
equal to d2

α.

(3) The eigenvectors Uα
ij do not depend on the representa-

tion D : G → Hom(V ), whereas the eigenvalues λα depend
on the representation D : G → Hom(V ) via multiplicities kα.

(4) We have also

det MD = �r

α=1

(
kα

n

dα

)d2
α

,

TrMD =
r∑

α=1

nkαdα = n dim D.

Thus in order to calculate the eigenvalues λα of the matrix
MD we need only the multiplicities kα of irrep Dα in the
representation D (the dimensions dα and rank n = |G| are
known). From the above spectral decomposition we get

Corollary 2. If the matrix MD = ∑r
α=1 kαMα is invertible

(⇔ kα � 1) then

(MD)−1 =
r∑

α=1

λ−1
α P α =

r∑
α=1

dα

nkα

P α = 1

n2

r∑
α=1

d2
α

kα

Mα.

(C24)
In fact this formula expresses the entries of the matrix (MD)−1

in terms of ICH; namely we have

(MD)−1
gh = 1

n2

r∑
α=1

d2
α

kα

χα(g−1h); (C25)

i.e., all we need to calculate (MD)−1 are ICH and the
multiplicities kα of irrep Dα in the representation D.

Remark 2. It is known [29] that one can calculate the
multiplicities kα of irrep Dα in an arbitrary representation
R of the group G using the following formula:

kα = (χR,χα) ≡ 1

n

∑
g∈G

χR(g)χα(g−1), (C26)

where (χR,χα) is the scalar product in the linear space of
central functions on the group G.

Finally, we want to express the inverse of MD as a
polynomial of MD . To this end, note that from the Hermiticity
of the matrix MD it follows that the rank of the minimal
polynomial of MD is equal to r and the coefficients of this
polynomial are determined by r pairwise distinct eigenvalues
of MD . Thus it is possible to write the matrix (MD)−1 as a
polynomial of degree r − 1 in MD. In fact we have

Theorem 5. Let

W (x) = xr + sr−1x
r−1 + · · · + s1x + s0 (C27)

be a minimal polynomial of the matrix MD; i.e., W (MD) = 0.

Then if s0 
= 0,

(MD)−1 = −1

s0
[(MD)r−1+ sr−1(MD)r−2+ · · · + s2M

D+ s1].

(C28)
This formula expresses the inverse of the matrix MD as a
polynomial function of itself. In the next section we shall
apply these results to our representation.
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2. Applications

In this subsection we will apply the above results to a
particular representation of the symmetric group Sn.

Definition 3. Let H = ⊗n
i=1C

d , so dim H = dn. We define
the representation D of the group Sn in the space H by means
of operators which swap subsystems:

∀σ ∈ Sn D(σ )(ei1 ⊗ ei2 ⊗ ... ⊗ ein)

= eσ−1(i1) ⊗ eσ−1(i2) ⊗ ... ⊗ eσ−1(in), (C29)

where {ei}di=1 is a basis of C
d . In other words D(σ ) = Vσ ,

using notation from previous sections.
An important property of any representation is its character

and in this case it is not very difficult to prove that
Proposition 9. The character of the representation D :

Sn → Hom(H ) has the following form:

∀σ ∈ Sn χD(σ ) = dl(σ ), (C30)

where l(σ ) is the number of cycles in the cycle decomposition
of σ ∈ Sn. It follows that in the case of the representation D

of Sn the matrix MD has the form

MD = (mσπ ) = (χD(σ−1π )) = (dl(σ−1π)). (C31)

Example 1. For the group S3 the matrix MD is the following:

MD =

⎛
⎜⎜⎜⎜⎜⎝

d3 d2 d2 d2 d d

d2 d3 d d d2 d2

d2 d d3 d d2 d2

d2 d d d3 d2 d2

d d2 d2 d2 d3 d

d d2 d2 d2 d d3

⎞
⎟⎟⎟⎟⎟⎠ . (C32)

From Theorem 4 and Corollary 1 of the previous subsection
it follows that in order to describe the basic properties of
the matrix MD , in particular its eigenvalues and the inverse
(MD)−1, one has to calculate the multiplicities kα of irrep Dα

in the representation D. Using the formula from Remark 2 and
the character tables for S3 and S4 [29] one gets

Proposition 10.
(1) The multiplicity coefficients kα for S3 are the following:

k1 = 1
6 (d3 + 3d2 + 2d); k2 = 1

6 (d3 − 3d2 + 2d);

k3 = 1
3 (d3 − d). (C33)

(2) The multiplicity coefficients kα in the case of S4 are of
the form

k1 = 1

4!
d(d + 1)(d + 2)(d + 3);

k2 = 1

4!
d(d − 1)(d − 2)(d − 3);

k3 = 2

4!
d2(d2 − 1);

k4 = 3

4!
d(d2 − 1)(d − 2);

k5 = 3

4!
d(d2 − 1)(d + 2). (C34)

From Theorem 4 we get immediately the values of the
corresponding eigenvalues and then from Corollary 1 and
Theorem 5 we get

Theorem 6. For S3 we have

M−1 = 1

d3(d2 − 1)2(d2 − 4)

× [M2 − 3d(d2 + 1)M + 3d4(d2 − 1)1], (C35)

where d 
= 1,2 and

M−1 = 1

s3

⎛
⎜⎜⎜⎜⎜⎝

a11 a12 a13 a14 a15 a16

a21 a22 a23 a24 a25 a26

a31 a32 a33 a34 a35 a36

a41 a42 a43 a44 a45 a46

a51 a52 a53 a54 a55 a56

a61 a62 a63 a64 a65 a66

⎞
⎟⎟⎟⎟⎟⎠ , (C36)

where

a11 = d6 − 3d4 + 2d2; a12 = d3 − d5; a13 = d3 − d5;

a14 = d3 − d5; a15 = 2d4 − 2d2; a16 = 2d4 − 2d2;

a21 = d3 − d5; a22 = d6 − 3d4 + 2d2; a23 = 2d4 − 2d2;

a24 = 2d4 − 2d2; a25 = d3 − d5; a26 = d3 − d5;

a31 = d3 − d5; a32 = 2d4 − 2d2; a33 = d6 − 3d4 + 2d2;

a34 = 2d4 − 2d2; a35 = d3 − d5; a36 = d3 − d5;

a41 = d3 − d5; a42 = 2d4 − 2d2; a43 = 2d4 − 2d2;

a44 = d6 − 3d4 + 2d2; a45 = d3 − d5; a46 = d3 − d5;

a51 = 2d4 − 2d2; a52 = d3 − d5; a53 = d3 − d5;

a54 = d3 − d5; a55 = d6 − 3d4 + 2d2; a56 = 2d4 − 2d2;

a61 = 2d4 − 2d2; a62 = d3 − d5; a63 = d3 − d5;

a64 = d3 − d5; a65 = 2d4 − 2d2; a66 = d6 − 3d4 + 2d2

and s3 = d3(d2 − 1)2(d2 − 4) = 9d5 − 4d3 − 6d7 + d9.

In a similar way we obtain the result we used to prove
Theorem 1.

Theorem 7. For S4 we have

M−1 = 1

s5
(M4 − s1M

3 + s2M
2 − s3M

1 + s41), (C37)

where d 
= 1,2,3 and

s1 = d2(5d2 + 19);

s2 = 2d2(d2 − 1)(5d4 + 23d2 + 20);

s3 = 2d4(d2 − 1)2(5d4 + 7d2 + 12); (C38)

s4 = d4(d2 − 1)3(d2 − 4)(5d4 − 9d2 + 36);

s5 = d6(d2 − 1)4(d2 − 4)2(d2 − 9).

3. Miscellaneous facts about matrix M D

It turns out that the matrix MD may be written as a
linear combination of adjacency matrices of the so-called
commutative association scheme (see [30]) determined by the
class structure of the group G.

Definition 4. Let C1 = {e}, C2,....,Cr be the conjugacy
classes of the group G. We define the ith relation Ri on G × G

in the following way:

(g,h) ∈ Ri ⇔ g−1h ∈ Ci.

Then the pair (G,{Ri}ri=1) is a commutative association scheme
and by Ai we denote the corresponding adjacency matrices
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which are matrices of degree |G| = n whose rows and columns
are indexed by the elements G and whose entries are

(Ai)(g,h) = 1 if (g,h) ∈ Ri,

0 if (g,h) /∈ Ri.

So ith adjacency matrix Ai is a 0,1 matrix.
Proposition 11 [30].

(1) A1 = 1, the identity matrix.
(2)

∑r
k=1 Ak = J, where J is the matrix whose entries are

all 1.

(3) At
k = Ak′ for some k′ ∈ {1,...,r}.

(4) AiAj = ∑r
k=1 pk

ijAk ∀i,j,k ∈ {1,...,r}.
(5) pk

ij = pk
ji ∀i,j,k ∈ {1,...,r} ⇔ AiAj =

AjAi ∀i,j ∈ {1,...,r}.
The matrix MD may be written as a linear combination of

the adjacency matrices in the following way:
Proposition 12.

MD =
r∑

i=1

χD(Ci)Ai.
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