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Asymptotic response of observables from divergent weak-coupling expansions:
A fractional-calculus-assisted Padé technique
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Appropriate constructions of Padé approximants are believed to provide reasonable estimates of the asymptotic
(large-coupling) amplitude and exponent of an observable, given its weak-coupling expansion to some desired
order. In many instances, however, sequences of such approximants are seen to converge very poorly. We outline
here a strategy that exploits the idea of fractional calculus to considerably improve the convergence behavior. Pilot
calculations on the ground-state perturbative energy series of quartic, sextic, and octic anharmonic oscillators
reveal clearly the worth of our endeavor.
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I. INTRODUCTION

Given a power series expansion in a variable x of some
observable F (x) that has the form

F (x) =
∑

j

fjx
j , x → 0, (1)

and given that F (x) is an entire function of x over the whole
positive real axis, it is often of interest to extract the asymptotic
(x→∞) behavior of F (x) from a knowledge of (1) up to some
order. In essence, we like to estimate parameters α0 and β0,
defined by

F (x) ∼ α0x
β0 , x → ∞, (2)

from (1). Here, α0 is the amplitude and β0 is the exponent.
While the problem possesses a very general character, we shall
illustrate its various facets by confining attention to quantum-
mechanical perturbation theory. Usually, form (1) is obtained
from the Rayleigh-Schrödinger perturbation theory and (2)
is intuitively obvious. In a few situations, however, form (2)
stands for the leading behavior; in actuality, it is replaced
by a strong convergent expansion at very large x. In cases of
external perturbations, the coupling parameter x can be varied.
Then, the problem becomes of real interest. Ready examples
include the variations of energy of an atom under high electric
and/or magnetic fields [1]. In dealing with some problems,
there exist alternative routes of arriving at (2) [e.g., variational],
but not always. For instance, the variation method does not
apply if the corresponding system Hamiltonian is not bounded
from below. Severity of the problem of getting (2) from (1)
intensifies if the parent expansion (1) diverges for any x > 0.
Such is the case with anharmonic oscillator perturbations. It is
also known that this divergence becomes more prominent as
the degree of anharmonicity M (see later) increases [2–5].

A major impetus in envisaging whether (2) can be obtained
from information of (1) is provided by Symanzik’s scaling
argument [3]. Briefly, the argument goes as follows. Choose
the Hamiltonian (with m = 1

2 and h̄ = 1)

H (λ) = −d2/dx2 + x2 + λx2M = H0 + λV, (3)
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and transform x→μx = y. Putting μ = λ−1/[2(M+1)], one
obtains from (3)

H (λ) = λ1/(M+1)[−d2/dy2 + λ−2/(M+1)y2 + y2M ]. (4)

From (4), it is clear that the energy perturbation series can be
written as

EM (λ) = λ1/(M+1)
∞∑

j=0

ε∞
j (M)λ−2j/(M+1). (5)

However, on the basis of the natural starting point of perturba-
tion theory, we may rewrite (1) in the form

EM (λ) =
∞∑

j=0

ε0
j (M)λj . (6)

In (5) and (6), we have specifically incorporated “M” in the
symbols. Most widely studied problems involve M = 2, 3,
and 4. An increase in M actually worsens drastically the
divergent character of (6). This is evident from the known [2–5]
asymptotic growth of the coefficients in (6) for the ground
stationary state as

lim
j→∞

ε0
j (M) ∼ [(M − 1)j ]!Aj

M, (7)

where AM is some M-dependent constant. Thus, with energy
as an observable, here we notice that, if the system Hamiltonian
is given by (3), one has ready results for β0 in (2) from (5),
viz.,

β0 = λ1/(M+1). (8)

The remaining problem is to determine α0 in (2), which in this
context follows the association

α0 = ε∞
0 . (9)

However, if one encounters a series like (1) that does not
have any reference to some Hamiltonian, the scaling argument
leading to (8) would not follow. In that case, both the exponent
and the amplitude are to be estimated.

Another problem is to calculate F (x) at some given x

value. While a number of sequence accelerative transforms
are available [4,6–8], and each of them works with varying
degrees of success to evaluate F (x) from a series like (1), at
least up to moderate values of x, the most popular one is the
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construction of suitable Padé approximants (PA) [8]. An early
attempt was made by Simon [3]. A few effective variants of
the PA in estimating values of F (x) at large x have recently
been put forward [9] where major references to earlier works
may be found. We also tried to get reasonable estimates of
β0 [10] and α0 [11] earlier by using specific variants of the PA.
A different sort of approach is to employ multivalued algebraic
approximants [12] that are constructed in the spirit of the PA,
but take due care of multivaluedness of the function F (x) in
the complex x plane. Needless to mention, such complexities
are reflected in the observed rapid divergence of concerned
series expansions. Yet another strategy involves the self-similar
approximation [13] that is particularly effective with only a few
known coefficients.

Let us note that quite a few very successful methods
of deriving strong-coupling expansions from a given weak-
coupling one for the anharmonic oscillator perturbation under
study have come up from time to time [14–18]. However,
they commonly rest on the use of different kinds of quantum-
mechanical techniques, e.g., path integral or related meth-
ods, nonlinearization technique, renormalized perturbation
series or scale transformations, or other Ansätze. In such
contexts, often the knowledge of large-j behavior of fj

(e.g., [7]) is also implicitly employed, along with the scaling
relation (5).

Our purpose here is to view (1) as a purely numerical series,
with no reference to any Hamiltonian origin. We also do not
use (8). Rather, we like to see how closely one can reach such
a relation from (1). In calculating α0, however, we employ
the known β0 value, though it is not mandatory. The plan is
to check the efficacy of the endeavor, and, it goes without
saying that a rougher input β0 would only worsen the target
value sought. The basic idea has its origin elsewhere. Bender
and Boettcher [19] had chosen a number of examples, with
β0 = 0, to find that the sequences of diagonal PAs, appropriate
here, tend to the true α0 very slowly as x→∞. Indeed, they
have numerically found an inverse relationship between the
error and logarithm of the sequence number. This endeavor
prompted us to explore how far one can go in arriving at result
(2) from (1) by employing some modified scheme involving
the PA that may improve the convergence. To achieve this
end, we couple the appropriate PA strategy with fractional
calculus (FC).

The FC, first conceived by Leibniz, has received a lot
of attention over the last few decades [20] in a variety
of situations. For a series like (1) with a finite radius of
convergence, we have once seen [21] how improved estimates
of critical indices can be had by importing this notion. In
the current context, the problem is much more involved.
Therefore, we need to choose systems for which benchmark
results are available, so that the efficiency can be judged
transparently. Hence, we have opted to study the ground-state
energy perturbation series for the three anharmonic oscillator
problems, defined by the Hamiltonian (3) with M = 2, 3, and
4. For calculational purposes, we have taken the coefficients
ε0
j (M) in (6) up to j = 50 [22], scaled suitably to suit (3).

The problem concerned has one more advantage. A successful
interpolation of (1) and (2) [13] has been found to quickly
furnish nice measures of F (x) over the entire range of x. This
provides another motivation for the task undertaken, apart

from demonstrating an application of FC in an untouched
area.

II. THE STRATEGY

We first briefly consider the standard scheme of employing
the PA in estimation of β0 and α0. From (2), one obtains in the
limit x→∞,

x d ln F (x)/dx = x F ′(x)/F (x) = β0. (10)

This forms the basis of the so-called “d log Padé” method,
widely employed in estimating critical exponents [23]. The
left side of (10) can be expressed as a power series in x on the
basis of (1). We call

T1(x) = xd ln F (x)/dx. (11)

Therefore, sequences of diagonal PAs to T1(x) can be
evaluated in the x→∞ limit. These sequences are of the form

SN
1 = {[N/N ]T1(x)}x=∞ . (12)

The limit point of such a sequence will hopefully converge
to β0. The convergence, however, turned out to be quite slow
[10] and hence the procedure is not effective. Even for the
simplest case of M = 2, we have noted that variants of this
scheme [10] improve results only marginally.

In evaluating α0, on the other hand, we assume that β0 is
somehow known a priori. Then, one can construct [19] the
function, by virtue of (2),

[F (x)]1/β0 = (α0)1/β0x, (13)

that is valid as x→∞. We designate the left side of (13) by
T2(x). Using expansion (1), we then form the [N/(N–1)] PA
to T2(x). A sequence of values is next obtained as

SN
2 = ({[N/(N − 1)]T2(x)/x}x=∞)β0 (14)

that is likely to approach α0 as N→∞.
To improve convergences of sequences {SN

1 } and {SN
2 }, we

exploit FC in the following way. Sticking to the Riemann-
Liouville convention [20], we define

Dgyn = �(n + 1)

�(n + 1 − g)
yn−g, (15)

where g may be a noninteger. Prescription (15) now allows us
to construct a function G(x) where

G(x) = xgDgF (x), (16)

that also has a power-series form like (1). Indeed, we have

G(x) =
∑

j

fj

�(j + 1)

�(j + 1 − g)
xj , x → 0, (17)

and, in addition,

G(x) ∼ α0
�(β0 + 1)

�(β0 + 1 − g)
xβ0 , x → ∞. (18)

Note that (17) and (18), in effect, replace (1) and (2). In
other words, given a series (1) and its asymptotic behavior
(2), one can generate an infinitude of possibilities of such
pairs simply by varying the parameter g, provided terms in
(16) and (17) remain finite. Only the asymptotic amplitude
differs. In fact, the identification can be extended to include
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form (5) as well, if such a form exists, or is known, and if
the asymptotic expansion involves fractional powers of x. The
advantages of generating G(x) would be immediately apparent
below.

First, in estimating β0, we no longer need to proceed via
(10). Simply, we take the series for the ratio T3(x) =G(x)/F (x)
and construct its diagonal PA. One then has

SN
3 = {[N/N ]T3(x)}x=∞ = �(β0 + 1)

�(β0 + 1 − g)
, (19)

that can be solved for approximate β0 at a given N and g.
Thus, sequences of values for the asymptotic exponent are
obtained at different input g values. Note that an integral
differentiation process is involved in (10) and this reduces the
input information of fj by one unit. No such reduction occurs
if one adheres to (19) with nonintegral g. This is particularly
advantageous.

Second, in determining α0, we proceed as before; however,
F (x) is replaced by G(x). We note that

T4(x) = [G(x)]1/β0 =
[
α0

�(β0 + 1)

�(β0 + 1 − g)

]1/β0

x,

lim x → ∞. (20)

Therefore, at each g value, one can have a sequence

SN
4 = [([N/(N − 1)]T4(x)/x)x=∞]β0

�(β0 + 1 − g)

�(β0 + 1)
. (21)

This sequence should gradually approach α0.
One final point remains, anyway. How should we choose

the right value of g? The simplest possibility is to define some
kind of error and minimize it. The error should be such that, for
a faster converging sequence, it would reduce. Note that, if we

-2 -1 0 1 2
0.00

0.02

0.04

0.06

3

2

1

ΔΔ

g

FIG. 1. Plot of the error � [see Eq. (22)] as a function of the
fractional derivative g in Eq. (19) for the cases of M = 2, 3, and 4,
respectively denoted by the lines 1, 2, and 3. All data refer to K = 50.
A common deep minimum is found for all M .

go up to j = K in (6), the maximum number of diagonal PAs
that we can construct is [L/L] where L = K/2. Therefore, it
is legitimate to define the error by

� = 1

L − 1

L−1∑
N=1

(
[N/N ]

[L/L]
− 1

)2

. (22)

Of course, a few other measures, close to (22) in spirit, may
be constructed. For example, one may use (i) [(N + 1)/
(N + 1)] in place of [L/L] in the parentheses of (22), or
(ii) employ some sequence accelerator like the ε algorithm
or Aitken transform [4,8] and use any one extrapolated value
in place of [L/L], extending the sum in (22) to L terms and
dividing the result by L, instead of (L–1). We have checked
all these variants of the error and their minima; the final
outcomes differ only marginally. Therefore, we adhere to the
simplest choice, (22).

III. RESULTS AND DISCUSSION

Let us first concentrate on β0. Then, sequences SN
1 and

SN
3 are to be studied, i.e., the outcomes of (12) need to be

compared with those of (19). We show in Fig. 1 the nature of
variation of � as a function of g in all three cases of M = 2, 3,
and 4, denoted respectively by lines 1, 2, and 3 in the figure,
with L = 25. One notes a deep minimum around g ≈ 1.6 for
all these cases. Thus, preliminary investigation shows some
promise of the endeavor.

Table I displays results for the M = 2 case. Both the plain
PA results and the FC-assisted ones are shown, the latter being
taken at the g value for which � becomes a minimum at L = 25
[see (22)]. Note that the exact value ( 1

3 ) is approached in a
much better way via (19). This is transparently reflected in the
reduction of � by an order of at least 10. One may, however,
argue that the gradual approach to the true value is lost in the
sequence {SN

3 }, as it is seen to exceed the result sought. To
settle this issue, we show in Table II another set of results
for K = 10 (equivalently, L = 5). Here, one finds that the
minimum in � is achieved at somewhat larger g. At the same
time, the final value is still larger. This observation may lead
us to conclude that the approach to the true result is followed
more closely at higher K , with a concomitant reduction in the
optimum g value.

In Table III, we display such results, viz., {SN
1 } and {SN

3 },
for cases M = 3 and 4, with K = 50. A notable point is
that, in both the cases actual values ( 1

4 and 1
5 , respectively)

are gradually approached from below. While for M = 3, the
FC-assisted scheme performs quite nicely compared to the
parent version, the M = 4 case does not show that much
promise. This is particularly due to the strongest divergence
[see (7)] of the series concerned among all those studied here,
and a clear reflection of it is the extremely poor result of the
parent sequence, as found in Table III.

We summarize all our findings about β0 in Table IV for
the three cases of M with varying K values, viz., K = 10, 30,
and 50. A few points of interest are the following: (i) There
is a significant reduction in � as we switch over to {SN

3 }
from {SN

1 }; (ii) both the absolute percentage errors |ε| and �

(subscript zero now refers to the parent strategy) gradually
decrease with increasing K , though the extent of reduction
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TABLE I. Results of employing the parent scheme [see (12)] and
the FC-assisted scheme [see (19)] for the case of quartic anharmonic
oscillator (M = 2) with K = 50. The error � attains a minimum at
the quoted g value.

[N/N ] [N/N ]
N g = 0.0 g = 1.5386

1 0.176 470 6 0.285 755 8
2 0.231 216 1 0.317 015 4
3 0.257 004 4 0.326 473 5
4 0.271 931 8 0.330 256 6
5 0.281 669 8 0.332 022 9
6 0.288 535 5 0.332 931 4
7 0.293 646 3 0.333 429 1
8 0.297 606 0 0.333 712 9
9 0.300 769 5 0.333 878 4
10 0.303 358 7 0.333 975 4
11 0.305 520 0 0.334 031 5
12 0.307 353 4 0.334 062 9
13 0.308 929 9 0.334 079 3
14 0.310 301 2 0.334 086 7
15 0.311 506 0 0.334 089 1
16 0.312 573 6 0.334 089 4
17 0.313 526 9 0.334 089 6
18 0.314 383 8 0.334 091 4
19 0.315 158 6 0.334 096 6
20 0.315 863 0 0.334 107 1
21 0.316 506 5 0.334 125 8
22 0.317 096 8 0.334 156 9
23 0.317 640 6 0.334 208 1
24 0.318 143 3 0.334 295 2
25 0.318 609 6 0.334 456 0

� 0.015 728 0 0.001 031 5

is larger for smaller M; (iii) a gradual fall-off in g is seen
only for the M = 2 case where sequences {SN

3 } start from a
lower value and finally exceed the actual value at different K;
in all other situations, g virtually remains fixed; (iv) |ε| gets
diminished by almost an order of magnitude at some fixed
K by adopting our prescription, except for the M = 4 case
where the lowering is not that prominent; (v) what we achieve
through (19) by using K = 10 is also much better (error
reduced by about a factor of 2–3) than even the K = 50 case of
the parent strategy (12). This last point is the most striking one.

Our next attempt will be to measure the asymptotic
amplitude. Hence, here we explore how (21) succeeds over

TABLE II. Results same as those of Table I, but with K = 10.
Note the shift in g value.

[N/N ] [N/N ]
N g = 0.0 g = 1.5674

1 0.176 470 6 0.305 069 5
2 0.231 216 1 0.331 567 3
3 0.257 004 4 0.338 322 4
4 0.271 931 8 0.340 397 1
5 0.281 669 8 0.341 021 1

� 0.045 109 8 0.002 987 2

TABLE III. Results of {SN
1 } and the FC-assisted {SN

3 } for the
evaluation of β0 in cases M = 3 and 4, with K = 50. The error �

attains a minimum at the quoted g values for {SN
3 }.

V = x6 V = x8

N [N/N ] [N/N ] [N/N ] [N/N ]
g = 0.0 g = 1.5674 g = 0.0 g = 1.5674

1 0.060 483 9 0.169 578 9 0.020 003 8 0.095 112 1
2 0.084 505 4 0.196 319 8 0.027 156 2 0.110 426 1
3 0.098 188 7 0.208 577 2 0.030 994 8 0.117 642 4
4 0.107 328 5 0.215 732 6 0.033 452 3 0.121 956 1
5 0.114 007 5 0.220 474 6 0.035 189 1 0.124 872 2
6 0.119 177 9 0.223 875 2 0.036 496 6 0.126 998 8
7 0.123 343 7 0.226 448 7 0.037 525 0 0.128 631 3
8 0.126 800 3 0.228 474 0 0.038 360 4 0.129 932 1
9 0.129 733 5 0.230 115 8 0.039 055 8 0.130 998 0
10 0.132 267 1 0.231 478 1 0.039 646 2 0.131 890 9
11 0.134 487 1 0.232 629 9 0.040 155 2 0.132 652 2
12 0.136 455 5 0.233 618 7 0.040 599 9 0.133 310 8
13 0.138 218 1 0.234 478 6 0.040 992 7 0.133 887 4
14 0.139 809 7 0.235 234 5 0.041 342 7 0.134 397 6
15 0.141 257 6 0.235 905 3 0.041 657 3 0.134 852 8
16 0.142 582 9 0.236 505 5 0.041 942 0 0.135 262 3
17 0.143 802 7 0.237 046 2 0.042 201 1 0.135 632 9
18 0.144 931 0 0.237 536 5 0.042 438 3 0.135 970 5
19 0.145 979 2 0.237 983 5 0.042 656 5 0.136 279 5
20 0.146 956 8 0.238 393 1 0.042 858 1 0.136 563 7
21 0.147 871 7 0.238 770 1 0.043 045 0 0.136 826 3
22 0.148 730 7 0.239 118 5 0.043 218 9 0.137 069 8
23 0.149 539 5 0.239 441 6 0.043 381 3 0.137 296 3
24 0.150 303 2 0.239 742 4 0.043 533 4 0.137 507 7
25 0.151 025 9 0.240 023 1 0.043 676 2 0.137 705 6

� 0.041 940 9 0.007 077 8 0.030 003 2 0.008 363 7

(14) in estimating α0. Again, we first examine whether there
exists an optimum g value for which the error � has a minimum
at some fixed M and K . For the sake of exactness, here we
take the right asymptotic exponent [see (8)] as input, though
approximate β0 could be used in the absence of any kind of
scaling relation. Figure 2 shows the variation of � as a function
of g for sequences {SN

4 } in the three cases at K = 50. Unlike

TABLE IV. A comparative survey of the performance level of
{SN

1 } and the FC-assisted {SN
3 } for estimation of β0 in the cases

M = 2, 3, and 4, at varying K . The error �0 refers to (22) with the
parent sequence {SN

1 }. Absolute values of percentage errors (ε) are
also displayed.

V N �0 |ε0| g � β0 |ε|
x4 5 4.51 × 10−2 15.50 1.5674 2.99 × 10−3 0.3410 2.31

15 2.31 × 10−2 6.55 1.5512 1.35 × 10−3 0.3374 1.22
25 1.57 × 10−2 4.42 1.5386 1.03 × 10−3 0.3345 0.34

x6 5 7.75 × 10−2 54.40 1.5674 1.72 × 10−2 0.2205 11.81
15 5.30 × 10−2 43.50 1.5674 9.91 × 10−3 0.2359 5.64
25 4.19 × 10−2 39.59 1.5674 7.08 × 10−3 0.2400 3.99

x8 5 6.37 × 10−2 82.41 1.5674 1.85 × 10−2 0.1249 37.55
15 4.00 × 10−2 79.17 1.5674 1.14 × 10−2 0.1349 32.55
25 3.00 × 10−2 78.16 1.5674 8.36 × 10−3 0.1377 31.15
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FIG. 2. Plot of the error � [see Eq. (22)] as a function of the
fractional derivative g in Eq. (21) for the cases of M = 2, 3, and 4,
respectively denoted by the lines 1, 2, and 3. All data refer to K = 50.
Each M shows its own minimum.

the earlier figure, here we note a rather wider variation in
optimum g; but, in all cases, minima exist within g = 1. This
reveals again the suitability of our prescription.

Table V shows how the parent sequence, obtained via (14),
competes with the FC-assisted one, given by (21), in the three
situations (M = 2, 3, 4) at K = 50. One may remember that the
exact variational values [24] for the three cases, respectively
for M = 2, 3, and 4, are 1.060 36, 1.144 80, and 1.225 82.
However, it is also true that the M = 4 case is the most difficult
one to obtain perturbatively (see, e.g., Weniger et al. [16] and
Fernandez [18]). The gradual difficulty of approaching the
right answers with rise in M is also evident from the table. We
observe a progressively slower approach to the actual values
with increasing M . Thus, the parent sequence for the M = 4
case is farthest from the right answer. However, the FC-adapted
sequence (21), with the same given input information performs
always much better, the more so for smaller M .

A detailed comparative survey of the improvement in going
from (14) to (21) is presented in Table VI. Notable points
here are (i) considerable reduction in � is seen as we switch
over to {SN

4 } from {SN
2 }; (ii) the absolute percentage errors

|ε| gradually decrease with increasing K , though � does not
always reduce, except for M = 2; (iii) a gradual fall-off in
g is seen for any M; (iv) at a given K , |ε| is lowered by
10–40 times for M = 2, 2–5 times for M = 3, and 1.5–2.0

TABLE V. Results of {SN
2 } and the FC-assisted {SN

4 } for the evaluation of α0 in cases M = 2, 3, and 4, with K = 50. The error � attains a
minimum at the quoted g values for {SN

4 }.

V = x4 V = x6 V = x8

N [N/N ] [N/N ] [N/N ] [N/N ] [N/N ] [N/N ]
g = 0.0 g = 0.6408 g = 0.0 g = 0.8145 g = 0.0 g = 0.9320

1 1.310 371 1.091 128 1.654 875 1.138 498 2.010 055 0.889 394
2 1.205 071 1.067 166 1.543 421 1.107 718 1.927 631 0.880 077
3 1.165 281 1.063 308 1.496 376 1.100 366 1.895 134 0.878 748
4 1.144 038 1.062 273 1.468 904 1.097 759 1.877 047 0.878 504
5 1.130 684 1.061 910 1.450 307 1.096 673 1.865 257 0.878 469
6 1.121 445 1.061 756 1.436 605 1.096 193 1.856 839 0.878 469
7 1.114 635 1.061 680 1.425 938 1.095 981 1.850 460 0.878 462
8 1.109 385 1.061 635 1.417 309 1.095 896 1.845 422 0.878 442
9 1.105 201 1.061 603 1.410 128 1.095 869 1.841 318 0.878 408
10 1.101 778 1.061 577 1.404 019 1.095 865 1.837 893 0.878 363
11 1.098 920 1.061 551 1.398 733 1.095 864 1.834 983 0.878 310
12 1.096 493 1.061 521 1.394 093 1.095 858 1.832 470 0.878 251
13 1.094 403 1.061 484 1.389 975 1.095 838 1.830 272 0.878 187
14 1.092 582 1.061 436 1.386 282 1.095 803 1.828 331 0.878 121
15 1.090 979 1.061 375 1.382 945 1.095 749 1.826 599 0.878 053
16 1.089 555 1.061 298 1.379 906 1.095 675 1.825 043 0.877 984
17 1.088 282 1.061 210 1.377 123 1.095 580 1.823 634 0.877 914
18 1.087 135 1.061 118 1.374 560 1.095 462 1.822 351 0.877 845
19 1.086 095 1.061 032 1.372 187 1.095 322 1.821 177 0.877 775
20 1.085 148 1.060 962 1.369 982 1.095 159 1.820 097 0.877 707
21 1.084 282 1.060 912 1.367 925 1.094 971 1.819 099 0.877 639
22 1.083 485 1.060 879 1.365 998 1.094 758 1.818 174 0.877 572
23 1.082 750 1.060 860 1.364 189 1.094 519 1.817 313 0.877 506
24 1.082 069 1.060 850 1.362 485 1.094 252 1.816 508 0.877 441
25 1.081 436 1.060 847 1.360 875 1.093 956 1.815 756 0.877 378

� 0.003 087 0.000 036 0.004 069 0.000 080 0.000 873 0.000 009
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TABLE VI. A comparative survey of the performance level of
{SN

2 } and the FC-assisted {SN
4 } for estimation of α0 in the cases

M = 2, 3, and 4, at varying K . The error �0 refers to (22) with the
parent sequence {SN

2 }. Absolute values of percentage errors (ε) are
also displayed.

V N �0 |ε0| g � α0 |ε|
x4 5 7.66 × 10−3 6.63 0.6623 8.53 × 10−5 1.0542 0.58

15 4.40 × 10−3 2.89 0.6418 5.61 × 10−5 1.0612 0.08
25 3.53 × 10−3 1.99 0.6408 3.60 × 10−5 1.0608 0.05

x6 5 6.30 × 10−3 26.69 0.8550 5.88 × 10−5 1.0161 11.24
15 4.93 × 10−3 20.80 0.8244 9.00 × 10−5 1.0785 5.79
25 4.07 × 10−3 18.87 0.8145 7.96 × 10−5 1.0940 4.44

x8 5 1.86 × 10−3 52.16 0.9447 8.00 × 10−6 0.7847 35.98
15 1.18 × 10−3 49.01 0.9351 1.08 × 10−5 0.8568 30.11
25 8.73 × 10−4 48.13 0.9320 8.99 × 10−6 0.8774 28.42

times for M = 4; (v) what we achieve through {SN
4 } by using

K = 10 performs, however, much better than even the K = 50
case of the parent {SN

2 }, but the reduction in error is most
pronounced for M = 2. This last point, being common to

both the asymptotic parameters, deserves premier attention. In
effect, it justifies the worth of the whole endeavor.

IV. CONCLUDING REMARKS

To summarize, one may note that, although the convergence
behavior of the auxiliary series (16), obtained via FC, virtually
remains the same as that of the parent series, at least for large
j , one can significantly improve the information about the
asymptotic exponent and amplitude by employing a given
number of terms of its Taylor expansion through the use of
properly constructed PAs. The gain is sometimes spectacular.
We have noticed that the error often reduces by an order of
magnitude at a given K . More striking is that, what the standard
procedure can offer with K = 50 is bettered in the modified
FC-assisted scheme merely with K = 10. This last statement
is true even for the M = 4 case, well known for its notoriously
divergent character. Here lies the final success of the strategy,
apart from providing another domain of applicability of FC.
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