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Event-driven Langevin simulations of hard spheres
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The blossoming of interest in colloids and nanoparticles has given renewed impulse to the study of hard-body
systems. In particular, hard spheres have become a real test system for theories and experiments. It is therefore
necessary to study the complex dynamics of such systems in presence of a solvent; disregarding hydrodynamic
interactions, the simplest model is the Langevin equation. Unfortunately, standard algorithms for the numerical
integration of the Langevin equation require that interactions are slowly varying during an integration time step.
This is not the case for hard-body systems, where there is no clear-cut distinction between the correlation time
of the noise and the time scale of the interactions. Starting first from a splitting of the Fokker-Plank operator
associated with the Langevin dynamics, and then from an approximation of the two-body Green’s function, we
introduce and test two algorithms for the simulation of the Langevin dynamics of hard spheres.
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I. INTRODUCTION

Hard spheres (HS) are a reference system for structural and
dynamical theories of fluids [1,2], but idealized: the infinitely
steep potential is essentially a way of capturing the effects
of steric interactions. On the atomic or the molecular scale,
two-body interactions are mostly modeled by Lennard-Jones
or Coulomb potentials; experiments on colloids shift the length
scales of interest up to roughly 1 to 1000 nm where objects
can behave as hard bodies and are still small enough to
exhibit thermal or Brownian motion in a solvent. Dynamical
light scattering [3,4] has already provided a rich collection
of data for such systems, encouraging a considerable effort
in understanding the dynamics; the possibility of following
single particle trajectories via confocal microscopy of latex
particle [5] has allowed a direct view on an experimental
realization of HS systems and their dynamics [6,7].

The simplest model of a suspension of neutral particles
is to consider a system of HS in an ideal solvent with no
hydrodynamic interactions (HI); real suspensions are often
described in terms of their deviations from such ideal systems.
This is the most interesting (and the most studied) model for
theoreticians, and many results have been derived: the two-
body case (and hence the low density case) has been solved
exactly [8,9] in the overdamped limit, while at moderate and
high packing fractions various Enskog-type [10,11] or mode
coupling theories [12,13] have been applied to understand
the dynamics. While hydrodynamic interactions are well
understood at low particle densities, much less is known at
high densities, and theories often proceed by disregarding them
[14]. As an example, theories regarding glass transition, such
as mode coupling theory for Brownian hard spheres [13,15,16]
or Brownian hard discs in shear flow [17], often neglect HI
effects.

Even disregarding HI, such theories are not exact and
to discriminate among them it is often necessary to resort
to computer simulations. Non-HI simulations therefore have
their place in testing such theories and circumvent the huge
computational effort of the classical HI codes [18–21]. In
order to validate non-HI theories for HS, it is necessary to use

computer simulations, as only a qualitative agreement is to be
expected among non-HI theories and data for real suspension.
Standard simulation methods for Brownian dynamics such as
the well-known Ermak-McCammon [22] require continuous
potentials; to circumvent such a problem, several algorithms
have been introduced with various degrees of justification
[23–26] for the overdamped dynamics. Only recently, it has
been recognized that in the case of hard interactions such
simulations are better performed by event-driven (ED) codes
[27–29].

For the overdamped dynamics, an entire class of event-
driven algorithms based on the exact solution of first passage
times and on the knowledge of two-body Green’s function
has been developed [30–33] (see [34] for a general review
of the applications of ED dynamics to particle simulations);
such algorithms are mostly designed to follow the reaction
kinetics among particles, but are better tailored to work for
systems at low packing fraction. As an example, to introduce
hard-body collisions it would be necessary to implement
numerically the solution of [8,9]; such a solution is not suitable
for the fast numerical implementations necessary to simulate
dense systems, as it consists of an infinite series of spherical
harmonics in the Laplace domain.

In the case of the full Langevin dynamics, no solutions
for the two-body Green’s function are available, not even in
one dimension. We introduce two new ED algorithms that
go beyond the overdamped approximation and allow for the
simulation of the full Brownian dynamics of HS; in doing so,
by solving the problem of a Langevin particle in presence of an
elastic wall, we introduce the solution of the one-dimensional
two-body problem for the Langevin equation.

II. METHODS

We consider a system of N HS governed by the Langevin
equation

∂tvi = −γ vi + ai + ξi ,
(1)

∂t r i = vi
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for the positions ri and the velocities vi ; here, γ is the friction
constant, ai = −m−1∂rU the acceleration, m is the mass
of the HS, U is the potential energy, and mξ i are the
zero-mean random forces due to the solvent. We assume
that such random forces are delta correlated and satisfy the
fluctuation-dissipation theorem

〈ξ i(x,t) ⊗ ξ j (x′,t ′)〉 = γ
2kBT

m
δ(x − x′)δ(t − t ′)δij 1. (2)

In the case of continuous interactions, it is possible to
define stochastic Taylor expansions [35]; correspondingly,
integration schemes of the kth order with errors of order
(�t)k in the time step �t can be introduced [36]. In the
case of hard-body interactions, all the standard machinery of
stochastic calculus breaks down due to the singular nature of
the interaction potential and new methods must be developed.

We consider the Fokker-Plank equation associated to the
stochastic differential equation (SDE) (1) (Kramers’ equation
[37])

∂tW = LKW, (3)

where W (r,v,t) is the probability distribution function (PDF)
for the positions r = {ri} and the velocities v = {vi} of the
particles, v2

th = kBT /m relates to the temperature, and

LK = γ
(
∂v · v + v2

th∂
2
v

) − (v · ∂r + a · ∂v) (4)

is the Kramer operator. Integrating the SDE (1) for a finite time
step �t corresponds to extracting a configuration {rt+�t ,vt+�t }
according to the probability eLK�tδ(x − xt ,v − vt ).

III. SPLIT BROWNIAN DYNAMICS

To obtain a numerical approximation, a powerful approach
is to split the evolution operator eLK�t in a product eLK�t ≈∏

ie
aiLi�t of exactly integrable operators Li [38], ensuring that

the decomposition is positive (i.e., all ai > 0) [39]. Therefore,
to each splitting corresponds an algorithm in which in a single
time step �t , the operators eaiLi�t are applied in sequence.
We first choose to split LK into the reversible (or streaming)
operator Lrev = −(v · ∂r + a · ∂v) and the irreversible (or col-
lision) operator Lirr = γ (∂v · v + v2

th∂
2
v ) [40]; we indicate the

corresponding algorithm as split Brownian dynamics (SBD).
The operator Lrev is the Liouvillian associated to the

HamiltonianH = m v · v/2 + U . In the case of step potentials,
the associated reversible equation of motion can be integrated
via event-driven molecular dynamics (EDMD) [41] with a
precision limited only by the numerical round-off errors;
therefore, the propagator eLrev�t can be implemented with
extreme accuracy.

The operator Lirr corresponds to the interaction with the
bath; the associated SDE ∂tv = −γ v + ξ can be exactly
integrated giving an explicit formula for the evolution vt+�t =
eLirr�tvt :

vt+�t
i,α = e−γ�tvt

i,α +
√

v2
th(1 − e−2γ�t )�, (5)

where � is a unitary Gaussian random variable and α ∈
{x,y,z}; such a solution can be obtained either by straight-
forward Ito integration of the Langevin equation for the free
particle or via more elegant operatorial methods [42].

The algorithm for the single SBD time step eLrev�teLirr�t

consists therefore in an EDMD simulation [41] of length
�t followed by a thermalization of the velocities according
to Eq. (5). We notice that the error is at most quadratic
[as can be checked via Taylor expansion eLrev�teLirr�t =
eLK�t + O(�t2)] and regards only in the dynamics; in fact,
SBD is equivalent [upon identifying the angle α mixing
reversible and irreversible evolution with cos(α) = e−γ (t−t ′)] to
the generalized hybrid Monte Carlo [43] and therefore explores
the canonical ensemble as long as the propagation steps eLrev�t ,
eLirr�t can be exactly implemented (as in our case). Notice that
Eq. (5) tell us that performing SBD simulations is equivalent
to thermalize periodically ED molecular dynamics of hard
spheres with a Grest-Kremer thermostat [44]; in the limit
of γ�t � 1, Eq. (5) reduces to the well known Andersen
thermostat [45].

It is therefore of interest to give some physical bounds on
the magnitude of the feasible time step �t . First, we notice
that for �t → ∞, the dynamics reduces to MD simulations
where velocities are extracted each �t from a Maxwellian;
therefore, if the time step is much bigger than the average
interparticle collision time, results of classical MD are to be
expected. Accordingly, we find that for big �t the algorithm
overestimates the diffusion coefficient (Fig. 1); this is to be
expected as the mean-free path (in absence of collisions) of
a particle is of order vth�t instead of γ −1vth

√
�t . Second,

we notice that the damping γ introduces a natural time scale
τ = γ −1 that can be thought to measure the frequency of the
interaction with the thermal bath. As the SBD introduces an
interaction with the bath at each time step, it is natural to
require �t < τ . Accordingly, we find that SBD overestimates
diffusion coefficients for �t � γ −1 (Fig. 1); in particular,

FIG. 1. (Color online) Effect of the damping coefficient γ on
the size of the simulation step �t (all quantities in reduced units).
The diffusion coefficient D from simulations is plotted versus the
time-step size �t for various γ ’s. As expected, the system approaches
the MD value for diffusion regardless of γ for �t → ∞. The “true”
value of D is obtained for �t → 0. We observe at small �t’s a plateau
in the D vs �t plot for �t � γ −1, signaling that the “true” value of D

is approached. Results are presented for packing fraction φ = 0.30;
a completely analogous behavior is found at a low packing fraction
φ = 0.10 and a high packing fraction φ = 0.45.
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for �t � γ −1, SBD recovers the Newtonian results and
the simulation becomes equivalent to an NVT molecular
dynamics interaction with an Andersen thermostat [45]. Thus,
SBD is not well indicated for simulations in the overdamped
limit γ /m → ∞ and it is therefore necessary to develop an
alternative approach for the simulation of systems with high
damping.

IV. APPROXIMATE GREEN’S FUNCTION DYNAMICS

The best code for overdamped BD is the event-driven
first-passage kinetic Monte Carlo algorithm [31–33], which
does not require any pairwise or small enough time-step
approximations; nevertheless, it has no straightforward ex-
tension to the full Langevin case. We will rely instead on the
algorithm of [29], that also allows us to simulate Eq. (1) in the
overdamped limit by using ED codes. The algorithm relies on
considering time steps �t small enough so that mostly binary
collisions are relevant, i.e., the average displacement should
be less than the average interparticle separation. Moreover,
average displacement should be smaller than the HS radii
in order to map the interaction of two nearby HS in the
problem of a random walk near a reflective wall. Under
such approximations, the true two-body stochastic dynamics
for overdamped Brownian HS can be implemented by an
algorithm of [29] in which each step consists in predicting
the displacements �x of the HS via the free propagator,
introducing fictive velocities vf = �x/�t , and performing
an EDMD with such fictive velocities during t and t + �t . We
extend such approach to the general Brownian case.

First, we need to predict the positions of the HS after a time
step �t according to their free propagation, i.e., the solution
of Eq. (1) with no interaction (a = 0):

v0(t + �t) = v0(t) + �v0 = v0(t) + �v0 + �v0
R,

(6)
r0(t + �t) = r0(t) + �r0 = r0(t) + �r0 + �r0

R.

The particle displacements contain both systematic
parts �v0 = (e−γ t − 1) v0(t), �r0 = γ −1(1 − e−γ t ) v0(t) and
stochastic displacements. The stochastic displacements �v0

R ,
�r0

R are zero-mean correlated Gaussian variables with
variances 〈‖ �v0

R ‖2〉 = m−1kBT (1 − e−2γ t ), 〈‖ �r0
R ‖2〉 =

γ −1m−1kBT [2t − γ −1(3 + 4e−γ t + e−2γ t )] and cross corre-
lation 〈�r0

R�v0
R〉 = γ −1m−1kBT (1 − e−γ t )2 [46].

If we consider a time step such that the average displace-
ment is less than the average interparticle separation, we can
consider only the corrections due to two-body interactions.
In the limit of small �t , a couple of HS will interact
only when they start from nearby positions. In particular, if
γ −1vth

√
�t  σ , i.e., the average free displacement is much

smaller than the diameter σ of the HS, the dynamics of two par-
ticles A and B can be approximated as the Langevin dynamics
of a point particle at a distance (rA − rB)(1 − σ/‖rA − rB‖)
from a flat wall. It is possible to solve such a problem with
a straightforward generalization of the image method applied
in [29]. In fact, the solution given by the free particle Green’s
function plus an image particle with a reflected velocity beyond
the reflective wall (Fig. 2) correctly satisfies the zero-current
boundary condition n̂ · j|wall = 0, where n̂ is the normal to the

FIG. 2. (Color online) A two-body problem for hard spheres can
be mapped into the problem of a point particle interacting with a larger
sphere. When particles are very near, the problem further simplifies
to the interaction of a Langevin particle with a reflective flat wall,
the solution of which can be derived by applying the image method
to the Langevin equation. In fact, the Green’s function must be zero
inside the wall and must satisfy the no-flux boundary conditions
at the wall. Combining the free Green’s function of the particle in
its initial position and the free Green’s function of its image (with
the normal-to-the-wall component of the initial velocity reflected)
satisfies both Kramers’ equations and reflective boundary conditions
giving the correct solution.

wall and j(r,t) = ∫
vW (r,v,t)dv is the probability current for

the position.
Such a solution can be implemented exactly by predict-

ing the new positions and velocities r0(t + �t), v0(t + �t)
according to Eq. (6), defining fictive velocities vf = [r0(t +
�t) − r0(t)]/�t and performing an EDMD simulation with
such fictive velocities during �t ; if a collision happens, the
component of the relative velocity normal to the contact
point must be reflected for both the fictive vf and the
predicted velocities v0(t + �t). We indicate such algorithm
as the approximate Green’s function dynamics (AGD). In
the overdamped limit, the prediction of the velocities and
positions decorrelates and the algorithm correctly reduces to
the overdamped case of [29]. The core of the algorithm is the
collision among two particles i and j during a time step �t

and can be implemented as follows:
(1) Extract the free displacements �r0

i , �r0
j and the putative

final velocities v0
i , v0

j according to Eq. (6).

(2) Define the fictive velocities vf

i = �r0
i /�t , vf

j =
�r0

j /�t .
(3) Calculate the fictive collision time tc ∈ [0,�t], and the

normal σ̂ ∗
ij between the two spheres at contact at time tc.

(4) Calculate the fictive post-collision velocities vf ∗
i =

vf

i − 2(σ̂ ∗
ij · vf

ij )σ̂ ∗
ij and vf ∗

j = vf

j + 2(σ̂ ∗
ij · vf

ij )σ̂ ∗
ij with vf

ij =
vf

i − vf

j .

(5) Calculate the final positions ri(t + �t) = ri(t) + vf

i ·
tc + vf ∗

i · (�t − tc) and rj (t + �t) = rj (t) + vf

j · tc + vf ∗
j ·

(�t − tc).
(6) Calculate the final velocities vi(t + �t) = v0

i − 2(σ̂ ∗
ij ·

v0
ij )σ̂ ∗

ij and vj (t + �t) = v0
j + 2(σ̂ ∗

ij · v0
ij )σ̂ ∗

ij with v0
ij = v0

i −
v0

j .
As for the SBD algorithm, it can be proven that the AGD

scheme respects detailed balance and ergodicity and therefore
explores the correct ensemble for HS; hence, errors are again
only in dynamic quantities. At difference with SBD, we have
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no analytic estimate for the error; nevertheless, we expect that
the the mean-free path in absence of collisions γ −1vth

√
�t

must be smaller than the radius of the HS in order to satisfy
the flat-wall approximation, and must be smaller than the
average interparticle distance in order to reduce the frequency
of multiple collision (i.e., the fact that a single particle suffers
more than a collision during �t); in fact, the algorithms do not
account for effects higher than two-body collisions and hence
multiple collisions introduce further errors in the evaluation of
dynamical quantities.

In order to check that the behavior of AGD is driven just
by geometrical considerations, we have simulated HS systems
at different γ and φ varying the time step �t in the range
[10−2,100] (reduced units). At difference with SBD where

FIG. 3. (Color online) Effects of packing fraction φ (upper panel)
and of the damping coefficient γ (lower panel) on the time step �t

for the AGD algorithm. All quantities in reduced units; thick lines are
just a guide for the eye. Diffusion D is calculated averaging over 10
independent trajectories for 2000 particle systems; simulations are
long at least 10 times the structural correlation time. In the upper
panel, results are shown for φ = 0.10,0.30,0.45 at fixed damping
γ = 10. In the lower panel, results are shown for γ = 1,10,100 at
fixed packing fraction φ = 0.30. Notice that the estimated diffusion
coefficient D has a small relative variation in the wide range of
dampings γ ’s and packing fractions φ’s analyzed. As a rule of thumb,
to estimate D with an accuracy much smaller than 1% time step of
order �t ∼ 0.1 is already enough.

0.01 0.1 1

Δt
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0.1
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Splitted Brownian Dynamics

Approximate Green’s Function

FIG. 4. (Color online) Comparison of the convergence of the
measured diffusion coefficient D for the two algorithms considered in
the papers. The figure shows results for damping γ = 10 at packing
fraction φ = 0.30 at varying time steps �t ; within the numerical
accuracy (size of the symbols is of the order of the error), both
algorithms converge to the same value for �t → 0. An analogous
behavior is observed for φ = 0.10,0.45 and γ = 1,100.

diffusion can vary even by a order of magnitude in such a
�t range, the values of D measured from AGD vary a few
percent over the range and long simulations are necessary to
have enough statistics to detect the behavior of D that would
otherwise look flat. In Fig. 3, we show that the measured
diffusion coefficient D versus the AGD simulation time step
displays a plateau (i.e., fluctuations become much smaller than
1%) already for �t � 0.1 regardless of γ and φ.

To better compare the two algorithms, we show in Fig. 4
the behavior of the measured diffusion coefficient D with
respect to the time step �t for φ = 0.30, γ = 0.10. In the limit
�t → 0, SBD becomes exact and the measured D tends to the
theoretical D apart from the intrinsic numerical truncation
errors; Fig. 4 shows how AGD approaches the same value
with smaller errors at larger time steps. The same qualitative
behavior is found at high and low density (φ = 0.10,0.45) and
high and low damping (γ = 1,100).

V. CONCLUSIONS

Hard spheres, and in general hard-body systems in suspen-
sion, have become a realistic model due to the developments
of experimental techniques for the investigation of colloidal
systems and nanoparticles, yet the dynamics of such systems
is hard to simulate via the standard Brownian dynamics
algorithms. In fact, classical continuous-time algorithms fail
due to instantaneous character of the interactions; we have
shown instead how it is possible to simulate the full Langevin
dynamics of hard spheres.

First, we have shown how the simplest splitting of the
stochastic evolution operator (a technique often referred to as
“Trotterization” from Trotter’s seminal work [47]) allows us to
write an algorithm [the split Brownian dynamics (SBD)]. The
SBD algorithm becomes inefficient of high viscosities, but the
operator-splitting technique, by separating the deterministic
motion from the interaction with the noise, could easily
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take account for the interaction with external fields or with
the presence of fluxes (such as shear) in the surrounding
fluid. In fact, event-driven molecular dynamics algorithms can
take account both for constant fields (a simple modification
of the collision time predictor is required) and for shear
(via Lees-Edwards boundary conditions) [41]. Notice that
for small time steps, one could also simulate particles in
varying fields as long as they can be considered constant
during �t .

Second, we have shown how by considering the two-body
dynamics of Brownian hard spheres it is possible to develop
an algorithm [the approximate Green’s function dynamics
(AGD)] that overcomes such a problem and works equally
well for a wide range of packing fractions and viscosities. To
develop the AGD algorithm, we have solved the problem of
the Langevin dynamics ∂tv = −γ v + ξ of a point particle in
presence of a reflective wall by extending the classical image
method solution for the overdamped Brownian dynamics
∂tx = η of a point particle in presence of a reflective wall
(here, ξ , η are noises). The AGD algorithm is event driven

and considers fictive collisions between hard spheres. While
it should possible to take into account the polydispersity of
a system by considering also effective masses in the fictive
collisions as hinted in [29], including shear or external fields
in the AGD algorithm looks more complicated as it would
require the solution of the particle-reflective wall problem with
external fields or shear [48,49].

Both SBD and AGD simulations explore the canonical
ensemble for hard spheres and therefore reproduce the correct
equilibrium thermodynamics. They belong to the class of
asynchronous event-driven particle algorithms [50] and can
be easily implemented by adapting existing codes for ED
dynamics [41] or Brownian dynamics [51] of hard spheres.
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