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Coarse-grained lattice Monte Carlo simulations with continuous interaction potentials
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A coarse-grained lattice Metropolis Monte Carlo (CG-MMC) method is presented for simulating fluid systems
described by standard molecular force fields. First, a thermodynamically consistent coarse-grained interaction
potential is obtained numerically and automatically from a continuous force field such as Lennard-Jones. The
coarse-grained potential then is used to drive CG-MMC simulations of vapor-liquid equilibrium in Lennard-Jones,
square-well, and simple point charge water systems. The CG-MMC predicts vapor-liquid phase envelopes, as well
as the particle density distributions in both the liquid and vapor phases, in excellent agreement with full-resolution
Monte Carlo simulations, at a fraction of the computational cost.
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I. INTRODUCTION

While full-resolution, discrete-particle simulation methods
such as standard Metropolis Monte Carlo or molecular
dynamics are becoming increasingly powerful as a result of
more available computational resources, generally they remain
limited to nanoscale lengths and times. As a result, accurate,
simple, and broadly applicable coarse-graining (CG) methods
are increasingly sought to expand the range of nonequilibrium
phenomena that can be probed with atomic and/or molecu-
lar simulations. Most generally, coarse-graining refers to a
transformation in which degrees of freedom are eliminated,
increasing computational efficiency while sacrificing some
information. A popular example of coarse-graining is the
united atom representation, in which groups of atoms are
combined into single particles that obey a new, coarse-grained
potential function [1]. The aim then is to generate a coarse-
grained interparticle potential that embeds the enthalpic and
entropic contributions of the discarded degrees of freedom,
and also to ensure that the dynamical fluctuations of interest
are preserved [2,3]. Such approaches have been used to study a
broad range of materials including polymers [1,4], proteins [3],
and ionic liquids [5].

A somewhat different approach for degree-of-freedom
reduction is to map the problem onto a fixed lattice, starting
with block-spin renormalization group theory [6]; here, we
refer to this type of transformation as spatial coarse-graining
as opposed to the topological coarse-graining described
above. In spatial coarse-graining of polymeric systems, for
example, chains are placed on fixed grids and allowed to
evolve subject to discretized moves; one example is the bond
fluctuation method [7]. Recently, spatial coarse-graining has
been applied extensively to Metropolis and kinetic Monte
Carlo simulations of Ising-type systems in which the aim is to
transform one (high-resolution) lattice problem onto a lower-
resolution lattice by grouping together lattice sites into coarse
“cells.” Notable examples include the work of Katsoulakis,
Vlachos and co-workers [8–10], and Ismail et al. [11,12].
A key element of these methods is the closure rule, which
dictates how processes on the fine-grid lattice are averaged
to generate consistent processes on the coarse-cell grid. This
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may be accomplished using analytical approximations [8,13]
or numerical averaging [12,14,15].

Here, we extend spatial coarse-graining to a more general
situation in which a continuous system of particles, subject to
an arbitrary interaction potential, is mapped onto a rigid lattice
of variable scale that can then be evolved with Metropolis
Monte Carlo using an appropriate coarse-grained potential.
Most significantly, we seek a coarse-grained potential that is
thermodynamically consistent with the microscopic potential,
i.e., that the entropy associated with the missing degrees
of freedom is properly embedded into the coarse-grained
potential. This latter issue has not been addressed in prior
spatial coarse-graining approaches [16–18], which, while
successful for simple interaction models, have not been tested
for realistic potentials under near-equilibrium conditions.

II. COARSE-GRAINING METHODOLOGY

Consider a three-dimensional system of N particles within
a cubic simulation cell of length L subject to periodic bound-
ary conditions and evolving within the canonical ensemble
(constant NVT). Within the coarse-grained representation, the
overall domain is discretized into m3cubic coarse cells, each
with length Lcell = L/m and volume Vcell = L3

cell. Each coarse
cell can contain multiple particles, which are assumed to
always exist in local equilibrium [8]. The coarse-graining
transformation is derived by first considering the system-wide
canonical partition function

Q(N,V,T ) = 1

�3NN !

∫
drN exp

[
−U (rN )

kBT

]
, (1)

where U (rN ) is a specified interaction potential function.
Rewriting the partition function in terms of subintegrals over
coarse cells, whereby the N particles in the system are
distributed over the M(=m3) coarse cells, gives

Q(N,V,T ) = 1

�3NN !

∑
k

∫
drn1 exp

[
−U (rN )

kBT

]
· · ·

×
∫

drnM exp

[
−U (rN )

kBT

]
, (2)

where n ≡ (n1,n2, . . . ,nM ) is an M-dimensional vector that
defines the cell occupancy within the domain, and the sum
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index k runs over all possible ways of distributing the N

particles over the M coarse cells. Each of the subintegrals
in Eq. (2) is related to a local Helmholtz free energy so that

Q(N,V,T ) = 1

�3NN !

∑
k

exp

(
− A1

kBT

)
· · · exp

(
− AM

kBT

)
,

(3)

where Ai ≡ −kBT ln
∫

drni exp[−U (rN )/kBT ]. Finally,
defining a coarse-grained system-wide free energy, ACG(n) =∑M

i=1 Ai , leads to

Q(N,V,T ) = 1

�3NN !

∑
k

exp

(
−ACG(n)

kBT

)
. (4)

Equation (4) suggests that a valid coarse-grained Metropo-
lis Monte Carlo (CG-MMC) simulation proceeds identically
to one on the original continuous system, except that the move
acceptance criterion would be based on �ACG(n) rather than
�E(rN ), i.e.,

P acc
CG (1 → 2) = min

[
exp

(
−�ACG

kBT

)
,1

]
, (5)

where P acc
CG is the acceptance probability for moving from state

1 to state 2.
To compute �ACG(n) for use in a CG-MMC simulation,

a coarse-grained potential function must be calculated from
the original interparticle potential. Generally, the free energy
change within a coarse cell due to the addition of one particle is
a function of the local number density ρ, the local surrounding
density distribution ρenv, and temperature T , i.e.,

�A = �Aid (ρ,T ) + �Aex (ρ,ρenv,T ) , (6)

where the “CG” subscript has been dropped for clarity and
the free energy has been separated into ideal and excess
contributions. Note that this free energy difference corresponds
to the chemical potential in the limit of a large particle number.

The ideal contribution to the free energy difference on a
coarse cell is given analytically as

�Aid (ρ,T ) = kBT ln �3 + kBT ln ρ, (7)

where ρ = n/Vcell. The excess portion must be computed by
ensemble averaging under the influence of the interaction
potential. Here, we choose to employ the standard Widom
particle insertion method [19] (although any other method for
free energy estimation also can be applied):

�Aex(n → n + 1) = −kBT ln
∫

drn+1

〈
exp

(
− �U

kBT

)〉
n

.

(8)

As indicated in Eq. (6), the cell excess chemical potential
is expected to depend on the surrounding particle density,
and possibly the spatial distribution of that density. In order
to simplify the closure approximation, we assume here that
the spatial distribution within the surrounding environment is
relatively unimportant and only consider the average density
in neighboring cells.

The configuration of the Widom insertion simulations
for computing the excess free energy changes is described
schematically in Fig. 1. A central coarse cell is embedded

envL

cellL

FIG. 1. (Color online) Cell setup for computing coarse-grained
interaction potential. An inner cell (solid line) is surrounded by an
“environment” shell subject to periodic boundary conditions (dashed
line). Particles are not allowed to move between the two regions
during free energy sampling but do interact across the partition.

within a shell domain representing the surrounding envi-
ronment. Only the environment shell’s outer boundaries are
subject to periodic boundary conditions—the inner boundary
between the center cell and environment is impermeable to
mass (thus constraining the cell density) but does allow cross-
boundary interactions. Test particle insertions are performed
only within the center cell although the corresponding potential
energy change is computed over all particles. About 100 test
insertions are performed every 2500 MMC moves (depending
on the particle count). The procedure is repeated for a range
of center cell and environment densities and temperatures; the
final result is a multidimensional surface of excess free energy
differences that, along with the ideal contribution [Eq. (7)],
defines the coarse-grained potential.

III. RESULTS AND DISCUSSION

A. Coarse-grained potential calculations

Three interatomic potential examples are used to gen-
erate coarse-grained interaction functions. The first is the
Lennard-Jones (LJ) potential for argon (σ = 3.405 Å, ε/kB =
119.8 K):

U (rij ) =
{

4ε
[(

σ
rij

)12 − (
σ
rij

)6]
, rij � rc

0, rij > rc.
(9)

The second is a square-well (SW) potential with two
different parameterizations,

U (rij ) =

⎧⎪⎨
⎪⎩

∞, rij < σ

−ε, σ � rij < λσ

0, rij > λσ,

(10)

with rc = 2.5σ and λ = 1.5 or 1.25. Finally, we consider
the more general case of water as modeled by a spherically
truncated version of the simple point charge (SPC) potential
[20,21] which demonstrates the applicability of CG-MMC to
molecular systems. The SPC potential is given by

U (rij ) =
{

4ε
[(

σ
rij

)12 − (
σ
rij

)6] + qiqj e
2

rij
, rij � rc

0, rij > rc,
(11)
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FIG. 2. (Color online) Excess chemical potential computed for LJ
potential at T ∗ ≡ 0.8 as a function of cell and environment reduced
number densities, ρ∗

cell = ρcellσ
3 and ρ∗

env = ρenvσ
3, respectively.

Coarse-cell length (Lcell) is 3σ and environment shell thickness (Lenv)
is 1.5σ . Symbols: Widom insertion. Color field contours: polynomial
interpolation.

with rc = 7.75 Å, σ = 3.1655 Å, ε = 0.155 42 kcal/mol,
qH = 0.41, and qO = −0.82 electrons. The LJ portion in
Eq. (11) applies only between oxygen atoms. While spherical
truncation leads to various deficiencies in the description of
water, the vapor-liquid (VLE) curve predicted by this potential,
which will be used to validate the CG-MMC method, is
in good agreement with results obtained using full Ewald
summation [21]. We also note that although Ewald summation
is not compatible with the simulation cell structure shown
in Fig. 1(a)), other methods exist for including long-range
electrostatic interactions into a truncated potential, namely,
the reaction field [22] and Wolf summation [23] methods. The
latter, in particular, has recently been shown to offer advantages
over other methods because of its computational efficiency and
applicability to inhomogeneous and finite systems.

An example excess chemical potential field for Lcell = 3σ

and Lenv = 1.5σ is shown in Fig. 2 for the LJ potential at
a reduced temperature (T ∗ = kBT /ε) of 0.8. The value of
Lenv was chosen based on a compromise between convergence
with respect to the environment shell thickness and computa-
tional expediency. Each of the spherical symbols in Fig. 2
corresponds to a single Widom insertion simulation; the color
field surface is a third-order (per dimension) polynomial fit
to the data. While the overall computational effort associated
with the precalculation of the coarse-grained potential can be
significant, it is trivially distributable over an arbitrary number
of processing units.

B. Coarse-grained vapor-liquid equilibrium

The vapor-liquid equilibrium phase diagram was used as a
test bed for evaluating the thermodynamic consistency of the
CG-MMC framework for all three potentials discussed in the
previous section. The system size for each case consisted of
103 cells, each initialized with the same number of particles
to provide a prescribed overall reduced number density,
ρ∗ = 0.3. CG-MMC simulation proceeded by first choosing a
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FIG. 3. (Color online) VLE phase envelopes for (a) Lennard-
Jones argon, (b) square-well potentials (top: λ = 1.5; bottom: λ =
1.25). Red circles: CG-MMC with Lcell = 3σ ; green diamonds: CG-
MMC with Lcell = 4σ ; blue squares: full-resolution GEMC.

random cell and random neighboring destination cell and then
computing the system free energy difference for a particle
move using the data in Fig. 2 (for LJ, and similar plots—not
shown—for the other potentials) and Eq. (7). Equation (5)
was then used to determine move acceptance. Equilibration
of the CG system was assessed by monitoring the total
coarse-grained free energy. Picking cells randomly to execute
particle moves satisfies detailed balance and thus generates
the correct equilibrium distribution. Unlike in full-resolution
MMC, detailed balance in CG-MMC is enforced by move
rejections in the direction of increasing chemical potential.
However, the CG-MMC “dynamics” as the system evolves
towards equilibrium are not completely consistent with full-
resolution Metropolis Monte Carlo within this scheme. A
more detailed discussion of nonequilibrium CG-MMC will
be provided in a future publication.

Shown in Figs. 3(a) and 3(b) are T − ρ VLE envelopes
obtained for the LJ and SW potentials using CG-MMC with
cells of size Lcell = 3σ . Also shown in Fig. 3(a) are LJ results
using larger cells (Lcell = 4σ ). The CG-MMC liquid and vapor
phase densities at each temperature were obtained from the
equilibrium density distributions by locating the two peaks
in the distribution that correspond to the liquid and vapor,
respectively (see Fig. 4). For each case, the corresponding VLE
envelope predicted by full-resolution simulation based on the
Gibbs-ensemble Monte Carlo (GEMC) method also is shown
[24,25]. The agreement in each case is generally excellent,
with some deviation observed near the critical points. The LJ
prediction also appears to be largely insensitive to cell size [see
Fig. 3(a)], which suggests that the deviations near the critical
point are not due primarily to the small cell size. In fact, the
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FIG. 4. (Color online) VLE phase envelopes for SPC water.
Red circles: CG-MMC with Lcell = 3σ ; blue squares: full-resolution
GEMC; gray nablas: experimental data (see text).

main source of error likely is the statistical uncertainty in the
excess chemical potential values and the resulting interpolated
surface (Fig. 2). Generally, near the critical point the excess
chemical potential surface becomes quite flat, and the scatter
in the individual data points there leads to greater uncertainty
in the fitted polynomial function. Moreover, the polynomial
fitting itself leads to some systematic error, particularly when
small changes in curvature lead to large shifts in density. A
more quantitative error analysis will require improvements in
excess chemical potential calculation; e.g., using bias methods
[24].

The VLE curve for SPC water is shown in Fig. 4 along
with literature values taken from GEMC simulations and
experiments for the continuous system [21]. The agreement
is also generally excellent, with similar deviations once
again found near the critical point. The calculation of the
coarse-grained potential for molecular systems proceeds in
essentially the same manner as described above for point
particles, except that some additional care must be exercised
at the wall separating the inner cell and the environment
shell. Restriction of entire molecules to either the inner cell or
environment leads to an artificial configurational penalty at the
wall. In order to remove this artifact, the wall was modified to
allow free exchange of the hydrogen atoms, while restricting
the (point) position of the oxygen atoms to either side of the
wall. While this choice of point constraint is convenient for the
specific case of water, a more general (but equivalent) choice
is to simply use the molecular center of mass. In this way, it
is anticipated that essentially any type of molecular entity can
be readily considered within the CG-MMC framework.

Snapshots of example equilibrium configurations at three
different overall system densities of the LJ system are
shown for CG-MMC and full-resolution MMC simulations in
Fig. 5. The coarse-grained simulations show very clearly the
liquid-vapor phase boundaries, and also explicitly highlight
the density fluctuations within each phase. The CG-MMC
simulations reach equilibrium in far fewer Monte Carlo move
attempts per particle than the full-resolution simulations,
primarily because the (successful) moves in the coarse-grained
system are much larger. Moreover, the computational cost
associated with each move, on a per particle basis, is lower
in the CG-MMC case. Overall, for Lcell = 3σ , the CG-MMC
simulation reaches equilibrium about 106 times faster than a
similarly sized full-resolution system.

FIG. 5. (Color online) Top row: Equilibrium snapshots of LJ
CG-MMC simulation configurations at (a) ρ∗ = 0.15, (b) ρ∗ = 0.3,
and (c) ρ∗ = 0.45. System size is 180 × 180 × 180σ 3, (Lcell = 3σ ).
Cell color denotes particle number that ranges from zero [dark blue
(dark gray) in uniform phase] to 24 [red (dark specks) in light phase].
Bottom row (d)–(f): Corresponding full-resolution MMC simulation
snapshots for a system size of 36 × 36 × 36σ 3.

C. Density distributions in coarse-grained simulations

The VLE curve is a highly coarse-grained measure in that it
does not provide a view into microscopic density fluctuations.
To further analyze the fidelity of the CG-MMC approach, we
compare the equilibrium probability distribution of particle
number density predicted by LJ CG-MMC simulations and
that obtained from post facto coarse-graining of full-resolution
MMC configurations at T ∗ = 0.8. For the latter, ∼250 equi-
librated (phase separated) configurations were captured and
gridded into coarse-cell lattices which were then used to collect
density distribution data. Each configuration was gridded
100 times using a randomly selected origin to improve the
density distribution statistics. As shown in Fig. 6, the density
distributions for Lcell = 3σ cells obtained from CG-MMC
and post facto coarse-grained full-resolution configurations
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FIG. 6. (Color online) Normalized LJ density distribution func-
tions obtained at T ∗ = 0.8 and ρ∗ = 0.3. Red circles: CG-MMC; blue
squares: post facto coarse-grained full-resolution MMC. Coarse-cell
size for both cases is Lcell = 3σ . Inset shows broadening of density
distribution in a homogeneous liquid with decreasing cell size at
T ∗ = 1.1 and ρ∗ = 0.6. Data is shown for Lcell = 3σ (dashed line),
4σ (dotted line), and 6σ (solid line). Distributions from CG-MMC,
post facto coarse-grained full-resolution MMC, and Gaussian fits are
indistinguishable.
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are in excellent quantitative agreement for the LJ potential,
demonstrating that spatial fluctuations are fully captured at the
finest resolvable scale within the CG-MMC simulations. The
one area of discrepancy between the two distributions appears
at intermediate densities (0.2 � ρ∗ � 0.5). The source of this
discrepancy is the tendency for the CG-MMC atoms to align
with the lattice, particularly at the liquid-vapor boundaries.
In other words, the CG-MMC simulation will tend to group
particles along the interface so that cells are either mostly full
or mostly empty in order to minimize the free energy. This
natural alignment can be regarded as unavoidable “pixelation”
that is inherent to a grid-based representation.

Finally, the influence of coarse-cell size on the density
distribution is shown in the inset of Fig. 6 for LJ simulations of
a homogeneous liquid phase (T ∗ = 1.1 and ρ∗ = 0.6). As the
coarse-cell size increases the distribution becomes more tightly
centered about the mean density value, indicating, as expected,
that the magnitude of density fluctuations within the single
liquid phase becomes smaller. Gaussian fits to the density
distributions demonstrate that the variance of the distribution
decreases as 1/Vcell.

IV. CONCLUSIONS

In summary, a spatial coarse-graining method was pre-
sented in which an arbitrary interparticle potential is

numerically coarse-grained to enable MMC simulations of
fluid systems on a rigid lattice. The coarse-grained potential
naturally includes the degrees of freedom, and the correspond-
ing entropy, that are lost when mapping a fully resolved,
continuous-space problem onto a coarse rigid lattice. The
procedure thus ensures that the free energy landscape in the
coarse-grained system is fully consistent with the underlying
fully resolved energy landscape. The resulting coarse-grained
representation is able to capture the full VLE characteristics
of both atomic and molecular systems, a stringent test of
the thermodynamic consistency of the approach, and should
greatly extend the length and “time” scales accessible to Monte
Carlo simulations of nonequilibrium phenomena such as
spinodal decomposition. The numerical averaging procedure,
which does not require any specific physical insight, appears to
be applicable to any (short-ranged) potential and only needs to
be performed once before the MMC simulation(s). Although
the CG potential precomputation can be expensive, it can be
trivially farmed out to an arbitrary number of compute nodes,
limiting the bottleneck associated with this calculation.
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