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Tsuyoshi Ueta1,* and Yuu Miyagawa2

1Physics Laboratory, The Jikei University School of Medicine, 8-3-1 Kokuryo-cho, Chofu, Tokyo, 182-8570, Japan
2Graduate School of Science and Technology, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan

(Received 23 November 2011; published 15 August 2012)

The finite-element method (FEM) has already been extended to analyze transport properties of electron
waves of two-dimensional electron systems in magnetic fields. Although many researchers have created new
formulations or improvements to this method, few have analyzed how this method is applied to realistic systems.
The present paper suggests that conventional formulations of the FEM do not give accurate results for large
systems or for strong magnetic fields; in addition, it suggests that the selected gauge significantly influences
the numerical results. Furthermore, this paper proposes a conceptually different formulation of the FEM that
solves the poor convergence problem. This formulation is simple: matrix elements are multiplied by the Peierls
phase in the absence of a magnetic field. To show the advantages of this formulation, numerical examples are
presented.
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I. INTRODUCTION

In a two-dimensional electron system (2DES) formed in
an insulator-semiconductor heterointerface, ballistic transport
occurs, in which the mean free path exceeds the size of the
device. To design a device that uses such an electron system,
it is necessary to exactly analyze the behavior of electron
waves within a system of complicated shape. Various approx-
imations are applicable for diffusive electronic transport when
electrons are repeatedly scattered within a system; however, no
approximation is applicable for ballistic transport. Moreover,
because a magnetic field is generally employed as one of the
external control parameters in experiments, it is necessary to
analyze the behavior of electron waves in a magnetic field
[1].

The behavior of electron waves in a magnetic field has so
far been analyzed using methods such as the mode-matching
[2], finite-difference (FDM), tight-binding [1], finite-element
(FEM) [3,4] and boundary-element (BEM) methods [4,5]. The
BEM is most convenient for analyzing waves within a system
having a complicated shape; therefore, it has been extended to
include magnetic fields and has been applied to many problems
[6,7].

It is, however, difficult to use the BEM to analyze cases with
continuously varying potentials, spin-orbit interactions, or the
Rashba effect [8]. The FEM can be used to analyze such cases.
Furthermore, the FEM has been extended to include electron
waves in a magnetic field by many researchers [9,10], and it is
continuously being improved [11].

Many studies have formulated the FEM for electron waves
in a magnetic field and investigated its simple applications.
However, few studies have used this method to analyze
physical phenomena [9] and characteristics of realistic devices.

When electron wave functions in a magnetic field are
calculated using the FEM, the numerical solution depends on
the gauge of the vector potential employed and the convergence
is poor. These are the major reasons for the limited use of the
FEM for such a purpose.
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The present paper determines the origin of the gauge
dependence and poor convergence, and it creates a different
formulation of the FEM. Numerical results for the problem
solved in Ref. [11] are shown as an example of the application
of the FEM formulation proposed here, and the succinctness
and superiority of this formulation are also elucidated.

II. USUAL FORMULATION OF THE FEM
AND ITS PROBLEMS

We treat electrons within a semiconductor in terms of the
effective mass model. When a vector potential A(r) is applied
to an electron system, the wave function ψ of an electron wave
generally obeys the Schrödinger equation

1

2m
{(−ih̄∇ − q A)2 + V (r)}ψ = Eψ, (1)

where the quantities q, m, V (r), and E represent the charge,
effective mass, potential, and energy of an electron, respec-
tively.

In a 2DES, electrons are confined in the thick direction; thus
the momentum of an electron in this direction is quantized.
The depth of a 2DES is so small that the quantum state in the
direction perpendicular to the 2DES is in the ground state.
Therefore, it is sufficient if we account for the motion of
electrons in just two dimensions.

Assuming a 2DES in the xy plane and a uniform magnetic
field of strength B applied along the positive direction of
the z axis, the vector potential can be chosen as A = B( −
(1 − s)y,sx,0). Here s is an arbitrary real number.

In the usual formulation, Eq. (1) in two dimensions is
expanded as

− h̄2

2m
∇2ψ + i

qBh̄

m

{
−(1 − s)y

∂ψ

∂x
+ sx

∂ψ

∂y

}

+ q2B2

2m
{(1 − s)2y2 + s2x2}ψ = {E − V (r)}ψ, (2)

and the second and third terms on the left-hand side are
treated as potentials introduced by the magnetic field. That
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is, the potential is formulated in the same manner as an
electromagnetic wave with a spatially varying wave number.

To define the terms referred to in the present formulation, we
briefly summarize the usual formulation below. The domain to
be analyzed is divided into smaller fractions (finite elements)
of triangular or quadrangular shapes, and the coordinates of
the j th vertex (node) are set to rj . In this study, we assume
triangular elements.

A continuous real function of r , which is 1 only at the
j th node and 0 at all other nodes, linearly connects the nodes
surrounding the j th node. It satisfies the condition

Nj (rk) =
{

1, j = k,

0, j �= k,
(3)

and it is chosen as the shape (interpolation) function Nj (r) for
the j th node.

A wave function within the whole domain is expanded in
terms of the shape function Nj (r) as follows:

ψ(r) =
∑

j

Nj (r)ψj , (4)

and it is employed as a trial function. From the variation of the
functional

L = ψ† (K − M) ψ − ψ† Q (5)

with respect to ψ†, we obtain simultaneous equations about
{ψi} as

(K − M) ψ = Q, (6)

where ψ is defined as a column vector of which the ith
component is the wave function ψi at the ith node.

The matrices K and M, and the vector Q are respectively
defined as follows:

Kjk =
∫

vjk

(
∂Nj

∂x

∂Nk

∂x
+ ∂Nj

∂y

∂Nk

∂y

)
d r, (7)

Mjk = E

∫
vjk

NjNkd r

− i
qBh̄

m

∑
l

{
−(1 − s)yk

∫
vjk

NjNl

∂Nk

∂x
d r

+ sxk

∫
vjk

NjNl

∂Nk

∂y
d r

}

−
∑

l

[
V (r l) + q2B2

2m

{
(1 − s)2y2

l + s2x2
l

}]

×
∫

vjk

NjNkNld r, (8)

Qj =
∑

k

q(rk)
∫

SN

NjNkdS. (9)

Here the subscript vjk shows that the integration is performed
over the element that has the j th and kth nodes as two vertices.∫

SN
is the integration over the boundary on which the value of

the normal derivative of the wave function is given, and q(r)
is the normal derivative given on a portion of the boundary.

If we employ this formulation, the last term of matrix M
may become very large; thus, this term may quickly vary if

xO
d 2 d 2

4d

4d

Emitter Collecter

FIG. 1. Geometry of a cross-shaped waveguide.

the system size is large or if the magnetic field is strong, as
already indicated for the simple FDM. The matrix M depends
on the gauge of the vector potential employed, i.e., on s.
We have improved the formulation of the FEM such that
the determined physical quantities (observables) are relatively
independent of the gauge [11]. In Ref. [11], the eigenvalue
problem of electron waves in a rectangular quantum cavity of
width 2d and length d, in which the wave function was set to
zero on the boundary, this problem was numerically analyzed
for four different gauges of the vector potential. The authors
presented the three lowest eigenvalues of the dimensionless
wave number defined by kd = √

2mEd/h̄ for four different
gauges (Table I of Ref. [11]). Furthermore, they stated that
“the values of the energy levels converge at almost the same
values independent of the vector potentials as the number of
the quadratic triangular elements increases, so we confirm the
invariance in the gauge transformation.” However, the third
decimal place of the eigen wave numbers depends on the
gauge, even for 1250 elements.

As an added example of computation that clearly shows
gauge dependence [12], we consider the cross-junction struc-
ture shown in Fig. 1. It is a so-called rectangular quantum
dot of width d and vertical length 8d, to which an emitter
and a collector of width d are attached to the left and right,
respectively.

The boundary conditions on the emitter and the collector
orifices are determined according to Sec. II B of Ref. [9].
Linear shape functions, namely, Lagrange functions for linear
interpolation, are employed. For computational convenience,
however, it is assumed that the emitter and collector portions
are not subjected to a magnetic field, and the vector potentials
within these portions are considered to be continuous with that
within the region in which the magnetic field is applied.

Next, we set the vector potential within the cavity as A =
(−By,0,0). When the fundamental transverse mode wave of
kd = 10 is injected from the emitter, the transmissivity T

and reflectivity R are calculated as functions of the number
of nodes Ns for the magnetic field B̃ ≡ qBd2/h̄ = 0–5. The
probability conservation law T + R = 1 must be satisfied in
transport problems; therefore, this law is often employed as
an indicator of calculation accuracy. In the computed results,

026707-2



LOCAL-GAUGE FINITE-ELEMENT METHOD FOR . . . PHYSICAL REVIEW E 86, 026707 (2012)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2000  4000  6000  8000  10000  12000

T

Ns

=5

=0

=2

FIG. 2. Dependence of transmissivity T through the structure
shown in Fig. 1 on the number of nodes Ns for B̃ = 0, 2, and 5.
The fundamental transverse mode is injected from the emitter and the
wave number is set as Kd = 10. Linear elements are employed.

the calculation error |T + R − 1| is less than 0.02% for Ns �
2000.

The distance between the nearest neighbor nodes for
Ns = 3000 is approximately 1/8 the wavelength of Kd = 10;
thus the convergence for B̃ = 0 is reasonable. As shown in
Fig. 2, however, the transmissivity T for B̃ = 0 asymptotically
converges to a definite value for Ns � 3000, whereas T for
larger values of B̃ hardly converges even when Ns is greater
than 6000.

To investigate the reason for poor convergence in the
presence of a magnetic field, the probability density |ψ |2 and
phase Im (ln ψ) of the wave function for B̃ = 20 are shown
in Fig. 3. In this case, the ratio of the cyclotron radius rc to
the width d of the emitter is rc/d = Kd/B̃ = 0.5; therefore,
classical electron orbits predict that the probability density is
expected to spread over the entire system. However, Fig. 3(a)
shows that the probability density does not diffuse to the upper
and lower ends of the system. The probability density does
not vary quickly even for large |y|, whereas the phase varies
quickly as |y| increases. Such poor convergence in the presence
of a magnetic field is attributed to not having enough finite
elements to express the wave function accurately, because its
phase varies quickly for large |y|.

Figures 4 and 5 show the numerical results for the vector
potentials A = 1

2B(−y,x,0) and A = B(0,x,0), respectively.
For these cases, we employed quadratic finite elements. In the

)b()a(

0

4

0

2π

FIG. 3. Density plots of the probability density (a) and phase
(b) of a wave function for kd = 10, B̃ = 20, and A = (−By,0,0),
which is a case of insufficient convergence. Quadratic elements are
employed.

)b()a(

FIG. 4. Density plots of the probability density (a) and phase
(b) for kd = 10, B̃ = 20, and A = 1

2 B(−y,x,0), which is also a case
of insufficient convergence. Quadratic elements are employed.

case of A = B(0,x,0), both the transmissivity and electron
probability density agree with those calculated by the BEM
with sufficient calculation accuracy. In Fig. 5(b), even if |y| is
large, the phase does not significantly oscillate. These results
show that the rapid variation of the phase far from the origin of
the vector potential results in poor convergence. Indeed, when
the gauge of the vector potential is transformed from A =
(0,Bx,0) to A = (−By,0,0), the wave function is multiplied
by a phase factor exp(−iqBxy/h̄).

In that context, it is observed that A = (−By,0,0) is the
most improper gauge to analyze this system. Because the phase
factor does not appear in |ψ |2, we cannot find such oscillation
only by checking the probability density.

When a system extends in a certain direction, poor conver-
gence can be avoided by choosing a suitable gauge. However,
when a system is isotropic, such as a circle, and is large,
poor convergence cannot be avoided using a global gauge
transformation. Therefore, in the present paper, a conceptual
formulation of the FEM that solves the poor convergence issue
is proposed, and numerical examples are presented to show its
validity, efficiency, and advantages.

)b()a(

FIG. 5. Density plots of the probability density (a) and phase
(b) for kd = 10, B̃ = 20, and A = (0,Bx,0). Quadratic elements are
employed.
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III. FORMULATION OF THE FEM USING THE
MAGNETIC TRANSLATION OPERATOR

Let us consider the Schrödinger equation (1) near the origin
for the symmetric gauge A = 1

2B(−y,x,0). A wave function
near the origin can be approximated by that in the absence of
a magnetic field, because A ∼ 0 near the origin.

Here, we define the magnetic translation operator T (R) [13]
as

T (R) ≡ exp

(
i

h̄
R · ( p + q A)

)
. (10)

The operator T (R) operates on an arbitrary function f (r) as
follows:

T (R)f (r) = e−i(q/2h̄)B·(R×r)f (r + R), (11)

such that it satisfies the following relations:

T (R)V (r)φ(r) = e−i(q/2h̄)B·(R×r)V (r + R)φ(r + R)

= V (r + R)T (R)φ(r) (12)

and

[( p − q A)2,T (R)] = 0. (13)

Here [ , ] is the commutator defined by [A,B] ≡ AB − BA,
and these relations are valid only for the symmetric gauge [13].

Applying the operator T (R) to both sides of Eq. (1) near
the origin, we obtain

T (R)

[
1

2m
( p − q A)2 + V (r)

]
ψ(r)

=
[

1

2m
( p − q A)2 + V (r + R)

]
T (R)ψ(r)

= ET (R)ψ(r). (14)

Here the wave function

T (R)ψ(r) = e−i(q/2h̄)B·(R×r)ψ(r + R) (15)

is the one near the point r = −R for the vector potential
A = 1

2 B × (r + R), which vanishes at r = −R. The wave
function ψ(r + R) is the one near the point r = −R for zero
vector potential near the point r = −R.

Because ψjNj (r) satisfactorily approximates the wave
function ψ(r − rj ) near the point rj , the wave function for
the entire system can be expressed as follows:

ψ(r) =
∑

j

ψjT (rj )N0(r) =
∑

j

ψj e
i(q/2h̄)B·(rj ×r)Nj (r).

(16)

By applying the gauge-invariant kinetic energy operator to this
wave function, we obtain

1

2m
[ p − q A(r)]2ψ(r)

= 1

2m
[ p − q A(r)]2

∑
j

ψj e
i(q/2h̄)B·(rj ×r)Nj (r)

=
∑

j

ψj e
i(q/2h̄)B·(rj ×r) 1

2m
{ p − q[A(r) − A(rj )]}2Nj (r)

≈
∑

j

ψj e
i(q/2h̄)B·(rj ×r) 1

2m
p2Nj (r). (17)

Thus, if we expand the wave function as Eq. (16), the
approximate vector potential need not be considered. The
phase factor attached to the shape function transforms the
local gauge to the original global gauge: A = 1

2 B × r .
Omitting the term of the Neumann boundary condition

for simplicity, we obtain the functional for the calculus of
variations as follows:

L =
∫

V

[
1

2m
{( p − q A)ψ}∗ · {( p − q A)ψ}

−ψ∗[E − V (r)]ψ

]
d r.

The first term = 1

2m

∑
j,k

ψ∗
j

∫
V
{ei(q/2h̄)B·(rj ×r) pNj (r)}∗

·{ei(q/2h̄)B·(rk×r) pNk(r)}d rψk

= − h̄2

2m

∑
j,k

ψ∗
j

∫
vjk

ei(q/2h̄)B·{(rk−rj )×r}

× [∇Nj (r)] · [∇Nk(r)]d rψk.

The second term = E
∑
j,k

ψ∗
j

∫
V
{ei(q/2h̄)B·(rj ×r)Nj (r)}∗

× {ei(q/2h̄)B·(rk×r)Nk(r)}d rψk

= E
∑
j,k

ψ∗
j

∫
vjk

ei(q/2h̄)B·{(rk−rj )×r}

×Nj (r)Nk(r)d rψk.

The third term =
∑
j,k

ψ∗
j

∫
V
{ei(q/2h̄)B·(rj ×r)Nj (r)}∗

×
(∑

l

VlNl(r)

)

×{ei(q/2h̄)B·(rk×r)Nk(r)}d rψk

=
∑
j,k,l

Vlψ
∗
j

∫
vjk

ei(q/2h̄)B·{(rk−rj )×r}

×Nj (r)Nl(r)Nk(r)d rψk.

Here
∫

vjk
d r is the volume integration in the triangular finite

element that has two vertices at rj and rk . By introducing a
new integration variable ξ defined by r = rk + ξ , the matrix
element Kjk can be written as follows:

Kjk ≡ − h̄2

2m

∫
vjk

ei(q/2h̄)B·{(rk−rj )×(rk+ξ )}

× [∇Nj (ξ )] · [∇Nk(ξ )]dξ

= ei(q/2h̄)B·(rk×rj )

(
− h̄2

2m

)

×
∫

vjk

ei(q/2h̄)B·{(rk−rj )×ξ}[∇Nj (ξ )] · [∇Nk(ξ )]dξ

≈ ei(q/2h̄)B·(rk×rj )

(
− h̄2

2m

)∫
vjk

(∇Nj ) · (∇Nk)dξ

= ei(q/2h̄)B·(rk×rj )K0
jk, (18)

where K0
jk is the corresponding matrix element in the absence

of a magnetic field. During the modification from the second
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xO

d dd 2

d 2

FIG. 6. Rectangular quantum cavity investigated in Ref. [11].

line to the third line, the phase factor in the integration
is approximated as unity, assuming that the magnetic flux
through any finite element is sufficiently less than the flux
quantum h/q.

Similarly, we obtain

Mjk ≡
∫

vjk

ei(q/2h̄)B·{(rk−rj )×r}
{

ENj (r)Nk(r)

−Nj (r)

(∑
l

V (rk)Nl(r)

)
Nk(r)

}
d r

≈ ei(q/2h̄)B·(rk×rj )M0
jk. (19)

Note that the FEM for electron waves in a magnetic field can
be approximately formulated only by multiplying the so-called
Peierls phase factor with the matrices in the absence of a
magnetic field. This is analogous to the tight-binding approxi-
mation (equivalent to the finite-difference approximation [1])
of the Schrödinger equation for electron waves in a magnetic
field, which was derived by Peierls [14].

For A = 1
2B(−y,x,0), the phase factor in Eqs. (18) and

(19) is written as

ei(q/2h̄)B·(rk×rj ) = exp

[
i
q

h̄

∫ rj

rk

↗ A(r) · d r
]

, (20)

in which the arrow on the integral symbol indicates that
integration is performed along the straight path from the point

N

2N

FIG. 7. (Color online) Finite elements: mesh in the rectangular
quantum cavity for N = 10. The number of nodes (shown by dots) is
given by (N − 1) × (2N − 1).

rk to rj [6]. The expression on the right-hand side is valid
for arbitrary gauges satisfying rotA = (0,0,B); therefore, the
following equations are realized:

Kjk = exp

[
i
q

h̄

∫ rj

rk

↗ A(r) · d r
]

K0
jk, (21)

Mjk = exp

[
i
q

h̄

∫ rj

rk

↗ A(r) · d r
]

M0
jk. (22)

IV. NUMERICAL RESULTS

Here examples of numerical computations that use Eqs. (21)
and (22) are shown. The numerical implementation is accord-
ing to that specified in Refs. [9] and [12]. Again, linear finite
elements are employed here.

A. Eigenvalue problem

To confirm the approximation accuracy and the gauge
invariance of the solutions for the proposed method, we
first analyze the eigenvalue problem within the rectangular
quantum cavity shown in Fig. 6, which was analyzed in
Ref. [11].

We discretize the system into triangular finite elements in
order to divide a side of length d into N segments, as shown in
Fig. 7. The system is analyzed for three types of gauge: A =
B(−y,x,0)/2 [gauge 1, (d) of Ref. [11]], B(−y,0,0) [gauge
2, (a)], and B(0,x,0) [gauge 3, (c)].

TABLE I. Variations in the three lowest eigen wave numbers kd for three gauges, where N is the number of divisions of the side of width
d . The results determined by the tight-binding model are also shown.

Tight-binding model
Gauge N = 20 N = 90 Ref. [11] Table I (N = 20)

k0d

1 5.079220411952475 5.069960104361848 5.070 5.01039
2 5.079220411952162 5.069960104429902 5.070 5.01039
3 5.079220411952306 5.069960104324939 5.071 5.01039

k1d

1 5.2358151469960035 5.223904279178192 5.224 5.09256
2 5.235815146996086 5.223904279230286 5.223 5.09256
3 5.235815146996177 5.223904279183718 5.228 5.09256

k2d

1 5.5357147392872115 5.519976451342494 5.520 5.27081
2 5.535714739287768 5.519976451347637 5.520 5.27081
3 5.535714739287288 5.51997645137805 5.528 5.27081
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FIG. 8. (Color online) Variation of the three lowest eigen wave
numbers kd0, kd1, and kd2 as a function of the number of nodes Ns .
Results computed with the tight-binding model are also shown. The
three horizontal lines indicate the eigenvalues of Ref. [11] for “gauge
3.”

For N = 20 (1600 elements), the values of the three
lowest eigen wave numbers (k0d, k1d, and k2d) are shown in
Table I with the results for the case of 1250 elements from
Ref. [11]. Table I shows that the numerical results for any
gauge determined by this method agree with 13 decimal places
in calculation accuracy. This is also true for other numbers of
divisions N and for the tight-binding model.

Note that the eigenvalues for N = 20 do not sufficiently
converge; however, those for N = 90 converge.

The Ns dependence of the three lowest eigen wave numbers
for “gauge 1” is shown in Fig. 8, in which the number of nodes
Ns is given by Ns = (N − 1) × (2N − 1). The three horizontal
lines in the figure indicate the three lowest eigenvalues in
Ref. [11] for “gauge 3.” Each of them immediately and
monotonically converges as the number of nodes increases.

In Fig. 8, the results computed using the tight-binding
model are also plotted. This figure clearly shows that the
proposed FEM converges much faster than the tight-binding
model.

Figure 9 is a density plot of the probability density of kd =
10.0247 (the ninth eigen wave number) for B̃ = 100 (i.e., the

d 0 d
d 2

0

d 2

FIG. 9. (Color online) Density plot of the probability density of
the ninth energy level (kd = 10.0247) for B̃ = 100 and N = 30.

(a)

d 2 d 2
4d

0

4d
(b)

d 2 d 2
4d

0

4d

FIG. 10. (Color online) Density plots of the probability density
for the two eigenstates kd = 10.0159 (a) and kd = 9.950 98 (b)
within an 8d × d rectangular cavity for B̃ = 20 and N = 30.

same value as that in Fig. 4 of Ref. [11]), as an example
of a high-magnetic-field case. Despite using the approximate
formulas given in Eqs. (21) and (22), which are valid for weak
magnetic fields, the probability density in Fig. 9 agrees well
with that in Fig. 4 of Ref. [11], even for a high magnetic field.

Next, we analyze a system with strong anisotropy and solve
its energy eigenvalue problem. This system is a rectangular
quantum cavity of length 8d and of width d, and it is the same
as that in Fig. 1 except for the two waveguides. Even in this
case, the numerical results are gauge invariant to the limit of
computational accuracy.

Then, the case of gauge A = (−By,0,0), which is the
most unfavorable in Fig. 3, is considered. For B̃ = 20, the
probability densities of the two energy eigenstates of kd =
10.0159 and 9.950 98 nearest to kd = 10 employed in the
transport problem in Sec. II, are shown in Fig. 10. The number
of divisions N is set to N = 30.

 0
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FIG. 11. Dependence of transmissivity T on the number of nodes
Ns for B̃ = 2, 5, and 20. The fundamental mode is injected from the
emitter, and the wave number is set to Kd = 10.
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(a) (b)

FIG. 12. (Color online) Density plots of the probability density
for B̃ = 5 determined by the present method (a) and by the BEM [6,7]
(b) for the system shown in Fig. 1. The fundamental mode is injected
from the emitter, and the wave number is set to kd = 10.

The probability density is distributed over the quantum
cavity, and it does not give a result similar to that in Fig. 3.
It turns out that the state originating from the eigenstate of
kd = 9.950 98 is excited in Fig. 5.

B. Electron-transport problems

The original motivation for this paper was the transport-
related problem shown in Sec. II. Now, we consider the system
shown in Fig. 1.

The dependence of the transmissivity T on the number
of nodes Ns for B̃ = 2, 5, and 20 is shown in Fig. 11.
Linear elements are employed, and the gauge is set to
A = (−By,0,0). For Ns � 4000, all the curves monotonically
converge, although the curve of B̃ = 5 in Fig. 2 does not show
a smooth behavior up to Ns = 12 000.

The density plot of the probability density for B̃ = 5 is
shown in Fig. 12(a), and the corresponding numerical result
determined by the BEM [7] is shown in Fig. 12(b). Although
the transmissivity does not sufficiently converge in the case
of B̃ = 5, the pattern of probability density determined by
the proposed method agrees well with that determined by the
BEM.

V. CONCLUSIONS

Considering the commutation relation between the mag-
netic translation operator and the gauge-invariant kinetic
energy operator associated with the vector potential, the shape
function is locally gauge transformed, so that the vector
potential vanishes at the node where the shape function has
a peak. The wave function has been expanded in terms of
shape functions.

This expanded wave function has been used to formulate
the FEM to account for the effect of a magnetic field only by
inserting a phase factor. The method developed in this study
has been applied to sample eigenvalue problems, and it has
been shown that the method gives identical solutions within
the calculation accuracy for any gauge.

It has been confirmed that the proposed method is practical,
useful, and enables us to easily introduce a magnetic field to
electron-transport problems. Moreover, for transport-related
problems, the proposed method has the advantage that we
can choose a gauge that eases the treatment of wave guides
regardless of the shape of the system.

The approximation used in Eqs. (18) and (19) is the same as
that in Peierls’ tight-binding model in a magnetic field [1,14];
therefore, it is natural to compare the proposed method and
the tight-binding model. Numerical results for the eigenvalue
problem in Fig. 6 have been compared in Table I and Fig. 8.
Assuming the same number of nodes, it has been confirmed
that the calculation error of the FEM is less than ∼1/3 of that
of the tight-binding model (or the FDM); this error is the same
as that in the absence of a magnetic field. The FEM could be
used to analyze electron waves in magnetic fields in various
research fields from now on.

Convergence in the presence of a finite magnetic field is
slower than that in its absence as shown by the curves in
Fig. 8 and the long tail of transmissivity in Fig. 11. This slow
convergence is attributed to the approximation of setting the
phase factor in the volume integration over a finite element to
unity. The approximation accuracy systematically improves as
the sizes of the finite elements decrease; however, when the
approximation seriously affects the calculation accuracy, we
may expand the phase factor in terms of a shape function like
a potential; e.g.,

ei(q/2h̄)B·{(rk−rj )×ξ} =
∑

l

ei(q/2h̄)B·{(rk−rj )×r l}Nl(ξ ),

and perform volume integration over a finite element. In this
case, the matrices K and M are given as follows:

Kjk = ei(q/2h̄)B·(rk×rj )

(
− h̄2

2m

)∑
l

ei(q/2h̄)B·{(rk−rj )×r l}

×
∫

vjk

[∇Nj (ξ )] · [∇Nk(ξ )]Nl(ξ )dξ , (23)

Mjk = ei(q/2h̄)B·(rk×rj )
∑

n

ei(q/2h̄)B·{(rk−rj )×rn}

×
∫

vjk

{
ENj (r)Nk(r)Nn(r)

−
∑

l

V (rk)Nj (r)Nl(r)Nk(r)Nn(r)

}
d r. (24)

Furthermore, we may employ the usual formulation of the
FEM in magnetic fields, i.e., Eqs. (7)–(9) within a finite
element for a local gauge. This is an exact formulation of
the FEM.
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