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The Lagrange-mesh method is a powerful method to solve eigenequations written in configuration space. It is
very easy to implement and very accurate. Using a Gauss quadrature rule, the method requires only the evaluation
of the potential at some mesh points. The eigenfunctions are expanded in terms of regularized Lagrange functions
which vanish at all mesh points except one. It is shown that this method can be adapted to solve eigenequations
written in momentum space, keeping the convenience and the accuracy of the original technique. In particular, the
kinetic operator is a diagonal matrix. Observables and wave functions in both configuration space and momentum
space can also be easily computed with good accuracy using only eigenfunctions computed in the momentum
space. The method is tested with Gaussian and Yukawa potentials, requiring, respectively, a small and a large
mesh to reach convergence. Corresponding wave functions in both spaces are compared with each other using
the Fourier transform.
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I. INTRODUCTION

There are few three-dimensional problems in quantum
mechanics which allow a complete analytical solution for any
value of the orbital angular momentum (the S-wave channel
is very similar to a simpler one-dimensional equation) [1]. So
numerous methods have been developed to solve numerically
with high accuracy the eigenvalue equations associated with
various systems. Among these techniques, the Lagrange-mesh
method (LMM), which is especially easy to implement,
can produce very accurate results. First created to compute
eigenvalues and eigenfunctions of a two-body Schrödinger
equation [2–7], it has been extended to treat semirelativistic
Hamiltonians [8–11]. The trial eigenstates are developed in a
basis of particular functions, the Lagrange functions, which
vanish at all mesh points except one. Once the potential is
known in the configuration space, its matrix elements are
simply the potential values at the mesh points, if they are
computed with an associated Gauss quadrature. At first sight,
this method could look like a discrete variational method,
but this is absolutely not the case since the eigenfunctions
can be computed at any position. Because of the use of
the Gauss quadrature scheme, the method is not variational,
but the results are to a large extent independent of the sole
nonlinear parameter of the method fixing the physical scale of
the system. Generally, a good accuracy can be reached with a
small mesh [12].

At the beginning, the LMM was developed in the config-
uration space. Recently, it has been shown that the Fourier
transform of the eigenfunctions computed in the configuration
space can easily be obtained with good accuracy in the physical
domain of the momentum space [13]. Moreover, observables
in this space can easily be computed with good accuracy using
only matrix elements and eigenfunctions in the configuration
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space. But, for some particular problems, it can be preferable
to work in the momentum space. This is the case when the
potential presents discontinuities in the configuration space
[14] or when the potential is given in the momentum space. In
this last case, if it is possible to use the LMM by computing first
the Fourier transform of the potential, we will show here that
the LMM can be adapted to solve the eigenequations directly
in momentum space. Observables in both configuration and
momentum spaces can also be computed with good accuracy
using only eigenfunctions computed in momentum space.
Moreover, we will show that the new LMM can provide
these types of data very efficiently and very easily, using
again the fundamental properties of the Lagrange functions.
Let us note that the method presented here relies on a mesh
of points built with the zeros of a Laguerre polynomial,
but a general procedure for deriving other Lagrange meshes
related to orthogonal or nonorthogonal bases has also been
developed [15].

Several methods exist to solve eigenequations in mo-
mentum space. For instance, iterative procedures have been
developed [16,17]. They are quite accurate but resort finally
to numerical integrations on a mesh. Direct computations on
a mesh are easier to carry out, but they require a very large
mesh if a good quadrature rule is not used [14]. As we will see,
the LMM in momentum space is very easy to implement and
can also give accurate results. In order to fix the notations, the
eigenequations in momentum space are presented in Sec. II.
The LMM adapted in momentum space is described in Sec. III
with some details so that this paper is self-contained. Test
calculations are presented in Sec. IV for two potentials with
very different properties of convergence. Some concluding
remarks are given in Sec. V.

II. EIGENEQUATIONS IN POSITION
AND MOMENTUM SPACES

Let us consider the following eigenequation (h̄ = c = 1):

[T ( �p 2) + V (r)]|φ〉 = E |φ〉, (1)
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in which the kinetic part and the potential depend, respectively,
on the relative square momentum �p 2 and on the radial
distance r = |�r | between the particles. The wave functions
in configuration space φr (�r ) = 〈�r |φ〉 and in momentum
space φp( �p ) = 〈 �p |φ〉 can be written using the spherical
representation:

φr (�r ) = Rnl(r) Ylm(r̂), (2)

φp( �p ) = Pnl(p) Ỹlm(p̂), (3)

where Ỹlm(x̂) = il Ylm(x̂) is a modified spherical harmonic
[18], x̂ = x/|�x |, and n is the number of nodes at finite
distance. These functions are linked by the following Fourier
transforms [19]:

φp( �p ) = 1

(2π )3/2

∫
φr (�r ) e−i �p·�r d�r, (4)

φr (�r ) = 1

(2π )3/2

∫
φp( �p ) e+i �p·�r d �p. (5)

These equations lead to [13]

Pnl(p) = (−1)l
√

2

π

∫ ∞

0
Rnl(r) jl(p r) r2 dr, (6)

Rnl(r) = (−1)l
√

2

π

∫ ∞

0
Pnl(p) jl(p r) p2 dp, (7)

where jl(x) is a spherical Bessel function [20].
Written in the momentum space, (1) takes the following

form:

T ( �p 2) φp( �p ) +
∫

VFT( �p − �p ′) φp( �p ′) d �p ′ = E φp( �p ),

(8)

with VFT( �p − �p ′), the Fourier transform of V (r), given by

VFT( �p − �p ′) = 1

(2π )3

∫
V (r) e−i( �p− �p ′)·�rd�r. (9)

This potential is a continuous function of the momentum,
even if parts of the interaction in configuration space present
discontinuities. One can think of a square well or a Dirac
δ function (repulsive only in a three-dimensional space). As
the potential depends only on r , we have VFT( �p − �p ′) =
VFT(| �p − �p ′|), and (9) becomes [21]

VFT(k) = 1

2π2k

∫ ∞

0
V (r) sin(k r) r dr. (10)

Using the standard decomposition of a radial function [18], the
eigenvalue equation (8) takes the form of an integral equation
for the wave function Pnl(p),

T (p2)Pnl(p) +
∫ ∞

0
Vl(p,p′)Pnl(p

′) p′2 dp′ = E Pnl(p),

(11)

with the partial potentials

Vl(p,p′) = 2π

∫ +1

−1
Pl(t) VFT(

√
p2 + p′2 − 2pp′t)dt. (12)

The Legendre polynomial Pl(t) depends on the variable t =
p̂ · p̂′.

For a Schrödinger equation, the kinetic operator is given by

T (p2) = p2

2μ
, μ = m1m2

m1 + m2
, (13)

and the eigenvalue E is the binding energy of the system. In
a spinless Salpeter Hamiltonian, the kinetic operator takes the
following form:

T (p2) =
√

p2 + m2
1 +

√
p2 + m2

2, (14)

and the eigenvalue E is the mass of the system. This kind of
Hamiltonian is sometimes denoted semirelativistic since it is
not a covariant formulation. The corresponding equation can
be considered as a Schrödinger equation with its nonrelativistic
kinetic part replaced by a relativistic counterpart. More rigor-
ously, it is obtained from the covariant Bethe-Salpeter equation
[22] with the following approximations: elimination of any
dependencies on timelike variables and neglect of particle spin
degrees of freedom as well as negative energy solutions [23].
The spinless Salpeter Hamiltonian is often used in hadronic
physics to study bound states of quarks or gluons [24–27].

Within this formulation, the action of the kinetic operator
is just an ordinary multiplication. So nonrelativistic and
semirelativistic systems are computed with the same
manner. Moreover, more complicated kinetic parts, with
momentum-dependent masses [28–30], can be equally
treated. Though the formulations in the configuration and
momentum spaces are completely equivalent, this does not
mean that the technical difficulties to solve the eigenequations
are the same in both spaces.

If the potential is known in the configuration space, (10) and
(12) allow the computation of the partial potentials Vl(p,p′).
VFT(k) can also be directly obtained from a physical theory,
such as a field theory naturally written in the momentum space.
One can think of effective potentials obtained from Feynman
diagrams, for instance. It is not always possible to obtain an
analytical form for Eq. (12), but such a numerical integration
can be rapidly and accurately performed.

III. METHOD IN MOMENTUM SPACE

A. Lagrange functions

The LMM relies on the existence of an N -point mesh {xi},
which is associated with an orthonormal set of N indefinitely
derivable functions f̄j (x), called the Lagrange function [2–4].
Each function f̄j (x) satisfies the Lagrange conditions,

f̄j (xi) = λ
−1/2
i δij ; (15)

that is to say, it vanishes at all mesh points except one. Here
xi and λi are, respectively, the abscissae and the weights of a
Gauss quadrature formula,∫ ∞

0
g(x) dx ≈

N∑
k=1

λk g(xk). (16)

Several quadratures are possible, but, as we work with wave
functions depending only on the module of a variable, we
consider the case of the Gauss-Laguerre quadrature whose
domain of interest is [0,∞[. The Gauss formula (16) is
exact when g(x) is a polynomial of degree 2N − 1 at most,
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multiplied by exp(−x). The mesh points xi are the zeros of a
Laguerre polynomial of degree N : LN (xi) = 0 [2]. These zeros
can be determined with high precision with the usual methods
to find the roots of a polynomial [31] (the MATHEMATICA

expression ROOT does the job efficiently) or as the eigenvalues
of a particular tridiagonal matrix [32]. The weights can be
computed by the following formula [12]:

ln λi = xi − ln xi + 2 ln �(N + 1) −
N∑

j �=i=1

ln(xi − xj )2. (17)

Wave functions pPnl(p) vanish at the origin. As this is not
the case for the original Lagrange functions, it is preferable to
use the regularized Lagrange functions whose explicit form is
given by fi(x) = (x/xi)f̄i(x); that is to say [3,6],

fi(x) = (−1)ix−1/2
i x(x − xi)

−1LN (x) exp(−x/2). (18)

Such a function satisfies (15) and fi(0) = 0 [see Eq. (20)].

B. Matrix equation

The use of the LMM in configuration space is described
in Refs. [2–8,13]. We will present here the formulation for
the integral equation (11) within the LMM. The idea is
to expand the wave function Pnl(p) with the regularized
Lagrange functions in such a way that a trial state |ψ〉 is written

|ψ〉 =
N∑

j=1

Cj |fj 〉, 〈 �p |fj 〉 = fj (p/h)√
h p

Ỹlm(p̂). (19)

This formula is identical to formula (6) in Ref. [13], except
the variable r is replaced by p. The coefficients Cj are linear
variational parameters, and the scale factor h is a nonlinear
parameter aimed at adjusting the mesh to the domain of
physical interest. The parameter h has here the dimension
of momentum (h plays the same role in Ref. [13] but has
the dimension of distance). Contrary to some other mesh
methods, the wave function is also defined between mesh
points by Eqs. (18) and (19). For a good value of h (defined
in Sec. IV) and a sufficiently high value of N , the function,

P̄nl(p) =
N∑

j=1

Cj

fj (p/h)√
h p

(20)

can be a good approximation of the exact function Pnl(p).
Note that an advantage of the LMM is that the value for h

does not have to be known with good accuracy. It is sufficient
that this value is located within a given interval, as we will
check in the following.

Basis states |fi〉 built with the regularized Lagrange
functions are not exactly orthogonal. But, at the Gauss
approximation, we have 〈fj |fi〉 = δji . So, in the following,
all mean values will be performed using the Gauss quadrature
formula (16). Inserting expansion (20) in Eq. (11) gives

T (h2x2)
N∑

j=1

Cj

fj (x)

x
+

N∑
j=1

Cj h3
√

λj xj Vl(h xj ,h x)

= E

N∑
j=1

Cj

fj (x)

x
, (21)

where x = p/h is a dimensionless variable. We can now
multiply this equation by x fj (x) and integrate on [0,∞[ with,
again, the Gauss quadrature formula (16). Finally, we obtain

N∑
j=1

Cj

[
T

(
h2x2

i

)
δij

+h3
√

λi λj xi xj Vl(h xi,h xj ) − E δij

] = 0. (22)

The Hamiltonian matrix is symmetric since Vl(p,p′) =
Vl(p′,p). A similar expression is obtained for calculations
with the LMM in the configuration space for a nonlocal
potential [5]. With the LMM in momentum space, the solution
of a quantum equation reduces (as is often the case) to the
determination of eigensolutions of a given matrix. So, once
the partial potentials are known, (22) shows that this method
is very easy to implement. The computation of the Fourier
transform of the wave function and of observables is no longer
complicated, as presented in the following.

In Sec. IV, we will study the convergence of the method as
a function of the scale parameter h and the number of mesh
points N for nonrelativistic and semirelativistic kinematics.
Let us note that an automatic determination of h has been
developed for the LLM in the configuration space [13,33].
But the generalization of such a technique to the LLM in the
momentum space is very difficult due to the nonlocal nature
of the interaction in Eq. (11). We will cross-check our results
by comparing eigenvalues and mean values of observables
computed with the LMM in both configuration and momentum
spaces. Moreover, a wave function computed in the momentum
space will be compared with the Fourier transform of the
corresponding wave function computed in the configuration
space and vice versa.

C. Fourier transform

It has been shown in Ref. [13] that a good approximation of
a function Pnl(p) can be obtained from the Fourier transform
of the corresponding solution computed in the configuration
space by the LLM. This can be performed by taking advantage
of the very special properties of the regularized Lagrange
functions. Similarly, a good approximation of the function
Rnl(r) can be obtained from the Fourier transform of a solution
computed in the momentum space by the LLM. Using the
Gauss quadrature rule (16) with the Lagrange condition (15),
the integral (7) for a given trial state (20) simply reduces to

R̄nl(r) = (−1)l
√

2

π
h3/2

N∑
i=1

Ci

√
λi xi jl(h xi r). (23)

This formula is identical to formula (22) in Ref. [13], except
the variable r is replaced by p. This results from the similarity
of Eqs. (4) and (5) and the choice of expansion (19). For a
sufficiently high value of N (see Sec. IV), R̄nl(r) can be a
very good approximation of the genuine function Rnl(r) in the
configuration space. Above a critical value of r , generally in
the asymptotic tail of R̄nl(r), this function can present large
unphysical rapid oscillations. These oscillations do not develop
in P̄nl(p) because they are damped by the rapid decrease of
the regularized Lagrange functions.
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FIG. 1. Eigenvalues ε of Eq. (22) for the dimensionless Hamiltonian (34) with g = 15 as a function of h for three values of N . (left) Ground
state. (right) Excited state with (n,l) = (0,1). The scale for ordinates is the same for both graphics.

D. Mean values of momentum-dependent observables

The mean value of the operator U (p) for a trial state |ψ〉 is
given by

〈ψ |U (p)|ψ〉 =
N∑

i,j=1

Ci Cj 〈fi |U (p)|fj 〉. (24)

Using the Lagrange condition (15) and the Gauss quadrature
(16), this integral reduces to

〈ψ |U (p)|ψ〉 =
N∑

j=1

C2
j U (h xj ). (25)

If U is the identity, we recover the normalization condition as
expected. As we will see in Sec. IV, a very good accuracy can
be reached for the mean values 〈U (p)〉.

E. Mean values of radial observables

The mean value of the operator K(r) for a trial state |ψ〉 is
given by

〈ψ |K(r)|ψ〉 =
N∑

i,j=1

Ci Cj 〈fi |K(r)|fj 〉. (26)

The method to compute matrix elements 〈fi |K(r)|fj 〉 relies
on the fact that �r 2 = −�∇2

�p in the momentum space [34]. Let us

first look at the matrix P whose elements are Pij = 〈fi |�r 2|fj 〉.
With Eq. (16), these matrix elements are given by

Pij = 1

h2

(
tij + l(l + 1)

x2
i

δij

)
, (27)

where

tij =
∫ ∞

0
fi(x)

(
− d2

dx2

)
fj (x) dx ≈ −λ

1/2
i f ′′

j (xi). (28)

This expression is exact for some Lagrange meshes, but
that is not the case for the regularized Laguerre mesh. An
exact expression can easily be obtained (see the Appendix in
Ref. [3]). However, as shown in Ref. [4], it is preferable to use

the approximation (27) and (28). The quantities tij are then
easy to obtain and read [4]:

tij =
{

(−)i−j (xixj )−1/2(xi + xj )(xi − xj )−2 (i �= j ),(
12x2

i

)−1[
4 + (4N + 2)xi − x2

i

]
(i = j ).

(29)

If P D is the diagonal matrix formed by the eigenvalues of P ,
we have

P = S P D S−1, (30)

where S is the transformation matrix composed of the normal-
ized eigenvectors. Let us call KD the diagonal matrix obtained
by taking the function K(

√
x) of all diagonal elements of P D

(remember that P is linked to the matrix elements of r2, not r).
The numbers 〈fi |K(r)|fj 〉 are well approximated by the
elements of the matrix K obtained by using the transformation
(30): K = S KD S−1. As we will see in Sec. IV, a very good
accuracy can be reached for the mean values 〈K(r)〉.

0 20 40 60 80 100
N�5.37762

�5.37761

�5.37760

�5.37759

�5.37758

�5.37757

�5.37756
Ε

h � 1.0

h � 0.5

FIG. 2. Ground state eigenvalues ε of Eq. (22) for the dimension-
less Hamiltonian (34) with g = 15 as a function of N for two values
of h. For N = 10 and h = 1.0, the value of ε is −5.378 59 far below
the range of the graph.
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TABLE I. Eigenvalues ε and mean values of some observables for the ground state of H̃ = �q 2 + U (x) with U (x) = −g e−x2
[Eq. (34)] and

g = 15 as a function of N for h = 0.5. Computations in momentum (Mom.) space are compared with accurate results obtained in configuration
(Conf.) space for N = 100 and h = 0.4. In order to check the mean values, 〈H̃ 〉 (which must be equal to ε) is computed by 〈�q 2〉 + 〈U (x)〉.

Mom.

Conf. N = 10 N = 20 N = 50

ε −5.377 599 907 068 4 −5.377 612 530 723 8 −5.377 599 907 819 5 −5.377 599 907 068 2
〈�q 2〉 3.740 638 876 223 53 3.740 638 264 033 71 3.740 638 855 770 63 3.740 638 876 223 58
〈�q 4〉 26.506 425 156 47 26.506 436 412 12 26.506 425 166 41 26.506 425 156 46
〈x〉 0.713 462 0 0.713 503 0 0.713 465 0 0.713 462 0
〈U (x)〉 −9.118 238 783 292 0 −9.118 242 477 422 3 −9.118 238 763 320 0 −9.118 238 783 292 0
〈H̃ 〉 −5.377 599 907 068 5 −5.377 604 213 388 5 −5.377 599 907 549 3 −5.377 599 907 068 4

IV. NUMERICAL RESULTS

A. Gaussian potential

We first consider a Gaussian potential whose Fourier
transform is well known [21]:

V (r) = −a exp(−b2 r2)

⇔ VFT(k) = − a

8 π3/2b3
exp

(
− k2

4 b2

)
. (31)

Let us note that the asymptotic behavior of the potential is
similar in the configuration and momentum spaces. Using (12),
we can compute

Vl(p,p′) = − a

2l+2
√

π b3
exp

(
−p2 + p′2

4 b2

)

×
[l/2]∑
k=0

(−1)k
(

l

k

)(
2l − 2k

l

)
×

[
E2k−l

(
−p p′

2 b2

)
+ (−1)l−2kE2k−l

(
p p′

2 b2

)]
,

(32)

where Em(z) is an exponential integral [20] and [y] indicates
the integer part of y. This type of potential is the prototype
for a short-range interaction and can be used in many field of
physics.

With a nonrelativistic kinematics, we can write

E = b2

2μ
ε, (33)

where ε is the solution of the dimensionless Hamiltonian

H̃ = �q 2 − g e−x2
, g = 2 μa

b2
. (34)

We choose to study the performance of the LMM in momentum
space with the value g = 15. In this case, two bound states
exist: (n,l) = (0,0) and (0,1).

Let us look at the results obtained for H̃ (34) by solving
(22). The variation of the eigenvalue ε as a function of the
nonlinear parameter h is presented for the two states in Fig. 1.
For a value of N as small as 20, a plateau is present with
abrupt variations of the eigenvalue at the borders. The length
of the plateau increases with the number N of mesh points.
For the excited states, the convergence is usually slower than
for the ground states: The plateau is less extended, and the
variations around the plateau are larger. Even with N = 10,

2 4 6 8 10 12
q

0.1

0.2

0.3

0.4

0.5

0.6

0.7

u�q�

1 2 3 4 5 6
x

0.2

0.4

0.6

0.8

1.0

u�x�

FIG. 3. Ground state of the dimensionless Hamiltonian (34) with g = 15 (only positive values are shown). (left) u(q) = q P00(q) (black
solid line: wave function obtained directly in the momentum space; gray dashed line: wave function computed by Fourier transform of the
wave function obtained directly in the configuration space). (right) u(x) = x R00(x) (black solid line: wave function obtained directly in the
configuration space; gray dashed line: wave function computed by Fourier transform of the wave function obtained directly in the momentum
space). h = 0.5 and N = 20 (h = 0.4 and N = 20) for the computation in momentum (configuration) space.
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FIG. 4. Ground state eigenvalue E of Eq. (22) for the spinless Salpeter Hamiltonian with the Gaussian interaction considered Eq. (35) as a
function of h and N . For N = 10 and h = 1.0, the value of E is 1.8750, far above the range of the graph.

very good results can be obtained provided h is taken in the
small corresponding quasiplateau (the fluctuation in the rapid
variation). Note that the flatness of the plateau is a criterion
obviously depending on the accuracy one wants to reach. It
is shown in Fig. 2 that eigenvalues, corresponding to different
values of h taken in plateaus, converge towards the same value
as N increases. This convergence can be achieved from above
or from below. All these results clearly show the nonvariational
nature of the LMM.

It is remarkable that, even for small values of N , the value
of h does not have to be determined with high precision. This is
a great advantage of the LMM. Nevertheless, if h is too small,
a significant part of the wave function is not covered by the
points of the mesh. When h is too large, all points of the mesh
are located in the asymptotic tail of the wave functions, and it
is then impossible to obtain good eigenvalues. Let us note that
the same behaviors are observed for the LMM in configuration
space [2,4,8].

Eigenvalues and some observables have been calculated
with the LMM in both configuration and momentum spaces.
Results are presented and compared in Table I for the ground
state only, but results are similar for the excited state. A
very good accuracy can be obtained for the computation in
momentum space, even for small values of N . For most of
the physical problems, the required precision can probably

be reached with N = 20. It seems that position-dependent
observables converge more slowly than momentum-dependent
observables. We have checked that the situation is the opposite
for LMM calculations in configuration space.

In principle, we must have 〈H̃ 〉 = ε. This is not the case
since momentum-dependent and radial observables are not
computed with the same method (see Secs. III D and III E).
We can see in Table I that the difference between the two
quantities is around the accuracy of the eigenvalues ε.

The wave functions produced by the LMM in both spaces
have also been compared. A typical example is shown in Fig. 3.
In the left plot, the wave function obtained directly in the
momentum space and the wave function computed by the
Fourier transform of the wave function obtained directly in
the configuration space are superposed. The situation is the
opposite in the right plot. In both cases, the agreement is
very good for low values of the arguments, but the Fourier
transform wave functions present large unphysical oscillations
for larger values of the argument. The starting points of these
oscillations can be rejected to high values of the argument in
the asymptotic tail, but it is then necessary to work with larger
values of N , typically N � 100 [13]. A good representation of
the wave function in momentum space can be obtained with
a small mesh only by working directly in this space. This an
advantage of the LMM in momentum space.

TABLE II. Eigenvalues E and mean values of some observables for the ground state of the spinless Salpeter Hamiltonian with the Gaussian
interaction U (r) = −a exp(−b2r2) considered [Eq. (35)] as a function of N for h = 0.4. Computations in the momentum (Mom.) space are
compared with accurate results obtained in the configuration (Conf.) space for N = 100 and h = 0.4. In order to check the mean values, 〈H 〉
(which must be equal to E) is computed by 2〈√ �p 2 + m2〉 + 〈U (r)〉.

Mom.

Conf. N = 10 N = 20 N = 50

E 1.870 983 62 1.870 441 99 1.871 008 78 1.870 983 67
〈√ �p 2 + m2〉 1.355 380 4 1.354 272 4 1.355 465 0 1.355 380 7
〈√ �p 4〉 3.991 567 3.981 098 3.992 369 3.991 570
〈r〉 1.733 75 1.711 71 1.735 51 1.733 76
〈U (r)〉 −0.839 777 2 −0.838 109 4 −0.839 921 2 −0.839 777 7
〈H 〉 1.870 983 62 1.870 435 32 1.871 008 80 1.870 983 67
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FIG. 5. Ground state eigenvalue ε of Eq. (22) for the dimensionless Hamiltonian (39) with g = 10.

As in the nonrelativistic case, we will not try to study a
“realistic” relativistic system. We will consider quite arbitrary,
but convenient, values for the parameters,

m1 = m2 = m = 1, a = 3, b = 1, (35)

for which only one bound state exists (0 < E < 2m). As we
can see by examining Fig. 4, the behaviors of the eigenvalues
as a function of N and h are similar for nonrelativistic and
semirelativistic Hamiltonians. But the convergence is less
good for semirelativistic systems, with shorter plateaus and
larger variations around the plateaus. This situation is similar
in configuration space [8,13]. Various observables have been
computed and are presented in Table II. A reasonable accuracy
can be obtained even with a small mesh.

B. Yukawa potential

Some numerical tests are also performed using the Yukawa
potential, whose asymptotic behavior is very different in the
configuration and momentum spaces [21]:

V (r) = −a

r
exp (−b r) ⇔ VFT(k) = − 1

2π2

a

b2 + k2
. (36)

Using (12), we can compute

Vl(p,p′) = − a

πpp′ Ql

(
b2 + p2 + p′2

2pp′

)
, (37)

where Ql(x) is a Legendre function of the second kind [35].
This type of potential is used in many fields of physics, even in

hadronic physics. If the interaction in a quark-antiquark system
or between two gluons in a vacuum can be simulated by a fun-
nel potential (Coulomb + linear), the confinement vanishes
inside a quark-gluon plasma above a critical temperature, and
the interaction could turn into a Yukawa potential [36].

With a nonrelativistic kinematics, we can write

E = b2

2μ
ε, (38)

where ε is the solution of the dimensionless Hamiltonian

H̃ = �q 2 − g
e−x

x
, g = 2 μa

b
. (39)

We choose to study the performance of the LMM in momentum
space with the value g = 10. In this case, three bound states
exist. A phenomenological approximate formula [37] gives
E(n=0,l=0) = −16.32, E(1,0) = −0.65, and E(0,1) = −0.22.

In Fig. 5, we can see the behavior of the ground state
eigenvalue ε of H̃ (39), obtained by solving (22), as a function
of N and h. The situation is at first sight similar to the case
of the Gaussian potential, but the convergence is much slower
for the Yukawa potential. For a mesh of 50 points, a plateau
does not appear clearly, just a slowing down of the variation
of ε. For computations in the configuration space, we have
checked that a small plateau is already present for N = 20.
Consequently, eigenvalues computed in momentum space for
two different values of h will only coincide for large values of
N . About ten times more points are necessary for computations
in momentum space to reach an accuracy similar to the one

TABLE III. Eigenvalues ε and mean values of some observables for H̃ = �q 2 + U (x) with U (x) = −g e−x/x [Eq. (39)] and g = 10.
Computations in configuration (Conf.) and momentum (Mom.) spaces are performed with N = 200. The values of the parameter h are
arbitrarily taken into a corresponding plateau. In order to check the mean values, 〈H̃ 〉 (which must be equal to ε) is computed by 〈�q 2〉 + 〈U (x)〉.

n = 0, l = 0 n = 1, l = 0 n = 0, l = 1

Conf. Mom. Conf. Mom. Conf. Mom.
(h = 0.02) (h = 0.8) (h = 0.05) (h = 1.0) (h = 0.05) (h = 0.5)

ε −16.340 426 −16.340 415 −0.605 393 3 −0.605 397 5 −0.205 082 327 −0.205 082 331
〈�q 2〉 23.788 977 23.788 942 2.952 38 2.952 41 2.707 928 57 2.707 928 62
〈U (x)〉 −40.1294 −40.1200 −3.557 78 −3.557 43 −2.913 010 896 −2.913 010 877
〈H̃ 〉 −16.340 426 −16.331 047 −0.605 393 3 −0.605 021 7 −0.205 082 327 −0.205 082 257
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FIG. 6. Ground state of the dimensionless Hamiltonian (39) with g = 10 (only positive values are shown). Left and right plots are as in
Fig. 3. h = 0.5, N = 20, and ε = −16.2066 (h = 0.05, N = 20, and ε = −16.3404) for the computation in momentum (configuration) space.

for computations in configuration space. This is illustrated
in Table III, where eigenvalues and some observables are
calculated with the LMM in both configuration and momentum
spaces. Again, the mean value 〈H̃ 〉, which must be equal to ε,
is computed. The disagreement for the results in momentum
space shows that the convergence is not as good as for the
results in configuration space. We think that this peculiarity is
linked to the asymptotic behavior of the Yukawa potential in
the momentum space: Its decrease as power law (36) is quite
slow. The wave function in this space is then very extended
and requires its computation at high values of p to be well
described on its physical domain.

The wave functions produced by the LMM in both spaces
have also been compared for the Yukawa potential in Fig. 6.
With a small mesh of 20 points, the relative error on the
ground state eigenvalues is around 10−10 for the computation
in configuration space and around 10−2 for the computation in
momentum space. Curiously, the wave function computed in
momentum space is already very well reproduced and is
even better than the Fourier transform computed from the
computation in configuration space with the same mesh. By
increasing N , the beginning of the unphysical oscillations in

the Fourier transforms can be rejected far into the asymptotic
tail.

We will briefly comment on the Yukawa interaction with
a semirelativistic kinematics. As in the nonrelativistic case,
we did not try to study a realistic system. Quite arbitrary but
convenient values are considered for the parameters,

m1 = m2 = m = 16, a = 1, b = 5, (40)

for which only one bound state exists (0 < E < 2m). Results
about the convergence are presented in Fig. 7. The plots
are similar to the ones produced in the nonrelativistic case:
the existence of plateaus for energy as a function of h and
an increase of the length of the plateau with N . But the
convergence is slower than in the nonrelativistic computations:
N must be larger to achieve a quasiflat plateau (Fig. 7, left)
and to reach a convergence between eigenvalues computed
with different values of h (Fig. 7, right). We have checked
that this is also the case to obtain an agreement between
observables computed in both spaces and to obtain better
Fourier transforms. With a semirelativistic Hamiltonian, the
kinetic energy increases as

√
�p 2 not as �p 2. So higher values

of the momentum can be reached by the wave function, and it
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FIG. 7. Ground state eigenvalue E of (22) for the spinless Salpeter Hamiltonian with the Yukawa interaction considered Eq. (40) as a
function of h and N . For N = 25 and h = 0.5, the value of E is 30.81 far above the range of the graph.
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can be more extended than with a nonrelativistic kinematics.
This amplifies the problem mentioned in the previous section
about the asymptotic behavior of the potential.

V. CONCLUDING REMARKS

The Lagrange-mesh method is a procedure to compute ac-
curate eigenvalues and eigenfunctions of quantum equations.
Implemented at the origin in the configuration space, this
technique requires only the computation of the potential at
some mesh points [2,8]. This is due to the use of a Gauss
quadrature rule with the fact that the basis functions satisfy
the Lagrange conditions; that is to say, they vanish at all mesh
points except one.

Using this very special property, we have shown that the
Lagrange-mesh method can be adapted to be used directly
in momentum space with a nonlocal potential (but local
in the configuration space). In this case, nonrelativistic and
semirelativistic kinetic parts are treated with the same manner.
Moreover, it is possible to treat interactions which present
discontinuities in configuration space. The wave function
in momentum space is directly obtained under the form of
expansion coefficients for the Lagrange functions. Using only
these coefficients, it is easy to compute the wave function in
configuration space by Fourier transform, as well as mean
values of p-dependent or r-dependent operators. Though the
technique is not variational, the convergence can be checked:
Eigenvalues present a plateau as a function of the sole nonlinear
parameter of the method; eigenvalues computed with different
nonlinear parameters in a plateau tend towards the same value
as the number of mesh points increases.

The method has been tested with two potentials. With a
Gaussian interaction and a nonrelativistic kinematics, a good
accuracy can be obtained for eigenvalues and observables with
a very small mesh, as for the method in configuration space: 20
points are probably sufficient for most physical applications.
For a Yukawa interaction, it is necessary to use more points

than for the Lagrange-mesh method in the configuration space,
typically ten times more. For both potentials the following are
true: (i) The convergence is slowed down for a semirelativistic
kinematics, as for the method in configuration space. But
a good accuracy can nevertheless be reached [8]. (ii) It is
necessary to use a large mesh to obtain a correct Fourier
transform of the wave functions, as for the computations
in configuration space [13]. (iii) A good wave function in
momentum space can be obtained with a small mesh by a
direct computation in momentum space. It does not present the
unphysical oscillations of the Fourier transform of the wave
functions in configuration space, which can only be eliminated
by using a large mesh.

The purpose of this paper is to test the feasibility and the
reliability of the Lagrange-mesh method in momentum space.
We think that it can be safely applied to physical problems
since convergence tests exist and a good accuracy can always
be obtained. Even if several hundreds of points are necessary
to treat some potentials, eigenvalues can be rapidly computed.
The method is very easy to implement once the interaction
is known in momentum space, and it can be particularly
useful if the kinetic part T ( �p 2) is an unusual function of the
momentum since its corresponding matrix is diagonal and easy
to compute. This kind of situation appears in hadronic physics,
where quarks or gluons can be considered with a momentum-
dependent mass which can be very complicated to define in the
configuration space [28–30], e.g., T ( �p 2) =

√
�p 2 + m2( �p 2).

For these systems, the dominant interaction can be simulated
by a linear potential in the configuration space. This type of
potential is a priori highly singular in the momentum space,
but it exists in a distributional sense and can be used in this
context [38].
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[1] S. Flügge, Practical Quantum Mechanics (Springer, New York,
1994).

[2] D. Baye and P.-H. Heenen, J. Phys. A 19, 2041 (1986).
[3] M. Vincke, L. Malegat, and D. Baye, J. Phys. B 26, 811 (1993).
[4] D. Baye, J. Phys. B 28, 4399 (1995).
[5] M. Hesse, J. Roland, and D. Baye, Nucl. Phys. A 709, 184

(2002).
[6] D. Baye, Phys. Status Solidi B 243, 1095 (2006).
[7] D. Baye and K. D. Sen, Phys. Rev. E 78, 026701 (2008).
[8] C. Semay, D. Baye, M. Hesse, and B. Silvestre-Brac, Phys. Rev.

E 64, 016703 (2001).
[9] F. Brau and C. Semay, J. Phys. G 28, 2771 (2002).

[10] F. Buisseret and C. Semay, Phys. Rev. E 71, 026705 (2005).
[11] F. Buisseret and C. Semay, Phys. Rev. E 75, 026705 (2007).
[12] D. Baye, M. Hesse, and M. Vincke, Phys. Rev. E 65, 026701

(2002).
[13] G. Lacroix and C. Semay, Phys. Rev. E 84, 036705

(2011).

[14] W. A. Karr, C. R. Jamell, and Y. N. Joglekar, Am. J. Phys. 78,
407 (2010).

[15] D. Baye and M. Vincke, Phys. Rev. E 59, 7195 (1999).
[16] P. E. Regier and A. J. Thakkar, Phys. Rev. A 30, 30 (1984).
[17] W. Rodriguez and Y. Ishikawa, Chem. Phys. Lett. 146, 515

(1988).
[18] D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskii,

Quantum Theory of Angular Momentum (World Scientific,
Singapore, 1988).

[19] J. J. Sakurai, Modern Quantum Mechanics (Addison-Wesley,
Reading, MA, 1993).

[20] M. Abramowitz and I. A. Stegun, Handbook of Mathematical
Functions (Dover, New York, 1965).

[21] I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series,
and Products (Academic, New York, 2007).

[22] E. E. Salpeter and H. A. Bethe, Phys. Rev. 84, 1232 (1951).
[23] W. Greiner and J. Reinhardt, Quantum Electrodynamics

(Springer, Berlin, 1994).

026705-9

http://dx.doi.org/10.1088/0305-4470/19/11/013
http://dx.doi.org/10.1088/0953-4075/26/5/006
http://dx.doi.org/10.1088/0953-4075/28/20/005
http://dx.doi.org/10.1016/S0375-9474(02)01040-0
http://dx.doi.org/10.1016/S0375-9474(02)01040-0
http://dx.doi.org/10.1002/pssb.200541305
http://dx.doi.org/10.1103/PhysRevE.78.026701
http://dx.doi.org/10.1103/PhysRevE.64.016703
http://dx.doi.org/10.1103/PhysRevE.64.016703
http://dx.doi.org/10.1088/0954-3899/28/11/303
http://dx.doi.org/10.1103/PhysRevE.71.026705
http://dx.doi.org/10.1103/PhysRevE.75.026705
http://dx.doi.org/10.1103/PhysRevE.65.026701
http://dx.doi.org/10.1103/PhysRevE.65.026701
http://dx.doi.org/10.1103/PhysRevE.84.036705
http://dx.doi.org/10.1103/PhysRevE.84.036705
http://dx.doi.org/10.1119/1.3272021
http://dx.doi.org/10.1119/1.3272021
http://dx.doi.org/10.1103/PhysRevE.59.7195
http://dx.doi.org/10.1103/PhysRevA.30.30
http://dx.doi.org/10.1016/0009-2614(88)87491-8
http://dx.doi.org/10.1016/0009-2614(88)87491-8
http://dx.doi.org/10.1103/PhysRev.84.1232


GWENDOLYN LACROIX, CLAUDE SEMAY, AND FABIEN BUISSERET PHYSICAL REVIEW E 86, 026705 (2012)

[24] S. Godfrey and N. Isgur, Phys. Rev. D 32, 189 (1985).
[25] L. P. Fulcher, Phys. Rev. D 50, 447 (1994).
[26] F. Buisseret, C. Semay, V. Mathieu, and B. Silvestre-Brac, Eur.

Phys. J. A 32, 123 (2007).
[27] V. Mathieu, F. Buisseret, and C. Semay, Phys. Rev. D 77, 114022

(2008).
[28] A. Szczepaniak, E. S. Swanson, C.-R. Ji, and S. R. Cotanch,

Phys. Rev. Lett. 76, 2011 (1996).
[29] F. J. Llanes-Estrada and S. R. Cotanch, Phys. Rev. Lett. 84, 1102

(2000).
[30] A. C. Aguilar, D. Binosi, and J. Papavassiliou, Phys. Rev. D 84,

085026 (2011).

[31] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
Numerical Recipes (Cambridge University Press, Cambridge,
2007).

[32] G. H. Golub and J. H. Welsch, Math. Comput. 23, 221 (1969).
[33] F. Brau and C. Semay, J. Comput. Phys. 139, 127 (1998).
[34] W. Lucha, Mod. Phys. Lett. A 5, 2473 (1990).
[35] W. Magnus, F. Oberhettinger, and R. P. Soni, Formulas and

Theorems for the Special Functions of Mathematical Physics
(Springer, New York, 1966).

[36] F. Brau and F. Buisseret, Phys. Rev. C 76, 065212 (2007).
[37] A. E. S. Green, Phys. Rev. A 26, 1759 (1982).
[38] H. Hersbach, Phys. Rev. D 47, 3027 (1993).

026705-10

http://dx.doi.org/10.1103/PhysRevD.32.189
http://dx.doi.org/10.1103/PhysRevD.50.447
http://dx.doi.org/10.1140/epja/i2007-10379-4
http://dx.doi.org/10.1140/epja/i2007-10379-4
http://dx.doi.org/10.1103/PhysRevD.77.114022
http://dx.doi.org/10.1103/PhysRevD.77.114022
http://dx.doi.org/10.1103/PhysRevLett.76.2011
http://dx.doi.org/10.1103/PhysRevLett.84.1102
http://dx.doi.org/10.1103/PhysRevLett.84.1102
http://dx.doi.org/10.1103/PhysRevD.84.085026
http://dx.doi.org/10.1103/PhysRevD.84.085026
http://dx.doi.org/10.1090/S0025-5718-69-99647-1
http://dx.doi.org/10.1006/jcph.1997.5866
http://dx.doi.org/10.1142/S0217732390002870
http://dx.doi.org/10.1103/PhysRevC.76.065212
http://dx.doi.org/10.1103/PhysRevA.26.1759
http://dx.doi.org/10.1103/PhysRevD.47.3027



