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Sasa-Satsuma equation: Soliton on a background and its limiting cases
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We present a multiparameter family of a soliton on a background solution to the Sasa-Satsuma equation. The
solution is controlled by a set of several free parameters that control the background amplitude as well as the
soliton itself. This family of solutions admits a few nontrivial limiting cases that are considered in detail. Among
these special cases is the nonlinear Schrödinger equation limit and the limit of rogue wave solutions.
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I. INTRODUCTION

Recent progress in the theory of integrable partial dif-
ferential equations made a revolution in mathematics and
expanded significantly the areas of physical application of
these equations [1]. The Sasa-Satsuma equation [2] (SSE) is
one of the integrable extensions of the nonlinear Schrödinger
equation (NLSE). Although with fixed relation between higher
order terms, it contains the most essential contributions often
found in various physical applications: deep water waves [3,4]
and pulse propagation in optical fibers [5,6]. Namely, it
contains the term with third order dispersion, the term with
self-frequency shift, and the term describing self-steepening
[7]. These are the most general terms that have to be taken
into account when extending the applicability of the NLSE.
According to the original work of Sasa and Satsuma [2] the
equation can be written as

iψτ + ψxx

2
+ |ψ |2ψ + iε[ψxxx + 3(|ψ |2)xψ + 6|ψ |2ψx] = 0.

(1)

Here, an arbitrary real parameter ε scales the integrable
perturbations of the NLSE. When ε = 0, Eq. (1) reduces
to the standard NLSE which has only the terms describing
lowest order dispersion and self-phase modulation. This form
of equation has been used in the series of works by Mihalache
and co-workers [8–10]. There are a number of publications
dealing with the solutions of the SSE [11–13]. Solutions with
nonzero boundary conditions have been presented by Wright
III [14] although the form of the SSE in his work and the
technique used are different from the original version [2] and
from the technique presented in Refs. [8–10].

In this paper, we are dealing with the solutions of Eq. (1)
written in the form most common in applications. In particular,
we present the soliton solution on a background which has
been found to be important in the theory of rogue waves.
Perhaps not the most general one but similar to the analogous
solution of the NLSE [15,16], it contains important particular
cases such as the breather solution periodic in the transverse
direction, the zero velocity soliton solution, and the rogue wave
solution.

One of the deficiencies of the previous works related to
the SSE is the lack of descriptive illustrative material. Being

mathematically highly nontrivial, derivations remain unused
until we can see clearly the solutions in picture format. A
selection of a few profiles chosen at fixed distances usually
does not help when the soliton has complicated oscillatory
behavior in propagation as in the SSE case. Modern style
three-dimensional (3D) images help in appreciation of their
complexity and in further use in applications. With this aim,
we illustrate the general solution that we present as well as
a few particular cases. The latter contains the rogue wave
solution that is an important particular case by itself [17].

Solutions of Eq. (1) are nontrivial in many respects. First,
there are several branches of solutions for the same set of
parameters. We do not try to consider all of them in one work. A
better answer is to concentrate the attention on just one branch
and see the variety of possibilities within it. Another difficulty
of operating with solutions of each branch is considering
limiting cases. They are not simple either. Each particular case
requires considering the limits carefully. Even the limit of zero
background which seems to be simple in the NLSE case is quite
involved when we are dealing with the solutions of the SSE.

One of the constraints used in Ref. [14] to obtain the
solutions is fixed ε. This is a significant restriction especially
when we are interested in physical extensions of solutions of
the NLSE. In most of the problems of practical interest the
last three terms are usually small in comparison with the basic
NLSE terms. Thus, it is important to keep the parameter ε

arbitrary and, in particular, consider the limit of small values
of ε. Ignoring this possibility, we may end up with singularities
[14] and have the impression that the SSE solutions cannot be
considered as an extension of those for the NLSE.

In order to extend the solutions with fixed ε to include
arbitrary ε, we recall that there is a scaling transformation of
the NLSE [18]. Namely, if we have a particular solution of
the NLSE ψ(x,t), a more general solution ψ̃(x,t) with a free
parameter μ can be obtained via the transformation:

ψ̃(x,τ ; μ) = μψ(μx,μ2τ ). (2)

Applying the same transformation to Eq. (1) shows that it
transforms the Sasa-Satsuma equation into

iψ̃τ + 1
2 ψ̃xx + |ψ̃ |2ψ̃ + iεμ(ψ̃xxx

+ 3(|ψ̃ |2)xψ̃ + 6(|ψ̃ |2)ψ̃x) = 0. (3)
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We notice that choosing μ = 1/ε eliminates ε from the
equation. This is an important observation as with the help of
the transformation we can use the solutions ψd (x,τ ) developed
for a fixed value of ε = 1, and keep the parameter ε arbitrary
by setting

ψ(x,τ ) = 1

ε
ψd

(
x

ε
,
τ

ε2

)
. (4)

In this way, the parameter ε can be incorporated into any
solution that has been obtained originally for ε fixed to a certain
value. We note that Eq. (4) indeed makes an impression that
the solution is singular when ε → 0. However, this problem
can be fixed with a suitable choice of other free parameters of
the solution. Let us illustrate this point using a simple example.

As we are interested in solutions on a background, we start
with the plane-wave solutions of the Sasa-Satsuma equation
in the form

ψ0(x,τ ) = c

2ε
exp

[
− i

2ε

(
kx − ω

4ε
τ

)]
, (5)

where the amplitude c, the wave number k, and the frequency
ω are related through

ω = 6c2k + 2c2 − k3 − k2. (6)

We can notice that in here, the coefficient ε is already included
into the solution. It again looks singular at the limit ε → 0.
However, the correct choice of parameters c ∼ ε, ω ∼ ε2, and
k ∼ ε eliminates this singularity and in the ε → 0 limit, we
obtain the plane wave of the NLSE with finite amplitude.

Below, we present soliton solutions of the SSE on a
background. This is a multiparameter solution with variable
background, arbitrary velocity for arbitrary real ε. As a result,
there are several limiting cases that can be calculated using
the general expression. Usually, solitons on a background are
pulsating formations for the NLSE. This happens due to the
nonlinear interference between the soliton and the background
that have different propagation constants [19]. The same can be
said about the solitons on a background for the SSE. They are
oscillating along the direction of propagation. This particular
oscillation disappears in the limit of zero background. This
special limit contains soliton solutions that have been obtained
earlier [2]. We provide this correspondence explicitly.

II. SOLITON ON A BACKGROUND

The technique we use is similar to the one employed in
Ref. [14]. We omit this cumbersome part and just present
the solution that can be checked using any modern software
with symbolic computation facilities. We stress that this is just
one branch of solutions. However, it contains most important
particular cases. The one-soliton solution on a background
ψ(x,τ ) of Eq. (1) is given by

ψ(x,τ ) = ψ0(x,τ )

[
1 + i(ζ − ζ ∗)G(x,τ )

c|ζ |2f3(x,τ )

]
(7)

with

G(x,τ ) = [ζ ∗f1(x,τ ) + ζf ∗
2 (x,τ )]

× [ζ |f1(x,τ )|2 + ζ ∗|f2(x,τ )|2]

+ 1
2 (ζ + ζ ∗)[ζf1(x,τ ) + ζ ∗f ∗

2 (x,τ )],

where

f1(x,τ ) = r11 + r12� exp (iMx + iNτ )

1 + � exp (iMx + iNτ )
, (8)

f2(x,τ ) = r21 + r22� exp (iMx + iNτ )

1 + � exp (iMx + iNτ )
, (9)

f3(x,τ ) = (1 + |f1|2 + |f2|2)2 + (ζ − ζ ∗)2

4|ζ |2 |1 + 2f1f2|2,
M = m2 − m1, (10)

and

rnj = −i3c

3mj + (−1)nK − ζ
,

where indices n, j = 1,2 and K = 1 + 3k. Complex con-
jugation is denoted by the star z∗ throughout this paper. The
parameter ζ ∈ C here is the complex eigenvalue of the spectral
problem while � is another arbitrary complex number which is
related to ordinary translations x0 and τ0 of the solution along
the x and τ axes. This can be easily seen if we write � in the
form � = exp (−iMx0 − iNτ0).

The spatial eigenvalues mj in Eqs. (8) and (9) are two of
the solutions of the third order polynomial

m3 − m

[
2c2 + ζ 2

3
+

(
K

3

)2]

+ 2

3
ζ

[
c2 −

(
K

3

)2]
+ 2ζ 3

27
= 0, (11)

such that each mj depends on the free parameters, i.e., mj =
mj (ζ,c,k). In this work, we operate with one of the Riemann
surfaces of the solution and choose the pair of mj that have
similar form:

m1 = i
[

3
√

3(−√
3 + i)u1 + (

√
3 + i)u2

9

]
6 32/3u9

, (12)

m2 = i
[

3
√

3(
√

3 + i)u1 + (−√
3 + i)u2

9

]
6 32/3u9

, (13)

where

u1 = 18c2 + 3ζ 2 + K2, u2 = 9c2 + ζ 2 − K2,

u5 = 18c2 + 1
3 (4 − K2), u6 = 36c2 − K2 + 3,

u7 = 18(1 − 9c2)ζ 3 + 2ζu6(18c2 + K2) − 54ζ 5,

u9 = 3

√√
3
√

27ζ 2u2
2 − u3

1 − 9ζu2,

u4 = 27ζ 4 − 27ζ 2u5 + u2
6, u0 = u6 − 6ζ 2.

Using these expressions, we can specify the spatial fre-
quency M = m2 − m1:

M = − i
(
u2

9 − 3
√

3u1
)

6 6
√

3u9ε
, (14)

and the temporal frequency N :

N = 3 (3ζu7 − u0u4) M

216ε2 (u0 − 9ζm2) (u0 − 9ζm1)
. (15)

The solution (7) ψ(x,τ ; c,k,ζ ; �,ε) is thereby completely
determined by the parameters of the plane wave ψ0 (5) with c,
ω, and k, restricted by Eq. (6), and ζ ∈ C.
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FIG. 1. (Color online) Soliton solution on a background defined
by Eq. (7). Parameters are ε = 1/2, ζ = 1.5 + i0.5, c = 1, � = 1.
(a) k = 0.1 (K = 1.3), resulting in M = −2.2334 − i0.325 551 and
2N = 1.996 65 − i3.885 23; (b) k = 0.6 (K = 2.8) resulting in M =
−2.024 − i0.2313 56 and 2N = −0.6966 − i4.311 13.

An interesting observation is that the solution (7) is periodic
along each of the parallel set of lines,

Im[Mx + Nτ + const] = 0, (16)

i.e., along the direction of propagation, where the imaginary
part, denoted by “Im[z],” of the above expression vanishes.
This follows from the form of exponential functions in Eqs. (8)
and (9). The phase and location of the periodic function is
given by �. Two typical examples of the solution are shown
in Figs. 1(a) and 1(b). Here, the background plane wave
is controlled by the amplitude c/(2ε), and the direction of
propagation (phase velocity) 4εk/ω. The solitonic part of
the solution is controlled by the complex eigenvalue ζ . In
particular, it defines the amplitude, velocity, and periodicity
of the soliton. Each peak within the soliton can have double
or single maximum depending on the combination of all
parameters. In the particular case shown in Fig. 1(a) each
peak has a double maximum while in Fig. 1(b) each peak has
a single maximum. Qualitatively, this solution is similar to the
NLSE solution presented in Fig. 7 of Ref. [16].

III. SPATIALLY PERIODIC BREATHER
ON A BACKGROUND

For solutions which are periodic along the x axis the
period is defined by M which has to be real. The condition
of zero imaginary part of M leads to the eigenvalues of inverse

scattering ζ being given by

ζ = ±
√

α ± β (17)

with

α = c4 + 10c2
[(

K
3

)2 − 3M2

10

] + 2Q
[
M2 + (

K
3

)2]
2Q

,

β = 2w

3Q

[
1

4
(c2 + M2) −

(
K

3

)2]
,

where w =
√

9c4 + K2(M2 − 4c2) and Q = M2

4 − (K
3 )2. Any

choice of signs in Eq. (17) provides us with a valid complex
eigenvalue. In all four cases ζ is a function of c, k, and M .
When we choose both signs in Eq. (17) to be positive, we
obtain, explicitly,

ζ = 1

3

√
1

4K2 − 9M2
× [−162c4 − 18c2[3(w − 9M2) + 10K2]

+ (4K2 − 9M2)(6w + 9M2 + K2)]1/2. (18)

The breather solution in this case is periodic in x and has
a single growth-decay cycle along the τ axis. It starts with
modulation instability, grows to maximum amplitude, and
decays the same way as it grew. This solution is similar to the
Akhmediev breather solution of the NLSE [20–22]. However,
there are more parameters to play with in the SSE case.

Two examples of the breather profiles are shown in Fig. 2.
For the chosen set of parameters c = 1 and ε = 1/2 the

FIG. 2. (Color online) Breather solution of SSE defined by Eq. (7)
becomes spatially periodic for purely real M . Parameters used in this
case are ε = 1/2, c = 1, M = 1. In (a) k = 1 (K = 4), resulting
in ζ = 0.957 906 + i1.817 54 and 2N = 3 − i6.245. In (b), k = 1.9
(K = 6.7) resulting in ζ = 2.009 43 + i1.761 48 and 2N = −6.63 −
i11.2103. In each case, � = +1.
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background amplitude is 1. The parameter M defines the
period of the structure. For k = 1, like in Fig. 2(a), each
maximum of the breather profile has a double peak structure
while for k = 1.9, like in Fig. 2(b), the two peaks join into a
single one.

IV. TEMPORAL PERIODIC SOLITONS
ON A BACKGROUND

The temporal frequency N contains the real part (frequency
λ) and an exponential decay coefficient ν,

N = λ + iν. (19)

To obtain purely periodic solutions along the τ axis, N must
be purely real, i.e., ν = 0. Parameters for this condition to
be fulfilled can be found numerically. An example of such a
solution is shown in Fig. 3. The parameter ζ for this example
calculated numerically along with other parameters is given in
the caption to Fig. 3. In this example, the solution has a double
peak structure. This can be seen from the fact that the adjacent
maxima in the figure are slightly shifted relative to the center
line of the soliton. Choosing a different set of parameters, we
can obtain a solution with a single peak structure. This solution
is analogous to the Kuznetsov-Ma soliton of the NLSE [23].

V. ROGUE WAVE SOLUTION

If we take the long period limit of the solution shown in
Fig. 2 and use a specific value of � = −1 required to keep the

FIG. 3. (Color online) Soliton solution on a background for the
case of purely real N . The profile is given by Eq. (7) with the
following parameters: ε = 1/2, k = 0.1 (K = 1.3), c = 1, resulting
in ζ = 0.5 + i1.672, M = −1.382 58 − i0.806 851, λ = 19.489 24,
and � = 1.

central maximum close to the origin, we are left with just one
infinite period. This way we obtain the solution describing the
rogue wave of the SSE (1):

ψ(x,τ ) = c

2ε

(
1 − ζ − ζ ∗

c
G

)
exp

[
−i

(
k

2ε
x − ω

8ε2
τ

)]
,

(20)

with ω given by Eq. (6) and G given by

G = |u|2Re[ζ ](ζu∗g + ζ ∗uh∗) + (ζ |g|2 + ζ ∗|h|2)(ζ ∗u∗g + ζuh∗)

|ζ |2(|u|2 + |g|2 + |h|2)2 − |u2 + 2hg|2Im[ζ ]2
, (21)

where

ζ = ± i
√

9c2(9c2 + 10K2) + 3c(9c2 − 4K2)3/2 − 2K4

3
√

2K
,

u = (χτ + 2εx) , h = 3c

(
u

M1
+ i

12ε2

M1
2

)
,

g = 3c

(
u

M2
− i

12ε2

M2
2

)
, M1 = K + d − ζ,

M2 = K − d + ζ, d =
(

b

2
+ 2u1

3b

)
,

b = (−1 + i
√

3)[−ζu2]1/3,

χ = 9(a − 6c2)ζ 4 + 3a(a − 1 − 18c2)ζ 2 + a3

6(2ζ 2 + dζ + a)2
, a = −u6

3
.

The solution depends on variables x and τ , as well as on three
real parameters ε, K = 1 + 3k, and c.

Comparison of this rogue wave solution to the one of
the NLSE [24] or Hirota [25] equations shows that the SSE
rogue wave has a significantly more complicated structure. In
particular, it involves polynomials of fourth order rather than
second order as in the two previous cases. This can be seen

from the structure of the expression (21) with the nominator
and denominator being of fourth power of u.

Rogue waves do exist provided that 9c2 − 4K2 < 0. This
follows from the requirement for the eigenvalue ζ of the
spectral problem to have a nonzero real part. This happens
when |1 + 3k| > 3c/2. Explicitly, the condition is either

k >
c

2
− 1

3
or k < − c

2
− 1

3
. (22)

Thus, the wave number k can be zero only when c < 2/3.
Otherwise, the plane wave propagation direction has to be
skewed for the rogue wave to exist.

The solution (20) is illustrated in Fig. 4 for the values of
parameters c = 1, ε = 0.5, and k = 0.8. It exhibits a double
peak and has a maximum amplitude of around 2.5. The
background amplitude is c/(2ε), which is equal to 1 here.
For c = 1 and any ε, the wave number k has to be larger than
1/6. Thus, the plane wave propagates at an angle to the τ axis.
The solution itself is also tilted. The solution keeps a double
peak structure at all values of k in the interval 1/6 < k � 2.
However, at larger values of k the two maxima merge and the
solution has a single peak. An example is shown in Fig. 5
where k = 2.
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FIG. 4. (Color online) Rogue wave of the Sasa-Satsuma equation
when c = 1, ε = 0.5, and plane wave number k = 0.8.

Despite seemingly singular structure of the solution with
ε being in the denominator, the amplitude of the background
for the rogue wave is finite and equal to ψ0 = c/(2ε) just as
in Eq. (5). We can keep it to be constant having the ratio c/ε

to be a constant. When taking the limit ε → 0, we should
simultaneously take the limit of c → 0. Then k and ω should
also be considered in the same zero limit. This should be done
carefully, to keep k in the limits (22). As a result, when reducing
the parameter ε to zero, and having the plane wave number
k = 0, the limit is the Peregrine solution of the NLSE [17].

VI. ZERO BACKGROUND LIMIT

The background of solution (7) c/(2ε) is controlled by the
parameter c. The limit with zero background is obtained when
c → 0. The limit is far from being trivial. The difficulty is in
finding the limits of the mj values that enter, among others,
the rnj coefficients. These can be calculated using a series
expansion of mj at small c:

rnj = −ic

m
(0)
j + (−1)n K

3 − ζ

3 + m
(2)
j c2

, (23)

where m
(0)
j = limc→0 mj and m

(2)
j = ∂2mj

∂c2 |c=0.

In the limit c → 0, the mj coefficients become

m
(0)
1 = − (

√
3 + i)R+ + (

√
3 − i)(σ )2/3σ 2

2 R

6
√

3 3
√

σσ2

,

m
(0)
2 = i

[
R+ − (σ )2/3σ 2

2 R
]

3
√

3 3
√

σσ2

,

where

R = (K − i
√

3ζσ ), R+ = (K + i
√

3ζσ ),
(24)

σ = sgn[Im(ζ 2K)],

σ2 =
⎧⎨
⎩

e2iπ/3 ⇔ −π
3 > Arg(w3r ) > −π,

e−2iπ/3 ⇔ π > Arg(w3r ) > π
3 ,

1 else ,

(25)

w3r = (
√

3 + i)

2
6
√

3 3
√

σR. (26)

Hence, various branches given above should be considered,
which provide different limits for the rnj coefficients. Here, we

FIG. 5. (Color online) Rogue wave of the Sasa-Satsuma equation
when c = 1, ε = 0.5, and plane wave number k = 2.

restrict ourselves in one of these branches given by σ = +1
and σ2 = +1. This requires the following two conditions:

(1) sgn[Im(ζ 2K)] = 1,

(2) −π/3 < arg[ 6
√−3K − (−3)2/3ζ ] < π/3.

In this case, the second order coefficients m
(2)
1 , m

(2)
2 in the

expression (23) are

m
(2)
1 = − 3

K − 3ζ
, (27)

m
(2)
2 = 18ζ

K2 − 9ζ 2
. (28)

The spatial frequency M (0) = m
(0)
2 − m

(0)
1 then becomes

M (0) = K

3
− ζ. (29)

The corresponding temporal frequency N (0) = N
(0)
2 − N

(0)
1 is

N (0) = K

6

(
K2

9
− 1

3

)
− ζ

2

(
ζ 2 − 1

3

)
. (30)

For brevity, we denote the exponential function appearing
in Eq. (7) as A:

A = i (Mx + Nτ ) = i

2ε

(
M (0)x + N (0)

ε
τ

)
. (31)

Along the branch considered here this function takes the form

A = x

2ε

[
η + i

(
K

3
− ξ

)]
− τ

8ε2

[
η

(
η2 − 3ξ 2 + 1

3

)

− iξ

(
3η2 − ξ 2 + 1

3

)
− i

K

3

(
K2

9
− 1

3

) ]

with the real and the imaginary parts of A given explicitly by
setting ζ = ξ + iη. The leading contributions at small c are

r11 = 3ic

2K
, r12 = 3ic

3ζ + K
, (32)

r21 = i(K − 3ζ )

3c
, r22 = 3ic

3ζ − K
. (33)

Motivated by these expressions we introduce the following
notations:

Y = (3ζ − K)/3, W = (3ζ + K)/3, S = WY,

which will be used in formulas below.
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Within the approximations considered above, the form of
the solution can be written explicitly in terms of c:

ψ(x,τ ) = 1

2ε
exp

[
− i

2ε

(
kx − ω

4ε
τ
)]

×
[
c + i(ζ − ζ ∗)

|ζ |2
G(x,τ )

f3(x,τ )

]
,

where in the lowest order of c

G(x,τ )

f3(x,τ )
= −2ic|ζ |2KW ∗Y

G0

f30 + f32c2

with

G0 = −8|ζ |2|S|2|Y |2K3W (Y ∗)2(eA� + 1),

f30 = 16K4|ζ |2|Y |4|S|4,
f32 = 32K4|ζ |2|S|4(|Y (eA� + 1)|2 − 2Re[(Y ∗)2

�eA]),

and where “Re[z]” means the real part of z. The solution then
can be written in a simpler form:

ψ(x,τ )

= 1

2ε
exp

[
−i

(
k

2ε
x − ω

8ε2
τ

)]

×
[
c − (ζ − ζ ∗)cY ∗|Y |2(eA� + 1)

|Y |4 + 2c2{|Y (eA� + 1)|2 − 2Re[eA�(Y ∗)2]}

]
.

(34)

FIG. 6. (Color online) Amplitude profile of the solution (34) in the
(x,τ ) plane. Parameters chosen for this illustration are c = 10−3, K =
1.3 (k = 0.1), ζ = 1/3 + i (ξ = 1/3, η = 1), ε = 0.5, and � = 1.

The solution (34) is a fundamental sech-shaped soliton. It
is illustrated in Fig. 6. When decreasing c, the shape and the
height of the soliton does not change. However, it moves in
the (x,τ ) plane. This can be seen if we replace c by c = e−ρ

and notice that the variable ρ adds up to the real part of the
exponent A, causing the shift along the x and τ variables.

In the next order of c we include the term ∼G2c
2 in the

nominator and the term ∼f34c
4 in the denominator:

G(x,τ )

f3(x,τ )
= −2ic|ζ |2KW ∗Y

G0 + G2c
2

f30 + f32c2 + f34c4
,

where

G2 = 4K2(ζ ∗Y ∗)2|W |2 × {ζ exp (A∗)�∗(4KWY 2 − 3|W |2|Y |2) − 2eA�K[|Y |2(2|ζ |2 + ζW ) − ζW (Y ∗)2]

−W |Y |2(3Yζ ∗ + 2KRe[ζ ]) + 4ζWKeA�Re[eA�(Y ∗)2] − 2|Y |2eA�K{ζ exp(A∗) �∗(2ζ ∗ + W ) + Re[eA�ζW ]}
− 2�KWe2Re[A]+ARe[ζ ]|�|2|Y |2}

and

f34 = 4K2|W |2 × {
2|ζ |2(2K2 + 9Re[Y 2])|W |2|Y |4 + K|4W 2Y |2(Re[eA�ζ ∗(ζK − 3Im[ζ ]2)] + 3

2ζ 2Re[eA�W ∗]
)

+ |4KWY |2Re[eA�YW ∗(Im[ζ ]2 − |ζ |2W ∗)] + 8K2e2Re[A]|�|2|Y |2(|Y |2Re[ζ 2|Y |2 − 4Im[ζ ]2YW ∗]

+ 2|W |2{|Y |2(Re[ζ ]2 + |ζ |2) − Re[Y 2]|ζ |2}) − 24K|W |2Re[e2A�2ζ ∗Im[ζ ]2W 2(Y ∗)2] − 16K2e2Re[A]|�|2|Y |2
× (Im[ζ ]2|Y |2Re[eA�WY ∗] + |W |2{|ζ |2Re[eA�(Y ∗)2] − Re[ζ ]2Re[eA�]|Y |2}) + 4K2e4Re[A]Re[ζ ]2|�|4|W |2|Y |4}.

The solution then becomes

ψ(x,τ ) = 1

2ε
exp

[
−i

(
k

2ε
x − ωτ

8ε2
τ

)] [
c − 2ic|ζ |2KW ∗Y

(
G0 + c2G2

)
f30 + f32c2 + f34c4

]
. (35)

VII. LIMIT OF SASA-SATSUMA SOLITON SOLUTION

To obtain this limit analytically we set c = e−ρ and shift accordingly the real part of the exponent A by ρ, which moves the
solution back to the origin thus removing the dependence of A on ρ. Taking the limit ρ → ∞ in Eq. (35) we obtain

ψ(x,τ ) = − i

ε
exp

[
A − i

2ε

(
kx − ωτ

4ε

)]
�ζ ∗Y ∗Im[ζ ](e2Re[A]Re[ζ ]|�|2 + ζ |Y |2)

(e4Re[A]Re[ζ ]2|�|4 + 2e2Re[A]|�ζY |2 + |ζY 2|2)
. (36)

After a straightforward algebra this solution can be transformed into

ψ(x,τ ) = −ia0a1

2ε|√b2b3|
exp

[
iIm[A] − i

(
k

2ε
x − ω

8ε2
τ

)]
2 cosh(Re[A]) + (a2/a1 − 1)e−Re[A]

cosh(2Re[A] − ln |√b3/b2|) + b1/(2|√b2b3|)
(37)
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with

a0 = �ζ ∗Y ∗Im(ζ ), a1 = Re(ζ )|�|2, a2 = ζ |Y |2,
b1 = 2|�|2|ζ |2|Y |2, b2 = Re([ζ ]2)|�|4, b3 = |ζ |2|Y |4,

Re[A] = η

2ε

[
x − τ

4ε

(
η2 − 3ξ 2 + 1

3

)]
,

Im[A] = τ

8ε2

[
ξ

(
3η2 − ξ 2 + 1

3

)
+ K

3

(
K2

9
− 1

3

)]

+ x

2ε

(
K

3
− ξ

)
.

We end up with the same solution (37) if we repeat the limiting
process c → 0 including all higher order terms G4c

4, G6c
6,

f36c
6, and f38c

8 	= 0 in the expressions above. It is therefore
the exact zero background (c = 0) limit of the solution (7)
along the branch σ = 1, σ2 = 1. Thus, it is a particular exact
solution of the SSE (1). It is illustrated in Fig. 7.

If we replace the real and imaginary parts of the eigenvalue
using the following transformations:

η = 2εηs and ξ = 1
3 − 2εξs, (38)

and choose in particular for �:

� = [K − 1 + 6ε (ξs − iηs)]
|1 − 6εξs | |1 + 6ε(iηs − ξs)|

3 (1 − 6εξs) [6ε (ηs − iξs) + i]
,

(39)

we obtain the solution in a simpler form:

ψ(x,τ ) = ηse
iBs

2 cosh As + (cs − 1)e−As

cosh(2As − ln|cs |) + |cs | , (40)

where

As = ηs

{
x − [

ξs+ε
(
η2

s − 3ξ 2
s

)]
τ
}
,

Bs = ξs

[
x +

(
η2

s − ξ 2
s

2ξs

+ ε
(
ξ 2
s − 3η2

s

))
τ

]
,

cs = 1 − iηs

ξs − 1
6ε

; |cs | =
√

1 + 36η2
s ε

2

(1 − 6ξsε)2
.

Equation (40) represents the original version of the Sasa-
Satsuma single-soliton solution to Eq. (1) with a small change

FIG. 7. (Color online) Amplitude profile of the solution (37) in the
(x,τ ) plane. Parameters chosen for this illustration are ζ = 1/3 + i

(ξ = 1/3, η = 1), K = 1.3 (k = 0.1), ε = 0.5. According to Eq. (39)
� = −0.221 36 − i0.98.

of notations. Namely, we added the subscript s to the original
parameters of Sasa-Satsuma in order to avoid confusion with
other parameters of our work. The plus sign in front of
ε in the expression for As instead of the minus sign in
the original Eq. (42) of the paper [2] is a correction of
the typo. It is highlighted here by red color in the online
version.

The solution (40) has the NLSE limit which is the
fundamental soliton of the NLSE:

ψ(x,τ ) → ηs exp
[

i
2

(
η2

s − ξ 2
s

)
τ + iξs(x − x1)

]
cosh [ηs(x − x0 − ξsτ )]

when ε → 0. In addition, the Sasa Satsuma solution has a
singular limit

ψ(x,τ ) → 4η2
s exp

[(
2η3

s ε + ηs

6ε

)
τ + 2ηs (x + x0)

]
[
exp

(
2η3

s ετ + ηs

6ε
τ + 2ηsx0

) + 2 exp(2ηsx)
]2

when |cs | → ∞. This happens when ξs → 1
6ε

. This solution
is singular either when ε → 0, or when ε → ∞. The velocity
of the soliton (40) is given by

v = ξ+ε(η2 − 3ξ 2). (41)

The plus sign in front of ε (red online) is a correction of the
Sasa-Satsuma result. The velocity is infinite v → ∞ when
ε → ∞. On the other hand, the velocity goes to zero v → 0
when

ξs → 1 ± √
12η2

s ε
2 + 1

6ε
.

VIII. CONCLUSIONS

In this paper, we considered the simplest case of soliton on
a background solution to the Sasa-Satsuma equation. This is
just one branch of solutions of a complex manifold that has a
relatively simple limit when the background amplitude goes
to zero. Nevertheless, it has rich structure and admits several
limiting cases that are important for applications. The zero
background limit is complicated and admits known soliton
solutions as well as singular solutions. Interestingly, solutions
found by Mihalache and co-workers [8–10] have oscillating
structure even with zero background. As such, they do not
belong to the branch that we considered here. These other
branches require a separate analysis and will be examined
elsewhere.
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