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Nonlinear amplification of coherent waves in media with soliton-type refractive index pattern
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We derive the complex Ginzburg-Landau equation for the dynamical self-diffraction of optical waves in a
nonlinear cavity. The case of the reflection geometry of wave interaction as well as a medium that possesses
the cubic nonlinearity (including a local and a nonlocal nonlinear responses) and the relaxation is considered. A
stable localized spatial structure in the form of a “dark” dissipative soliton is formed in the cavity in the steady
state. The envelope of the intensity pattern, as well as of the dynamical grating amplitude, takes the shape of a tanh
function. The obtained complex Ginzburg-Landau equation describes the dynamics of this envelope; at the same
time, the evolution of this spatial structure changes the parameters of the output waves. New effects are predicted
in this system due to the transformation of the dissipative soliton which takes place during the interaction of a
pulse with a continuous wave, such as retention of the pulse shape during the transmission of impulses in a long
nonlinear cavity, and giant amplification of a seed pulse, which takes energy due to redistribution of the pump
continuous energy into the signal.
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I. INTRODUCTION

Nonlinear systems which give different types of redistribu-
tion of matter or energy (intensity) are intensively studied
in modern physics. Nonlinear processes can yield unusual
forms of energy distribution. As a rule, they are described
by nonlinear equations, such as the nonlinear Schrödinger
equation (NLS), the complex Ginzburg-Landau equation
(CGLE), their various modifications, or others [1–4]. It has
been shown in many instances that the CGLE describes
spatiotemporal localized structures, also called “dissipative
solitons” [1,2,5]. The NLS is associated with a lot of physical
phenomena, including rogue waves [3]. In nonlinear systems
amazing processes may exist, such as strong bursts of energy
during the interaction of solitons [6].

Mixing of several waves in a nonlinear medium very often
leads to the redistribution of the wave intensities. As a rule,
the parametric interaction processes are considered, when a
monochromatic wave is amplified by a pumping wave which
has another frequency [7,8]. When the monochromatic waves
interact in the nonlinear medium, one observes the effects of
the self-action of the waves. The energy transfer is a peculiarity
of the degenerate four-wave mixing (FWM) in media with a
nonlocal response which takes place during self-diffraction of
waves from the dynamical grating [9–12]. The background
of this effect lies in a shift between the light interference
pattern and a dynamical refractive index grating. This brings an
additional phase shift between the transmitted and diffracted
waves during their interference in the medium. The intensity
ratio of input waves is a control parameter, which defines the
magnitude of the energy transfer and amplification coefficient
for a signal wave [13–15].

The FWM in media with a nonlocal response, when the
self-diffraction of waves on a dynamical grating occurs, is one
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more physical system that is described by the CGLE [16].
In the present work we find the CGLE which describes the
formation and evolution of the “dark” dissipative soliton
along the longitudinal direction of wave propagation. The
envelope of the refractive index distribution E(t,z) has a
soliton-like form. All other characteristics of the FWM (wave
intensities, diffraction efficiency) are expressed through this
function E(t,z). The stable soliton-type pattern is obtained as
a consequence of the nonlocal nature of the nonlinear response,
which provides an additional phase shift for the waves
diffracted by an inhomogeneous structure of the refractive
index, and there is the interference between the diffracted
and the propagating waves. The present research allows one
to predict new effects of nonlinear wave interactions, based
on the properties of the soliton-like refractive index pattern.
As examples, we predict effects which take place during the
interaction of a signal pulse and a continuous pump wave and
which are determined depending on suitable initial conditions
for the interacting waves and nonlinearity of the medium. One
of them is the retention of the shape of a signal pulse at the
end of a bulk nonlinear medium, an application of which, for
example, can be the transmission of pulses in long optical
lines. A second effect is a significant nonlinear amplification
of a weak signal pulse at the expense of a continuous pumping
wave, when a backward pumping wave is almost completely
reflected from the nonuniform grating and redistributes its
energy to a forward signal pulse. This phenomenon can be
used for the creation of pulses of great energy.

II. DERIVATION OF THE COMPLEX GINZBURG-LANDAU
EQUATION FOR REFLECTION FOUR-WAVE MIXING

Four-wave mixing is a process which in the degenerate
case (all waves have the same frequencies) leads to many
effects of self-action of waves during their interaction in a
nonlinear medium. The phenomenon of the self-diffraction of
waves during FWM combines three simultaneous processes:
The recording of a time-dependent refractive index grating
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FIG. 1. Scheme of degenerate FWM and �k vectors diagrams.
�Kg = �k1 − �k2 = �k4 − �k3 is the grating vector. (a) Transmission

geometry. (b) Reflection geometry. The numbers denote the input
waves. Full fines show the maxima of the interference pattern, and
dashed lines show the maxima of the grating amplitude. The arrow
labeled iχ (3) indicates the direction of a shift of the grating amplitudes
relative to the maximum intensities of the light interference pattern.

by the light interference pattern, wave diffraction by grating,
and the interference between the propagated and diffracted
waves. When the medium displays a nonlocal response due to
some kind of transport mechanism, one can write an evolution
equation governing the dynamics of the induced nonlinearity,
which is added to the FWM coupled wave system.

The FWM has been previously investigated in the trans-
mission geometry, when the coupled waves record the trans-
mission dynamical grating and diffract on it [see Fig. 1(a)]. In
nonlocal media both the intensity pattern and the grating am-
plitude distribution share the properties of a bright dissipative
soliton [16–20]. We have derived the cubic CGLE with a time-
dependent gain-loss coefficient which describes the dynamics
of the FWM in the restrictive case of a purely nonlocal response
of the medium (γ is a purely imaginary constant). Meanwhile,
for the FWM in the reflection geometry [see Fig. 1(b)], the
distribution of the intensity of the interference pattern shares
the properties of a dark dissipative soliton.

Transmission and reflection geometries differ in the di-
rection of the grating-vector ( �Kg) relative to the wave-vector
components (�kj , j = 1,2,3,4). While in the transmission
geometry the propagation of the waves is considered in the
(x,z) plane and the grating vector is directed just along the x

axis, in the reflection geometry the problem is one-dimensional
and all the vectors are parallel to the z axis. Also these two
systems have different first integrals. If one defines a symbol
for describing the geometry (g = 1 for transmission, g = −1
for reflection), the FWM system in the nonlocal medium can
be written in the unified way,

∂zA1 = −iEA2, ∂zA2 = giEA1,
(1)

∂zA3 = −iEA4, ∂zA4 = giEA3,

∂tE = γ
Im

I0
− E

τ
, (2)

Im = A1A2 + A3A4, (3)

I0 = |A1|2 + |A2|2 + |A3|2 + |A4|2, (4)

Id = −|A1|2 + |A2|2 + g(−|A3|2 + |A4|2), (5)

where Aj ,j = 1,2,3,4 are the slow variable amplitudes of
interacting waves, E is the amplitude of the grating, γ is a
complex constant which describes the maximum amplification
of the medium, τ is a time relaxation constant of the grating, Im

is the interference pattern, I0 is the total intensity, and Id is the
relative net gain. The first integral is I0 in the transmission
geometry and Id in the reflection geometry. Equation (2)
is the evolution equation, where, for simplicity, we include
only two terms [10]: Amplification of the grating amplitude
proportional to the light intensity at every local point z and
usual exponential (dielectric) relaxation of the dynamical
grating.

The coupled wave Eqs. (1) for slow variable amplitudes
are derived from the Maxwell’s wave equation, taking into
consideration that the amplitude of the dynamical grating
is determined as E = �ε exp(i �Kg · �r) + c.c. In the ap-
proximation of small variations of the refractive index we
have �ε ∼= 2n0�n, where �ε and �n are, respectively, the
variations of the dielectric permittivity and the refractive index
of the medium induced by the laser radiation and n0 is the
average refractive index in the medium. In our consideration
we take into account that the nonlinear gain coefficient is a
complex constant γ = γL + iγNL, where γL and γNL describe,
respectively, the local and nonlocal responses of the medium.
The gain coefficient in a nonlocal medium can be written as
[10] γ = 2π�nmax(cos 	g + i sin 	g)/λ, where 	g describes
a shift of the dynamical grating with respect to the maxima of
the interference pattern [minimal spacing between maxima of
the light lattice and the refractive index grating in a positive
direction of a polar (unidirectional) axis of the medium], and
�nmax is the maximally possible grating amplitude in the given
medium. Both these values are determined by the physical
mechanisms that take place during the grating recording.
The complex values of γ , �ε, and E show that a diffracted
wave gets some additional phase shift relative to a propagated
wave after the diffraction from the refractive index grating.
In the case of a purely nonlocal response (γL = 0, γ = iγNL)
this phase shift equals −π/2 for the wave diffracted in the
direction of the polar axis and π/2 for the wave diffracted
in the opposite direction. In this special case in the steady
state, the wave equations (1) becomes real, where waves 1
and 4 are amplified at the expense of waves 2 and 3, which
transfer their energy to waves 1 and 4, respectively. The energy
transfer between interacting waves takes place if the medium
has a purely nonlocal response. When the response is complex
and includes a local component, both a phase transfer and an
energy transfer occur between the interacting waves.

We assume the following normalization in the system
(1)–(5): the variable E is dimensionless, the coefficient γ has
the dimension [γ ] = T −1, and the independent variable z is
normalized as z = [k2

0/(2kź)]ź, where k0 is the amplitude of
the wave vector in the free space, ź is the longitudinal spatial
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coordinate, and kź is the ź component of the wave vector in
the nonlinear medium.

Like in the transmission geometry [16], the system (1)–(5)
in five complex variables in the reflection geometry is reducible
to an intrinsic system in two complex variables E and Jm =
Im/I0,

∂tE = γ Jm − E/τ, (6)

∂zJm = −iE − 2iĒJmJm + 2iEJmJ̄m. (7)

Eliminating Jm between Eqs. (6) and (7) yields

E ≡ ∂t∂zE + 1

τ
∂zE + iγ E − 2i

τ |γ |2

×
[
γ̄ − γ

τ
|E |2 + γ E∂t Ē − γ̄ Ē∂tE

]
× [E + τ∂tE] = 0. (8)

This is our final equation, to which we apply the reductive
perturbation method to obtain the CGLE. Like in Refs. [16,21],
we define a multiple scale expansion in which the function E is
of order ε, where the function ϕk depends on a set of variables
associated with these various scales:

E(z,t) = ε

+∞∑
k=0

εkϕk(Z0, . . . ,Zk, . . . ,T0, . . . ,Tk, . . .),

(9)

Zk = εkz, Tk = εkt, E = ε

+∞∑
k=0

εkEk,

and we require each coefficient Ej to vanish.
The method of a multiple scale expansion applies to weakly

dispersive and weakly nonlinear systems which are described
by a wave equation in the small-amplitude limit. It was used to
derive the NLS equation, which shows behavior of envelope
solitons. This method permits one to impose appropriate
conditions in the multidimensional space that eliminate the
divergences of the asymptotic expansion for small values of ε

(see chapter 3 in Ref. [21]).
At zeroth order, the equation for the function ϕ0,

Lϕ0 = 0, L ≡ ∂T0∂Z0 + 1

τ
∂Z0 + iγ, (10)

yields the complex plane wave

ϕ0 = A(Z1,Z2,T1,T2, . . .)e
	0 , 	0 = i(qZ0 − ωT0), (11)

where the phase 	0 depends on the variables T0 and Z0, the
amplitude factor A is a function depending on the other space
and time scales, and the constants q,ω obey the dispersion
relation

qω + i

(
q

τ
+ γ

)
= 0. (12)

From this equation it follows that the wave vector q and the
pulsation ω take complex values, a consequence of both the
relaxation 1/τ and the complex nature of γ .

At first order, in the equation for ϕ1,

Lϕ1 = −G1e
	0 − G1e

	0 ,
(13)

G1 ≡ iq
∂A

∂T1

− γ

q

∂A

∂Z1

,

G1 must vanish to avoid ϕ1 diverging, providing

ϕ1 = 0, A = (Z1 − vgT1,Z2 − vgT2,T2, . . .), (14)

in which the group velocity vg = iγ /q2 is generically complex
and the complex function of integration  is to be determined.
Let us introduce the two complex conjugate independent
variables X1,Y1,

X1 = Z1 − vgT1, Y1 = X1 = Z1 − vgT1. (15)

In the second-order equation for the evolution of ϕ2,

Lϕ2 = −G2e
	0 − G2e

	0 , (16)

the cancellation of the secular terms requires G2 to vanish,
which defines two complex conjugate nonlinear PDEs for
(X1,T2) and ̄(Y1,T2) and yields the value ϕ2 = 0. The
resulting equation G2 = 0 is the desired CGLE,

G2 ≡ i
∂

∂T2
− i

γ

q3

∂2

∂X2
1

− 4
γ

q3

Im(q)

q̄
e2Re(	0) ||2  = 0,

(17)

where Re(	0) denotes the real part of the phase 	0 and
Im(q) indicates the imaginary part of the wave vector q. The
obtained CGLE describes the spatiotemporal dynamics of the
grating amplitude envelope during the FWM in a nonlinear
medium with a complex response (both local and nonlocal).
The complex coefficients in the above CGLE arise from the
relaxation of the photoinduced refractive index as well as
from the local component of the nonlinear response. The
same dynamics will be for the distribution of the intensity
in the medium. A variety of solutions of the CGLE (17) will
give possible localized structures and their behaviors that can
be implemented during the reflection FWM.

III. ALTERATION OF THE GRATING AMPLITUDE
DISTRIBUTION IN THE STEADY STATE

In the simplest case, the four-wave mixing in the reflection
geometry can be reduced to two-wave mixing (TWM), which
describes the interaction of forward and backward waves.
The FWM momentum conservation law then takes the form
2k1 = 2k2, where k1, k2 are the z components of the wave
vectors for the forward and backward waves, respectively. In
the next sections we consider the effects which arise in this
simplest case of the TWM in a medium with a purely nonlocal
response γ = iγNL, i.e., there is a constant space shift, equal
to one quarter of the period of the light interference pattern,
between the fringe interference pattern, and the photoinduced
dynamical grating. We consider the case where the grating is
shifted in the +z direction, so the signal beam (entered on the
input boundary z = 0) is amplified, but the backward beam
(entered on the boundary z = d) is the pump beam. In the case
of a purely nonlocal response, the system (1)–(3) simplifies to
a set of real equations. In the steady state the distribution of
the grating amplitude is then connected with the maxima of
the interference pattern by the following relation:

E(z) = γNLτIm(z)/I0(z). (18)
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FIG. 2. Localized structure of the dark dissipative soliton.

The solution for the grating amplitude is

E(z) = 1√
2

√
1 + tanh

[
γNLτz + 1

2
ln

(
4

I 2
d

)
− p

]
, (19)

where the first integral is I 2
d = I 2

0 − 4I 2
m, and the integration

constant p can be found from the input boundary conditions.
If one takes account of (18), the normalized intensity pattern
Im/I0 has the same distribution (19) (up to the constant γNLτ ),
but the patterns Im/I0 and E are shifted by a phase of π/2
(equivalent to the space shift of �/4, where � is the period
of the interference pattern along the longitudinal z direction).
The spatial structure of the nonuniform intensity pattern is
shown in Fig. 2, where the inflection point of the tanh function
is located inside the bulk of the nonlinear medium.

By changing the input intensity ratio, the envelope
Im(z)/I0(z) [as well as E(z)] moves along the z direction
without changing its form (see Fig. 3). So one can define
this spatial nonuniform pattern as the dark dissipative soliton.
Modulation of the refractive index takes the same structure as
the dark dissipative soliton, in which the interacting waves
undergo diffraction. The stationary solutions for the wave
amplitudes are

A1(z) = C1e
U (z) + C2e

−U (z),
(20)

A2(z) = C1e
U (z) − C2e

−U (z).

They are determined by the area U (z) under the curve of the
grating amplitude envelope,

U (z) =
∫ z

0
E(z)dz = 1

4
ln

[√
(ew)2 + ew + ew + 1

2

]
, (21)

where w = 2γNLτz + log
(
4/I 2

d

) − 2p. Denoting d the thick-
ness of the medium, A10 = A1(z = 0), A2d = A2(z = d), the
amplitudes of the input waves, A1(d) = A1(z = d), A2(0) =
A2(z = 0), the amplitudes of the output waves, and Ud the
area under the grating amplitude envelope within the whole
medium Ud = ∫ d

0 E(z)dz, the constants of integration in (20)
evaluate to

C1 = (A10e
−Ud + A2d )/(2 cosh Ud ),

(22)
C2 = (A10e

Ud − A2d )/(2 cosh Ud ), Id = 4C1C2,
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the segment [0;1] on the abscissa indicates on 
          the length of the nonlinear cavity

FIG. 3. Stationary distribution of the grating amplitude for dif-
ferent input intensity ratios. 1, I10/I2d = 1, Ksig = 2; 2, I10/I2d =
0.05,Ksig = 20; 3, I10/I2d = 1.2,Ksig = 1. The normalized coupling
constant of the medium is � = γNLτd = 3.

and the constant p is determined by the conditions at the
medium boundary,

E(0) = γNLτ
A10A2(0)

A2
10 + A2(0)2

(23)

= 1

2

√
1 + tanh

[
1

2
ln

(
4

I 2
d

)
− p

]
.

From solution (20), one sees that the intensity of the output
signal wave I out

1 is determined by the area under the grating
amplitude envelope between the boundaries of the nonlinear
medium. The spatial location of the grating envelope depends
on the input intensity ratio I10/I2d , as seen from Fig. 3.

The inflection point of the tanh function of E(z) is located
outside the boundaries for small signal and big pump intensity.
The grating amplitude has uniform distribution within the
boundaries, and the gain coefficient of the signal (Ksig =
I out

1 /I10) is maximal possible in a given nonlinear medium.
When one increases the signal beam intensity as compared to
the pump beam intensity, which is accompanied by a motion
of the grating amplitude envelope, the inflection point of the
E(z) tanh function is already located inside the boundaries,
so the nonuniform distribution of the grating amplitude is
formed inside the nonlinear medium with the maximum being
located close to the output boundary z = d. The area under the
envelope will decrease, and then the amplification coefficient
of the signal beam also decreases. In this way we show that, by
changing the input intensity ratio, the coefficient of the energy
transfer will also be changed. The reason for that is the motion
of the grating amplitude envelope and the self-formation of
either a uniform distribution or a nonuniform structure of the
grating amplitude in the nonlinear medium. At the same time,
the most pronounced effects connected with the alteration of
the signal beam will occur when the nonuniform dynamical
grating is located inside a nonlinear medium. Small changes
of the intensity ratio then will lead to the motion of the grating
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FIG. 4. Stationary distribution of the grating amplitude for
different normalized coupling constants � = γNLτd . I10/I2d = 0.05.

envelope and, therefore, to significant changes of the output
signal.

The amplification coefficient is also determined by
the coupling constant, which complies with the maximum
value of the nonlinearity in the optical cavity. In the steady
state the coupling constant is � = γNLτd. Figure 4 displays the
dependence of the grating amplitude envelopes on the value
of �. This figure displays the following remarkable feature
peculiar to just the reflection geometry of the wave mixing:
The nonunifrom distribution of the grating envelope may be
created in media with small or average nonlinear coefficients.
Therefore, in order to implement the effects of beam control,
large nonlinearities of the medium are unnecessary. Such
effects are more efficient in media with small nonlinearities.

IV. PULSE PROPAGATION IN THE TWM

A. Transmission of a pulse retaining the pulse shape

The motion of the soliton-like envelope of the dynamical
grating due to changes of the input intensity ratio becomes a
very fruitful feature to archive various kinds of manipulations
of laser pulses. Here we consider two effects which take place
during the interaction of a pumped continuous wave with
a pulse signal in a nonlinear cavity, where a phase-shifted
dynamical holographic grating is created in some way. We
choose a Gaussian beam with respect to time in the form
I10(t) = Ib + Isig exp(−t2/τ 2

sig), where Ib is the intensity of
the background, Isig is the maximum of the signal pulse and
τsig is its duration. In this way, we consider the case of the
self-diffraction of a signal pulse on a given grating, which is
created by a small background intensity Ib of wave 1 and by
the continuous pump wave 2. We point out that the background
can be negligibly small (e.g., a scattered wave or a reflected
wave), but it should exist to build up the given grating. We will
show that the output signal will depend on the intensity ratio
between the pump and the maximum signal, on the coupling
coefficient of the nonlinear medium as well as on the properties
of the signal pulse itself, i.e., on its duration and even on its
shape.

(a
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. u
ni

ts
)

FIG. 5. Retention of the shape of the Gaussian pulse during
its propagation in any long optical cavity, which contains the
refractive index grating having the “dark” soliton-like structure. The
parameters of the Gaussian signal are Isig = 1, Ib = 0.1, τsig/τ = 10
(all intensities are given in arbitrary units), the normalized coupling
constant is � = γNLτd = 5.

In the case of a weak pump the signal pulse retains its
shape on the output of the cavity. In Fig. 5 we show that
the shape of the output signal coincides with the shape
of the input Gaussian signal when the pump intensity is
smaller than or comparable to the maximum signal intensity
(I2d � Isig). One can transfer pulses in a long transmission line
without distorsion of the pulse shape, provided one creates the
conditions that a weak backward scattering wave is created
and involved in the recording of the shifted dynamical grating
inside this transmission line. When the pump is increased, the
output signal is amplified and the pulse shape is distorted (see
Fig. 6).

The effect of the signal amplification depends strongly
on the value of the photoinduced optical nonlinearity but
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)

FIG. 6. Amplification and distortion of the Gaussian pulse during
TWM on increase of the pump intensity. 1, the intensity of the input
signal; 2, the output signal I out

1 for the pump intensity I2d = 10; 3,
I out

1 for I2d = 30; 4, I out
1 for I2d = 50. The parameters of the signal

pulse and the coupling constant are identical to those in Fig. 5.
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FIG. 7. Dependence of the gain of the signal pulse intensity on
a small pumping for different coupling constants. The parameters of
the signal pulse are identical to those in Fig. 5.

in a nonobvious way: The amplification can be lowered by
increasing the coupling constant � (see Fig. 7). At the same
time there exists an optimal value of � when the maximum
amplification is reached. The explanation of this phenomenon
is the same as that discussed in the Sec. III for the TWM in
the steady state: For high values of � the grating amplitude
distribution is uniform over a volume of the nonlinear medium.
In this case, changes of the input intensity ratio have little
influence on the redistribution of the grating amplitude; this
will have little effect on the intensity of the output signal. Big
changes can be reached when the distribution of the grating
amplitude is not uniform over the volume of the medium. In
such a case small changes of the input intensity ratio lead to
significant redistributions of the grating amplitude, and, as a
result, the output signal will undergo large changes as well.

The gain for the reflection TWM depends on the steepness
of the fronts of the signal beam. In the case of a Gaussian
signal beam, the gain coefficient increases when the half-width
of the pulse decreases (see Fig. 8). The shape of the output
pulse will also change significantly. Features connected with
the amplification of short laser pulses in the reflection TWM
scheme are considered in the next subsection.

/

/

FIG. 8. Dependence of the gain on the half-width of the Gaussian
pulse for the coupling constant � = 5.

FIG. 9. The gain of a short Gaussian pulse for different values of
the coupling constant. τsig/τ = 3, Isig = 1, Ib = 0.1.

B. Giant amplification of a short laser pulse

Amplification of a weak short pulse depending on the pump
intensity and the maximum value of the nonlinearity in the case
of large pumping is shown in Fig. 9.

Like in Fig. 7 this dependence is not one to one with respect
to the coupling constant. The amplification of the signal can be
small for both low and high values of �. The gain coefficient
becomes optimal for certain small values of �. In this specific
case, the output signal may almost reach the value of the pump
intensity. In Fig. 10 we show the giant amplification of a seed
Gaussian pulse due to high pumping in the range of the optimal
values of the coupling constant.

In Fig. 11 we calculate the rebuilding of the grating
amplitude and the redistribution of the total intensity I0 during
the propagation of the pulse in the cavity, where the nonlocal
dynamical grating is created. As one can see, they are both
redistributed compared to their background values when a
weak pulse appears on the input boundary. In this case, the
total intensity is redistributed inside the cavity in such a way
that its very big maximum is concentrated close to the output
boundary z = d, whereas its very pronounced minimum is
located near the input boundary z = 0. In other words, this
effect can be imagined as follows: the entire pump wave is
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)

FIG. 10. Giant amplification of a short seed pulse for optimal
values of the coupling constant. The parameters of the input signal
pulse are identical to those in Fig. 9; the pump intensity is I2d = 200
and the coupling constant is � = 3.
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(a)

(b)
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FIG. 11. Changes of the grating amplitude envelope (a) and
redistribution of the total intensity inside the cavity (b) under the
TWM of a seed pulse with strong pumping in a bulk nonlocal medium.
The parameters used in calculation are identical to those in Fig. 10.

reflected from the dynamical grating being photoinduced due
to a weak signal beam, and this is displayed as an expanded
and significantly enhanced output pulse.

V. CONCLUSION

We have developed a model of formation of dissipative
spatial soliton which takes place during the interaction and
self-diffraction of coherent waves in media with a nonlocal

nonlinear response. We consider the media with cubic nonlin-
earity, and only two effects are taken into account, namely
the light-induced modulation of the refractive index being
proportional to the light intensity and the temporal relaxation
of the refractive index dynamical grating. In the simplest case
of the fringe interference pattern, and when a nonlocal dynam-
ical grating is shifted in space relatively to the light pattern,
the envelope of the maximum amplitudes takes a soliton-like
form created along the direction of wave propagation z. The
spatial structure of the interference pattern [Im(z)/I0(z)] has
the form of a dark dissipative soliton in the case of reflection
geometry of wave interaction. The same spatial pattern occurs
for the distribution of the amplitudes of the grating E(z). We
have derived the complex Ginzburg-Landau equation, which
describes the dynamics of self-formation of stable dissipative
soliton as well as its evolution when the input conditions
are changed. The expansion of this model for the case of
interaction and diffraction of noncoherent waves with different
frequencies is of undoubted interest.

We have explained that the coefficient of energy transfer
depends on whether a uniform or a nonuniform distribution
of the grating amplitude is formed within the volume of the
nonlinear medium. This, in turn, is determined by the intensity
ratio of the input waves. We have found two interesting
effects arising because of the interaction of a signal pulse
with a continuous pump illumination in a nonlocal medium,
the reason for that being a redistribution of the dynamical
grating. The first effect is the restoration of the form of the
input pulse on the output which takes place when the pump
intensity is either comparable to or less than the maximum of
the signal pulse. But when one increases the pump intensity
as compared to the signal, one observes a significant nonlinear
amplification of a seed pulse. This effect is due to the fact
that the seed pulse provokes the creation of such a grating,
which reflects almost the entire pump wave in the direction of
the signal. Different types of applications can be used in the
system depending on suitable input conditions, for example,
transmission of pulses over long distance in fiber amplifiers or
significant amplification of short pulses in a nonlinear optical
cavity.
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