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A general theory for multiple quasi-phase-matched third-harmonic generation is investigated systematically.
We find that there are up to 24 configurations for third-harmonic generation by cascaded two-parametric processes.
All these configurations can be divided into three categories based on the coupling types of the harmonic fields.
Each category has a set of coupled wave equations that describe its characteristics. The analytical solutions reveal
some features, such as the polarization tuning and quasi-phase-matched gap effect.
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I. INTRODUCTION

The first experimental observation that came to be known
as quasicrystals was made by Shechtman et al. in 1982 and
reported in print two years later [1]. Since then, the fields of
quasicrystals and quasiperiodic structures has attracted a lot of
attention. Besides the studies focused on their structural and
physical properties [2,3], much effort has been devoted to the
applications of quasicrystals and quasiperiodic structures in
optics and photonics. For example, the quasiperiodic envelope
solitons have been realized [4], and the photonic band-gap
effect in two-dimensional Penrose tiled photonic quasicrystals
have been studied [5,6]. In particular, the quasiperiodic optical
superlattice can be used for efficient third-harmonic generation
(THG) [7], where multiple quasi-phase-matched (MQPM)
nonlinear processes of second-harmonic generation (SHG) and
sum-frequency generation (SFG) are realized simultaneously
by two incommensurate reciprocal vectors, indicating that the
quasiperiodic structures may be the best candidates for MQPM
nonlinear optical interactions.

It is well known that THG is widely used for the extension
of a laser source to short wavelengths. But due to the extremely
low third-order nonlinearity, the direct THG resulting from a
third-order nonlinear process is of little practical importance.
The first efficient THG was achieved by MQPM nonlinear
interactions with cascaded second-order nonlinearities. To
date, most experimental and theoretical studies of MQPM
THG in nonlinear crystals have concentrated on the largest
second-order nonlinear coefficient d33 (corresponding to cas-
caded two ee → e processes) for its highest nonlinear coupling
strength [8–11]. However, other nonlinear coefficients such as
d32 and d24 can also be used in some cases [12–15], where
non-ee → e processes such as oo → e and oe → o can be
efficiently achieved. Here “e” denotes the extraordinary wave
and “o” the ordinary wave.

Recently, the polarization tuning of cascaded interactions
with one ee → e process and one non-ee → e process in
lithium niobate (LN) nonlinear photonic crystals has been
observed [16], but not well studied in theory. The MQPM THG
by two non-ee → e-type processes has not been studied until
now. In this article, we try to not only investigate the MQPM
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THG with two non-ee → e processes, but also construct a
general theory of THG for all types of configurations with the
two cascaded ee → e processes being a special case.

II. THEORETICAL RESULTS AND DISCUSSION

The scheme of cascaded THG could be described as

ω1 + ω1 ↔ ω2, (1)

ω1 + ω2 ↔ ω3. (2)

The subscripts 1, 2, 3 (which could be either the ordinary
or extraordinary wave) refer respectively to the fundamental,
second harmonic (SH), and third harmonic (TH). The funda-
mental is divided into a horizontally polarized component and
a vertically polarized component with respect to the orientation
of the crystal axis.

It can be easily seen that Eq. (1) has six combinations: three
possibilities on the left (ee, oo, eo, or oe) and two possibilities
on the right (e or o). Equation (2) has four combinations (the
polarization of ω2 has been fixed by the first process, so there
are two possibilities remaining on the left and two possibilities
on the right). Therefore there are a total of 24 possible
configurations. For each case, we could deduce a set of coupled
wave equations to describe its coupling characteristics. Surely
these discussions would be quite complicated. Can we simplify
these 24 configurations and describe them with just a few
equations? Fortunately, the answer is positive.

Actually, in the coupled wave equations o and e are
commutative. For example, the following two configurations,
e1o1 → o2, e1o2 → e3 and e1o1 → e2, o1e2 → e3, both use
two polarized components of the fundamental to generate SH,
followed by SH and one polarized component of the fundamen-
tal to generate TH. A careful analysis shows that whether SH
(or TH) is horizontally or vertically polarized makes no differ-
ence. The two configurations have common energy conversion
characteristics. In this way, all 24 cases could be simplified into
only three categories. Each of them is described by a unified
set of coupled wave equations. Table I lists all the cases. The
second column in Table I illustrates the schematic interactions
of each category. The red (circle) and pink (light gray), green
(gray), and blue (gray) balls represent the fundamental, SH,
and TH photons, respectively. The two orthogonally polarized
fundamental photons are commutative, while the SH or TH
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TABLE I. Classification of MQPM THG.

Fundamental Second harmonic Third harmonic Related processes

Category I

e1e1 → e2, e1e2 → e3; e1e1 → e2, e1e2 → o3;

e1e1 → o2, e1o2 → e3; e1e1 → o2, e1o2 → o3;

o1o1 → e2, o1e2 → e3; o1o1 → e2, o1e2 → o3;

o1o1 → o2, o1o2 → e3; o1o1 → o2, o1o2 → o3

Category II

e1e1 → e2, o1e2 → e3; e1e1 → e2, o1e2 → o3;

e1e1 → o2, o1o2 → e3; e1e1 → o2, o1o2 → o3;

o1o1 → e2, e1e2 → e3; o1o1 → e2, e1e2 → o3;

o1o1 → o2, e1o2 → e3; o1o1 → o2, e1o2 → o3

Category III

e1o1 → e2, e1e2 → e3; e1o1 → e2, e1e2 → o3;

e1o1 → o2, e1o2 → e3; e1o1 → o2, e1o2 → o3;

e1o1 → e2, o1e2 → e3; e1o1 → e2, o1e2 → o3;

e1o1 → o2, o1o2 → e3; e1o1 → o2, o1o2 → o3

photons could be any one of the two orthogonally polarized
states. The specific configurations included in each category
are all shown in the third column. Given in Table II are the
coupled wave equations for these three categories, which are
responsible for their totally different behavior.

In Table II, κ1 and κ2 are the nonlinear coupling coefficients.
Aij is the defined new field variable; the asterisk denotes its
complex conjugation:

Aij =
√

nij

ωi

Eij (i = 1,2,3; j = a,b,c,d). (3)

Eij , ωi , and nij are the electric field, the angular frequency,
and the refractive index, respectively. The subscripts 1,2,3
refer respectively to fundamental, SH, and TH with j =

a,b,c,d denoting their polarizations. It is noted that c and
d could take e or o arbitrarily, but the choices of a and b are
interdependent, i.e. when a is o, b will be e; when a is e, b will
be o; kω

a (kω
b ), k2ω

c and k3ω
d are the wave vectors of fundamental,

SH, and TH, respectively; �k1 and �k2 are the wave-vector
mismatches; G1, G2 and f1, f2 are the reciprocal vectors and
the associated Fourier coefficients of the domain engineered
structure; d1 and d2 are the nonlinear optical coefficients
depending on the nonlinear crystal and the configuration
in Table I. c is the speed of light in vacuum. Below we
take LN as an example to investigate their detailed physical
properties.

Category I: SH is generated by one polarized component
of the fundamental, and TH is generated by mixing of SH
and the same component of the fundamental. This category

TABLE II. The coupled wave equations for three categories.

Unified coupled wave equations Corresponding coefficients

Category I

⎧⎪⎨
⎪⎩

dA1a

dx
= −iκ1A

∗
1aA2c exp(−i�k1x) − iκ2A

∗
2cA3d exp(−i�k2x)

dA2c

dx
= −i

κ1
2 A2

1a exp(i�k1x) − iκ2A
∗
1aA3d exp(−i�k2x)

dA3d

dx
= −iκ2A1aA2c exp(i�k2x)

κ1 = f1d1
c

√
ω1ω1ω2

n1an1an2c
, κ2 = f2d2

c

√
ω1ω2ω3

n1an2cn3d

�k1 = k2ω
c − kω

a − kω
a − G1

�k2 = k3ω
d − k2ω

c − kω
a − G2

Category II

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dA1a

dx
= −iκ1A

∗
1aA2c exp(−i�k1x)

dA1b

dx
= −iκ2A

∗
2cA3d exp(−i�k2x)

dA2c

dx
= −i

κ1
2 A2

1a exp(i�k1x) − iκ2A
∗
1bA3d exp(−i�k2x)

dA3d

dx
= −iκ2A1bA2c exp(i�k2x)

κ1 = f1d1
c

√
ω1ω1ω2

n1an1an2c
, κ2 = f2d2

c

√
ω1ω2ω3

n1bn2cn3d

�k1 = k2ω
c − kω

a − kω
a − G1

�k2 = k3ω
d − k2ω

c − kω
b − G2

Category III

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dA1a

dx
= −iκ1A

∗
1bA2c exp(−i�k1x) − iκ2A

∗
2cA3d exp(−i�k2x)

dA1b

dx
= −iκ1A

∗
1aA2c exp(−i�k1x)

dA2c

dx
= −iκ1A1aA1b exp(i�k1x) − iκ2A

∗
1aA3d exp(−i�k2x)

dA3d

dx
= −iκ2A1aA2c exp(i�k2x)

κ1 = f1d1
c

√
ω1ω1ω2

n1an1bn2c
, κ2 = f2d2

c

√
ω1ω2ω3

n1an2cn3d

�k1 = k2ω
c − kω

b − kω
a − G1

�k2 = k3ω
d − k2ω

c − kω
a − G2
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has eight configurations, each of which contains the e1e1 →
e2, e1e2 → e3 MQPM THG. This configuration has been
theoretically studied by Zhang et al. [17]. In that work, the
authors deduced an analytical solution about the relationship
of the maximum TH conversion efficiency (represented by
η3 max) with the ratio of SHG coupling coefficient and SFG

coupling coefficient (represented by t). A crucial value t/2 =
cos({[1 − (t/2)2]1/2/t} ln 3) (where t ≈ 0.8858) was obtained,
with which the energy of the fundamental could be transferred
to TH completely. When t < 0.8858, η3 max cannot be written
in an analytical form but can be numerically calculated. When
t � 0.8858, η3 max was deduced to be

η3 max(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

3 exp

{
− t[

1−( t
2 )2

]1/2 arccos (t/2)

}
0.8858 � t < 2

3 exp(−2) t = 2

3
{

t
2 + [(

t
2

)2 − 1
]1/2

}− t

[(t/2)2−1]1/2
t > 2

. (4)

With t → 0 and t → ∞, η3 max(t) will reduce to zero.
Although the authors studied only one case, the results
are valid for all the configurations belonging to category
I (see Table I). It is worth noting that this category uses
only one polarized component of the fundamental and
η3 max is only related to the ratio of the two coupling
coefficients t .

Category II: SH is generated by one polarized component
of the fundamental, and TH is generated by mixing of SH
and another orthogonal component of the fundamental. This
category also contains eight configurations (see Table I). We
take the o1o1 → e2, e1e2 → e3 configuration of category II
as an example. Hence subscripts a, b, c, d are set as o, e, e, e,
respectively; d1 and d2 are equal to d32 and d33, respectively.
Under MQPM conditions (�k1 = �k2 = 0), the involved
harmonics are coupled strongly. Let y1o = A1o, y1e = A1e,
y2e = −iA2e and y3e = A3e, The coupled wave equations
could be simplified into real equations:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

y ′
1o = κ1y1oy2e

y ′
1e = −κ2y2ey3e

y ′
2e = − κ1

2 y2
1o − κ2y1ey3e

y ′
3e = κ2y1ey2e

. (5)

Three integrals of motion exist in this system:

y2
1o + y2

1e + 2y2
2e + 3y2

3e = y2
1o(0) + y2

1e(0), (6)

y2
1e + y2

3e = y2
1e(0), (7)

κ2 ln
y2

1o

y2
1o(0)

= 2κ1 arcsin
y3e

y1e(0)
. (8)

The first one corresponds to the energy conservation.
Suppose that y3e max is the maximum value of y3e at
y ′

3e = 0; the three integrals of motion lead to an analytical
solution of maximum TH conversion efficiency η3 max =
3y2

3e max/[y2
1o(0) + y2

1e(0)] with normalized boundary condi-
tions as follows:

For y1e = 0,

η3 max = 3 cos2 θ. (9)

For y2e = 0,

η3 max = 3

2
cos2 θ

{
1 − cos

[
1

t
ln

(
1 − 2η3 max

3 sin2 θ

)]}
. (10)

While t = κ1/κ2 is the ratio of two coupling coefficients,
it is mainly determined by the domain engineered structure.
θ = arctan [y1o(0)/y1e(0)] is the angle between the polar-
ization direction of the fundamental and the z axis of the
crystal, which represents the fundamental energy distribution
in two orthogonal directions. The two solutions are separated
approximately by a continuous boundary:

tan θB =
√

2

1 − e−πt
. (11)

Here θB is the function of t. Region {0 � t � ∞, θB(t) <

θ � 90◦} is valid for Eq. (9) and region {0 � t � ∞, 0◦ �
θ � θB(t)} is valid for Eq. (10). It is interesting to note that
for Eq. (9), η3 max has no relation to t , which means for
certain θ > θB , the maximum conversion efficiency of TH is
a constant. Basically, this characteristic suggests that the ratio
of two coupling coefficients is not the limiting factor of the
efficiency and η3 max depends only on the energy distribution
of the fundamental. Such a property is favorable for practical
applications, which could provide more flexibility for the
design of QPM domain structure and reduce the influence of
any domain structure divergence resulting from the fabrication.
Equation (10) is an implicit function and η3 max cannot be
explicitly solved, but rather must be numerically solved.
Figure 1 shows the visualization of the two solutions, which
construct the two faces of the η3 max graph.

When θ > θB , y1o exceeds the demand, making TH
conversion efficiency reach its maximum under the condition
of y1e = 0. When θ < θB , y1o is less than the optimal value.
According to Eq. (5), y2e = 0 becomes the extremum condition
for η3 max. Only when θ = θB is the SHG process balanced
by the SFG process and η3 max reaches its optimal value. This
situation corresponds to the ridge line of Fig. 1. The projection
of η3 max graph on the η3 max − t coordinate plane is shown in
Fig. 2, where the ridge line is given by

η3 max = 3(1 − e−πt )

3 − e−πt
. (12)
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FIG. 1. (Color online) The visualization of maximum TH
conversion efficiency η3 max on the ratio of SHG and SFG
coupling coefficients t and the fundamental polarization angle θ for
category II.

In category I, there exists a crucial value t ≈ 0.8858,
with which 100% TH conversion efficiency could be realized
[17], while in category II, there is no such crucial value.
η3 max monotonically increases with t ; when t → ∞, η3 max →
100%. Although 100% TH conversion efficiency cannot be
strictly met, it exceeds 90% when t � 0.7. As can be seen in
Fig. 2, such a frequency conversion characteristic is favorable
for efficient THG. Basically, it results from the fact of the
polarization-dependent property in category II. The additional
flexibility of polarization tuning enables the great adjustability
of the harmonic conversion processes and leads to better THG
performance.

To further illustrate the evolution processes of the involved
harmonics inside the crystal, we select two cases of η3 max

located on both sides of the ridge line. As shown in Fig. 3, these
two cases have quite different harmonic evolution properties.
In Fig. 3(a), the decline of y1o makes the energy transfer to y2e

continuously, while y3e reaches its maximum at y1e = 0 and
periodically oscillates between y3 max and zero. In Fig. 3(b), the

FIG. 2. (Color online) The projection of η3 max graph on the
η3 max − t coordinate plane for category II. The edge of the graph
represents η3 max at θB .

FIG. 3. (Color online) The dependence of harmonic intensities

on the equivalent crystal length κ2

√
y2

1o(0) + y2
1e(0)L on both sides of

the ridge line [represented by θB (0.3) = 61.1◦]. (a) t = 0.3, θ = 75◦;
(b) t = 0.3, θ = 55◦. The red (dark gray), dashed, green (light gray),
and black lines represent y1o, y1e, y2e, and y3e,respectively.

situation is quite different. y3e goes to its maximum at y2e = 0
and all the waves involved oscillate periodically. These two
cases represent the typical features of the two regions located
on both sides of the ridge line.

Category III: SH is generated by two orthogonally polar-
ized components of the fundamental, and TH is generated by

FIG. 4. (Color online) The dependences of η3e max on the funda-
mental polarization angle θ for (a) t = 1, (b) t = √

3, and (c) t = 3,
respectively.
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FIG. 5. (Color online) The dependence of the harmonic intensities on the equivalent crystal length on both sides of the ridge line
for different t . (a) t = 1, θ = θB (1) − 0.1◦; (b) t = 1, θ = θB (1) + 0.1◦; (c) t = √

3, θ = θB (
√

3) − 0.1◦; (d) t = √
3, θ = θB (

√
3) + 0.1◦;

(e) t = 3, θ = θB (3) − 0.1◦; (f) t = 3, θ = θB (3) + 0.1◦. The red (dark gray), dashed, green (light gray), and black lines represent y1o, y1e, y2o,
and y3e, respectively.

mixing of SH and one polarized component of the fundamental.
The cascaded o1e1 → o2, o1o2 → e3 THG processes belong-
ing to category III were studied and the analytical solution
of η3e max was deduced in our previous work [18]. Similar
to category I, category III also has a crucial value. When
t = 1 and θ = arctan

√
2, η3e max is 100%. In the meantime,

the schemes of category III are polarization dependent, and
like category II, the η3e max graph is also constructed by two
faces. When t �

√
3, the two faces are continuous on the

ridge line. But when t >
√

3, the two faces split and a wide
gap appears. This is the so called QPM gap effect, which only
appears in category III.

Figure 4 shows the profiles of η3e max graph for three
typical points: t = 1,

√
3, and 3, which directly show the

mentioned effect. Generally, t = κ1/κ2 represents the ratio
of coupling strength between SHG and SFG processes. With
t increasing from 1 to

√
3, the balance of energy transfer

between SHG and SFG is gradually broken, leading to a
significant decline of η3e max, whereas when t >

√
3, the

balance is broken and η3e max is discontinuous on the ridge

line. When t �
√

3, one value of η3e max corresponds to two
polarization angles of the fundamental, while when t >

√
3,

one value of η3e max corresponds to one or two polarization
angles of the fundamental.

To study the QPM gap effect in detail, we pick out six
typical points from Fig. 4, which are located on both sides
of the ridge line for ±0.1◦ of the fundamental critical angle
θB(t). The evolution processes of the involved harmonics
inside the crystal are viewed for each point. Figure 5 shows
the dependence of normalized harmonic intensities on the
equivalent length κ2

√
y2

1o(0) + y2
1e(0)L. Figures 5(a) and 5(b)

correspond to the situation at t = 1. The maximum and the
oscillation period of THG are continuous on the boundary. The
dynamical evolution behavior of the fundamental, SH, and TH
stays nearly the same. Figures 5(c) and 5(d) correspond to the
situation at t = √

3. The maximum of THG is still continuous
while the oscillation period of THG experiences a significant
transition. Figures 5(e) and 5(f) correspond to the situation
at t = 3; nonetheless, both the maximum and the oscillation
period of THG are discontinuous on the boundary θB .
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III. CONCLUSIONS

In conclusion, we systematically studied the MQPM
THG and proposed a full theory. All the 24 cascaded
THG configurations are grouped into three categories ac-
cording to their common coupling characteristics. Except
for category I, the other two categories are all polar-
ization dependent. Physical properties such as control-
lable efficient THG and QPM gap effect are predicted.
The theoretical results may be interesting in fundamental

physics and hopefully have potential applications in nonlinear
photonics.
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