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We consider the dynamics of N rigid particles of arbitrary mass that are constrained to move on a frictionless
ring. Collisions between particles are inelastic with a constant coefficient of restitution e, and between collisions
the particles move with constant velocity. We study sequences of collisions that are self-similar in the sense
that the relative positions return to their original relative positions after the collision sequence while the relative
velocities are reduced by a constant factor. For a given collision sequence, we develop the analytic machinery
to determine the particle velocities and the locations of collisions, and we show that the problem of determining
self-similar orbits reduces to solving an eigenvalue problem to obtain the particle velocities and solving a linear
system to obtain the locations of interparticle collisions. For inelastic systems, we show that the collision locations
can always be uniquely determined. We also show that this is in sharp contrast to the case of elastic systems in
which infinite families of self-similar orbits can coexist.

DOI: 10.1103/PhysRevE.86.026601 PACS number(s): 45.20.−d, 81.05.Rm, 45.50.Jf

I. INTRODUCTION

In this paper, we study the motion of N rigid particles of
arbitrary mass constrained to move on a frictionless ring (see
Fig. 1). We will consider both elastic and inelastic collisions.
For elastic particles, the system may exhibit periodic behavior
in which, after a sequence of interparticle collisions, particle
velocities and relative positions return to the same values.
Inelastic particles lose energy when they collide with other
particles, and so the only genuinely periodic state is a trivial
one in which all particles move with the same velocity and
hence no collisions occur. However, inelastic particles can
experience nontrivial motion similar to periodic motion, with
the relative positions returning to the same values, but after a
sequence of interparticle collisions the particle velocities are
reduced by a fixed factor. Such motion repeats infinitely and
we refer to such orbits as self-similar.

We develop an analytic machinery to construct such
self-similar orbits and formulate the problem mathematically
as an eigenvalue problem. For inelastic particles, for each
eigenvalue, if a self-similar orbit exists, then it must be unique.
This is in sharp contrast to the case of elastic particles in which
we show that infinite families of periodic orbits can exist.

There are a wide range of industrial applications in which
discrete masses experience almost instantaneous collisions
that dissipate energy. Examples include vibration hammers,
pneumatic drills, and many other similar devices [1–7].
Obtaining stable operating conditions, in which the masses
execute some kind of periodic motion, is important in avoid-
ing chattering and excessive wear on machine components.
Systems of this type that contain small numbers of particles
appear to be extremely simple. However, a number of authors
have shown that such systems can give rise to a number of
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surprising phenomena. One of the simplest examples is the
case of a single particle that experiences gravity interacting
with a vibrating plate. Mehta and Luck [8] and Luck and
Mehta [9] showed that such systems can exhibit complicated
period doubling behavior. Of particular interest is the periodic
behavior of this system, which has been studied by Gilet
et al. [10]. An extension of this problem that contains two
particles has been studied by Whelan et al. [11]. Problems of
this type are simple enough to be able to prove mathematical
results, but still extremely rich. They therefore represent an
ideal setting to pin down numerous qualitative features. Elastic
systems are relatively well-understood, whereas inelastic
systems are much less so, and there are a number of ways
in which inelastic systems differ fundamentally from elastic
systems. By studying simple systems of this type, we can gain
a significant understanding of the underlying reasons for the
fundamental differences between elastic and inelastic systems.

The problem of elastic particles interacting on a ring has a
long history [12–16]. One motivation for these studies is to test
equilibrium theories of fluids. It was pointed out in Ref. [17]
that the Tonks gas naturally leads to the “simplest, yet nontriv-
ial, continuum model accounting for excluded-volume effects
in dense fluids.” Although the one-dimensional geometry
introduces some peculiarities, these studies provide a wealth
of information and significant insights into phenomenology.
In the case of inelastic particles, the interaction of particles
moving on an infinite line has been extremely widely studied.
Murphy [18] studied the maximum number of collisions
that can occur in such a system. For sufficiently inelastic
particles, an infinite number of collisions can occur in a finite
time, and this phenomenon, known as “inelastic collapse,”
has been studied extensively [19–22]. There has also been
a significant interest in particles on a line interacting with
walls [23–33]. Another related topic of significant interest is
the propagation of impulses through one-dimensional particle
systems first considered by Nesterenko [34]. There is a vast
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FIG. 1. N particles of different masses moving on a ring. The
particles stay ordered and each particle can only collide with one of
its adjacent neighbors.

literature on this subject, and we refer the reader to the
review article by Sen et al. [35] for further details. Many
of these studies have been concerned with the development
of continuum equations, but the periodic motion of such
systems has also received significant attention [30,32,33]. In
the development of continuous equations, understanding the
differences between elastic and inelastic systems is crucial.
One feature of inelastic systems is that boundaries can cause
very strong inhomogeneities in the system [23]. A natural
problem that avoids boundary effects is the evolution of a
granular gas in a periodic domain [36]. The problem we
consider in this paper is equivalent to the motion of a
one-dimensional granular gas in a periodic domain.

In the above-mentioned studies, the development of contin-
uum theories requires the application of the molecular chaos
hypothesis, which demands that the positions and velocities of
particles eventually decorrelate. Self-similar orbits, by their
nature, remain correlated indefinitely. Hence the existence
of stable self-similar orbits would represent a problem for
continuum theories, especially if the basins of attraction of
the orbit occupied a significant amount of phase space. On
the other hand, unstable periodic orbits play an important role
in understanding chaos and entropy in dynamical systems.
For example, the stable and unstable manifolds of a periodic
orbit have important implications for the existence of chaos. In
particular, an intersection of the stable and unstable manifolds
of the periodic orbit implies the existence of a homoclinic tan-
gle that provides a basis for chaotic behavior [37]. Moreover,
quantities such as entropy can be efficiently expressed in terms
of sums over unstable periodic orbits [38].

The motion of three equal mass inelastic particles on a
ring has been studied by Grossman and Mungan [39]. They
determined criteria for inelastic collapse and numerically
found that quasiperiodic behavior could occur. In their study,
all of the three masses are equal, and so in the elastic
limit the dynamics is trivial because collisions between equal
mass elastic particles are equivalent to the particles passing
through one another. In our paper, we will consider the
self-similar orbits of an arbitrary number of particles with
arbitrary mass. In this case, the elastic limit is nontrivial,
and we will study this limit in detail. Grossman and Mungan
showed that the confinement of the particles to a ring greatly
enhances the likelihood of inelastic collapse with almost all
initial conditions leading to inelastic collapse for restitution

coefficients below a critical value. Self-similar orbits, if they
exist, represent a set of special orbits that never experience
inelastic collapse.

Cooley and Newton [40] considered how collisions between
particles affect the velocities in periodic orbits by studying the
eigenvalues of matrix products. However, to completely solve
the problem, one must consider both velocities and positions.
In Ref. [40], the authors focused on the velocities, whereas in
this paper, we analyze both velocities and positions and show
that the periodic orbits with negative and complex eigenvalues
obtained by Ref. [40] are unphysical since they lead to
inconsistencies in the positions of the particles. Moreover, [40]
implemented a numerical shooting technique to obtain the
periodic orbits, whereas we will derive closed-form analytical
expressions. We will determine conditions for the existence
of self-similar orbits, and we will show that the inelastic case
differs fundamentally from the elastic case. Furthermore, we
will establish a relation between the spectra of the velocity
maps and those of the position maps. We will show that
this result has important consequences for the existence and
uniqueness of periodic orbits.

The paper is organized as follows. In Sec. II, we explain
the general system of N particles and give a mathematical
formulation for determining periodic and self-similar orbits.
In Sec. III, we provide a detailed analysis of the three-particle
system, and we give a number of concrete examples of these
types of orbits. In Sec. IV, we present the conclusion.

II. THE SYSTEM

We denote the mass and position of the ith particle as
mi and xi , and we define vectors m = [m1,m2, . . . ,mN ]T

and x = [x1,x2, . . . ,xN ]T (where T denotes transpose). Since
the physical size of the particles does not affect the motion,
we only consider point particles. We choose a length scale
such that the circumference of the ring is unity. The particles
interact via inelastic collisions which conserve momentum
but dissipate kinetic energy. Each particle can only collide
with its adjacent neighbors, and we assume the coefficients
of restitution between each pair of particles are the same and
denoted by e.

Let ẋ be a vector whose elements contain the velocities
of the particles. If the ith particle collides with the (i + 1)th
particle and the velocities before the collision are ẋ, then the
velocities after the collision are given by Ciẋ, where Ci is a
collision matrix

Ci =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0 0 · · · 0
0 1 · · · 0 0 · · · 0
...

...
...

...
...

...
...

0 0 · · · ci,i ci,i+1 · · · 0
0 0 · · · ci+1,i ci+1,i+1 · · · 0
...

...
...

...
...

...
...

0 0 · · · · · · · · · · · · 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, ← ith row

← (i + 1)th row

(1)

and

ci,i = mi − emi+1

mi + mi+1
, ci,i+1 = (1 + e)mi+1

mi + mi+1
,
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ci+1,i = (1 + e)mi

mi + mi+1
, ci+1,i+1 = mi+1 − emi

mi + mi+1
.

Since the particles are on a ring, the N th particle can also
collide with the first particle, in which case the collision matrix
is defined as

CN =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

c1,1 0 0 · · · 0 0 c1,N

0 1 0 · · · 0 0 0
0 0 1 · · · · · · · · · 0
...

...
...

...
...

...
...

0 0 0 0
... 1 0

cN,1 0 0 · · · · · · 0 cN,N

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(2)

and

c1,1 = m1 − emN

m1 + mN

, c1,N = (1 + e)mN

m1 + mN

,

cN,1 = (1 + e)m1

m1 + mN

, cN,N = mN − em1

m1 + mN

.

Throughout the paper, we will refer to collisions between the
ith particle and the (i + 1)th particle. When i refers to the N th
particle, the collisions refer to the N th particle colliding with
the first particle.

Between particle collisions, the particles do not experience
any net force in the direction of motion and so they move with
constant velocities. Given the particle locations and velocities
after a collision, one can easily determine which of the possible
N collisions occurs next.

As we will see, it is more convenient to work with the vector

p̂ =

⎡⎢⎢⎢⎢⎣
x2 − x1

x3 − x2
...

xN − xN−1

m1x1 + m2x2 + · · · + mNxN

⎤⎥⎥⎥⎥⎦ (3)

rather than the vector x. This is because, when the ith and
(i + 1)th particles collide, the element p̂i = 0. When the N th
and the first particles collide, xN = x1 + 1, which implies that∑N−1

i=1 p̂i = 1. The last element of p̂ represents the center of
mass of particles along the ring.

The vectors p̂ and x are related by

p̂ = Ax, (4)

where

A =

⎡⎢⎢⎢⎢⎢⎢⎣

−1 1 0 0 · · · 0
0 −1 1 0 · · · 0
...

...
. . .

. . .
. . .

...
0 0 · · · −1 1 0
0 0 · · · 0 −1 1
m1 m2 · · · mN−2 mN−1 mN

⎤⎥⎥⎥⎥⎥⎥⎦ . (5)

One can show that det(A) = (−1)N+1 ∑N
i=1 mi . Since mi > 0,

det(A) �= 0 and hence the matrix A is invertible, and so we can
write x = A−1p̂.

Consider a collision sequence given by G = Cin · · · Ci2Ci1

(where the sequence is read from right to left). We denote
the velocities immediately after the kth collision, Cik , as ẋ(k)

and define ˙̂p
(k) = Aẋ(k). We also denote the positions at the

time of the kth collision as x(k) and define p̂(k) = Ax(k). Since
ẋ(n) = Gẋ(0), from Eq. (4) we obtain

˙̂p
(n) = AGA−1 ˙̂p

(0)
. (6)

When ˙̂p
(n) = ˙̂p

(0)
and p̂(n) = p̂(0), we call the orbit associated

with this collision sequence periodic. Periodic orbits are only
possible for elastic systems (e = 1). Obviously, for inelastic
systems, no collision sequence can be periodic, since particles
lose energy during collisions and particle velocities will never
be able to return to the same values after a collision sequence.
However, it is possible that, after a sequence of collisions, all
particle velocities have been reduced by a constant factor λ

and relative positions of particles still return to the values in
p̂(0), namely,

˙̂p
(n) = λ ˙̂p

(0)
and p̂(n) = p̂(0). (7)

We call an orbit satisfying Eq. (7) after a sequence of collisions
a self-similar orbit. We now show that |λ| < 1 for e < 1
and |λ| = 1 for e = 1. The kinetic energy of the system
at the beginning of a periodic collision sequence is given
by E(0) = 1

2 (ẋ(0))T Bẋ(0), where B = diag(m1,m2, . . . ,mN ).
This can be rewritten in terms of p̂ as E(0) =
1
2 ( ˙̂p

(0)
)T (A−1)T BA−1 ˙̂p

(0)
. After the completion of a self-

similar collision sequence of length n, we have ˙̂p
(n) = λ ˙̂p

(0)
,

and the kinetic energy is E(n) = 1
2 ( ˙̂p

(n)
)T (A−1)T BA−1 ˙̂p

(n) =
1
2λ2( ˙̂p

(0)
)T (A−1)T BA−1 ˙̂p

(0)
. Due to inelastic collisions,

E(n) < E(0), and so we have |λ| < 1 for e < 1 (we note that this
result also holds for complex λ). For elastic collisions, e = 1,
energy must be conserved and so |λ| = 1. Moreover, for elastic
collisions, a periodic sequence must have a collision matrix
for velocities, G, that is diagonalizable. This can be proven
by contradiction. If G is not diagonalizable, then it can be
written in Jordan normal form G = UJU−1. After α periods,
the velocities will be given by UJαU−1ẋ(0). Since |λ| = 1,
‖J α‖ −→ ∞ as α −→ ∞. Generically, this implies that the
energy will tend to infinity, which leads to a contradiction. We
hence conclude that G must be diagonalizable.

In the following section, we will develop a procedure to
analytically construct periodic and self-similar orbits and to
determine for what parameter values, if any, a given collision
sequence leads to a self-similar orbit. In typical mechanics
problems, the determination of periodic and self-similar orbits
requires one to solve for the position vector p̂ and velocity
vector ˙̂p simultaneously. However, in the current problem,
for a given collision sequence, the determination of the
velocity vector ˙̂p can be decoupled from the position vector p̂.
Therefore, we will construct the velocity vector ˙̂p first, then
use ˙̂p to construct p̂. Obviously, the self-similar condition

˙̂p
(n) = AGA−1 ˙̂p

(0) = λ ˙̂p
(0)

(8)

forms an eigenvalue problem with λ being the eigenvalue and
˙̂p

(0)
being the eigenvector.

Note that the last element of ˙̂p
(k)

, k = 0,1, . . . ,n, is the total
momentum of the particles, which is a conserved quantity due
to the absence of any net force in the direction of motion of the
particles. If the kth collision is Cik , then ˙̂p

(k+1) = ACikA
−1 ˙̂p

(k)
.

Since the last elements of ˙̂p
(k)

and ˙̂p
(k+1)

both represent
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the total momentum, which remains the same before and
after the kth collision, the last row of ACiA

−1 must have
the form [0,0, . . . ,0,1]. The postcollision relative velocities
only depend on the precollision relative velocities and are
independent of the total momentum,

∑N
i=1 miẋi , which is the

last element of ˙̂p
(k)

. It follows that the last column of ACiA
−1

must have the form [0,0, . . . ,0,1]T , and thus ACiA
−1 must

have a block-diagonal form,

ACiA
−1 =

⎡⎢⎢⎣
0

Mi

...
0

0 0 · · · 0 1

⎤⎥⎥⎦ . (9)

The block-diagonal property of ACiA
−1 leads to the block-

diagonal property of AGA−1, namely

AGA−1 = ACinA
−1ACin−1A

−1 · · · ACi2A
−1ACi1A

−1

=

⎡⎢⎢⎣
0

H
...
0

0 0 · · · 0 1

⎤⎥⎥⎦ , (10)

where

H = MinMin−1 · · ·Mi2Mi1 . (11)

It is therefore clear that λ = 1 and p̂(0) = [0,0, . . . ,0,1]T is an
eigenpair for the eigenvalue problem Eq. (8). This corresponds
to the mode in which all particles moving with the same
velocity along the ring without any collisions. Since this
always represents trivial dynamics, we remove this eigenpair
from Eqs. (8) and (10) to obtain the remaining (N − 1)
eigenpairs that can be determined by solving

Hṗ(0) = λṗ(0),

where p is a vector formed by dropping the last element of p̂.
In terms of p, after a collision between the ith and (i + 1)th
particles, ṗ is updated to Miṗ. We comment that Mi and H are
(N − 1) by (N − 1) matrices and p is an (N − 1)-dimensional
vector. Periodicity implies

ṗ(n) = Hṗ(0) = ṗ(0) and p(n) = p(0), (12)

and self-similarity of the orbit implies

ṗ(n) = Hṗ(0) = λṗ(0) and p(n) = p(0). (13)

We note that previous authors [22] considered the problem
of inelastic collapse on a line. They considered orbits that are
self-similar in velocities, but on a line the periodicity condition
for the positions clearly cannot be satisfied. Therefore, the
problem we study in this paper is fundamentally different from
that studied in Ref. [22]. Here we consider both velocities and
positions.

To satisfy the periodic condition in particle positions given
by Eqs. (12) and (13), we need to determine p(n) from p(0).
This is achieved by the following procedure for each eigenpair
λ and ṗ(0). First, we construct a map from the position vector
after the kth collision p(k) to the position vector after the (k +
1)th collision p(k+1). Second, we combine the maps for k =
0,1,2, . . . ,n − 1 to obtain the desired final map from p(0) to

p(n). Now we construct the map from p(k) to p(k+1). Using
the collision matrices, the velocity vector immediately after
the kth collision is given by ṗ(k) = MikMik−1 · · · Mi2Mi1 ṗ

(0).
Now we show how to determine the relative positions of the
particles at every collision point. Since the particles all move
with constant velocity between collisions, the positions of the
particles at any time between the kth and (k + 1)th collisions
are given by

p(t) = p(k) + ṗ(k)(t − t (k)), (14)

where t (k) is the time of the kth collision. The (k + 1)th
collision will occur between the ik+1th and (ik+1 + 1)th
particles. For ik+1 < N , the relative distance between these
two particles is given by the ik+1th element of p(t), namely
ξik+1p(t), where

ξj = [0, . . . ,0,1,0, . . . ,0] for j = 1,2, . . . ,N − 1,

↑
j th

(15)

is an (N − 1)-dimensional projection vector which projects
out the j th element of a vector. For ik+1 = N , the projection
vector will be

ξN = [1,1, . . . ,1] =
N−1∑
j=1

ξj

due to the fact that the distance between the N th and the first
particles is given by

∑N−1
i=1 pi = 1. Then at the time of the

(k + 1)th collision, t (k+1), we have

ξik+1p(t (k+1)) = ξik+1 [p(k) + ṗ(k)(t (k+1) − t (k))] = δik+1N . (16)

Solving t (k+1) from the last equality of Eq. (16), we obtain

t (k+1) = t (k) + δik+1N − ξik+1p
(k)

ξik+1 ṗ
(k)

. (17)

We note that when ξik+1 ṗ
(k) = 0, the time t (k+1) cannot

be determined. This means the velocities of the particles
are inconsistent with the desired sequence of collisions.
In the following calculation, we only consider velocities
with ξik+1 ṗ

(k) �= 0, which is a necessary condition for the
consistency in velocities.

Substituting Eq. (17) into Eq. (14), we obtain

p(k+1) = p(t (k+1)) = p(k) + δik+1N − ξik+1p
(k)

ξik+1 ṗ
(k)

ṗ(k).

This can be rewritten in the form

p(k+1) = F̂ (k)p(k) + b̂(k), (18)

where F̂ (k) is an (N − 1) by (N − 1) matrix given by

F̂ (k) = I − ṗ(k)ξik+1

ξik+1 ṗ
(k)

, (19)

b(k) is an (N − 1)-dimensional vector given by

b̂(k) = δik+1N

ξik+1 ṗ
(k)

ṗ(k),

and I is the (N − 1) by (N − 1) identity matrix.
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Equation (18) is a map from the (N − 1)-dimensional
vector p(k) to the (N − 1)-dimensional vector p(k+1). We now
show that this map can be further reduced to a map from an
(N − 1)-dimensional vector to an (N − 2)-dimensional vector,
since p(k) and p(k+1) contain trivial information which can be
removed. This is due to the fact that p(l), for l = 1,2, . . . ,n,
represents the relative particle locations at the time of the lth
collision. Thus, either one of the elements of p(l) is zero or∑j=N−1

j=1 p
(l)
j = 1. If the lth collision is between particle il and

il+1 with in �= N , then p
(l)
il

= 0. This implies that this entry of
the vector contains redundant information and can therefore
be removed. If the lth collision is between the N th particle
and the first particle, i.e., il = N , we have

∑j=N−1
j=1 p

(l)
j = 1.

Therefore, there is also a redundancy in the vector and we
can remove any element from p(l). We choose to remove the
(N − 1)th element of p(l). To do this, we introduce the (N − 2)
by (N − 1) matrices,

Ri =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ξ1
...

ξi−1

ξi+1
...

ξN−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
for i = 1,2, . . . ,N − 2, and

(20)

RN−1 = RN =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ξ1

ξ2
...
...

ξN−3

ξN−2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

where ξj is a row vector given by Eq. (15). Ri has the property
that Rip

(l) removes the ith element of p(l) when i �= N ,
and it removes the (N − 1)th element of p(l) when i = N .
Multiplying both sides of Eq. (18) by Rik+1 to remove the
redundant information from p(k+1), we obtain

Rik+1p
(k+1) = Rik+1 F̂

(k)p(k) + Rik+1 b̂
(k). (21)

It is easy to check that Ri has the properties

RT
i Ri + ξT

i ξi = I for i �= N (22)

and

RT
NRN + ξT

N−1ξN−1 = I. (23)

If ik �= N , the kth collision is between the ikth particle and
the (ik + 1)th particle, and we have p

(k)
ik

= 0. It follows that

ξikp
(k) = p

(k)
ik

= 0. From this property and Eq. (22), we obtain
the identity

p(k) = (
RT

i Ri + ξT
i ξi

)
p(k) = RT

i Rip
(k).

Substituting this into Eq. (21), we obtain

Rik+1p
(k+1) = Rik+1 F̂

(k)RT
ik
Rikp

(k) + Rik+1 b̂
(k) for ik �= N.

(24)

If ik = N , the collision is between the N th particle and the
first particle, and

ξN−1p
(k) = p

(k)
N−1 = 1 −

N−2∑
l=1

p
(k)
l = 1 − ξNRT

NRNp(k). (25)

Then, from Eqs. (23) and (25), we obtain

p(k) = (
RT

NRN + ξT
N−1ξN−1

)
p(k)

= RT
NRNp(k) − ξT

N−1ξNRT
NRNp(k) + ξT

N−1. (26)

Therefore, Eq. (21) can be written as

Rik+1p
(k+1) = Rik+1 F̂

(k)
(
I − ξT

N−1ξN

)
RT

ik
Rikp

(k)

+Rik+1

(
F̂ (k)ξT

N−1 + b̂(k)
)

for ik = N. (27)

Combining Eqs. (24) and (27), we obtain[
Rik+1p

(k+1)
] = [

Rik+1 F̂
(k)

(
I − ξT

N−1ξNδikN

)
RT

N

]
[RNp(k)]

+Rik+1

(
F̂ (k)ξT

N−1δikN + b̂(k)
)
. (28)

We comment that ik and ik+1 are unique and determined by
Mik+1Mik , which are the kth and (k + 1)th collision matrix in
H . We define the (N − 1)-dimensional vectors

p̃(k+1) = Rik+1p
(k+1), p̃(k) = Rikp

(k),
(29)

b(k) = Rik+1

(
F̂ (k)ξT

N−1δikN + b̂(k)
)
.

We also define an (N − 2) by (N − 2) matrix,

F (k) = Rik+1 F̂
(k)(I − ξT

N−1ξNδikN

)
RT

ik
. (30)

We note that Eqs. (29) are a map from an (N − 1)-dimensional
vector to an (N − 2)-dimensional vector. Using Eqs. (29)
and (30), Eq. (28) can be written as

p̃(k+1) = F (k)p̃(k) + b(k). (31)

Equation (31) is a map from p̃(k) to p̃(k+1).
After composing the n maps, we obtain a map from p̃(0) to

p̃(n),

p̃(n) = Fp̃(0) + b, (32)

where

F =
n−1∏
k=0

F (k) and b =
n−1∑
k=0

(
n−1∏

i=k+1

F (i)

)
b(k). (33)

For a periodic orbit, p̃(n) = p̃(0), we can then determine the
initial position p̃(0) by solving the linear system

(I − F )p̃(0) = b. (34)

Without loss of generality, we will consider orbits that start
with a collision between the (N − 1)th and N th particles. Thus,
we have p

(0)
N−1 = 0. Then Eq. (34) becomes

(I − F )

⎡⎢⎢⎢⎢⎢⎣
p̃

(0)
1

p̃
(0)
2

...

p̃
(0)
N−2

⎤⎥⎥⎥⎥⎥⎦ = b. (35)

After obtaining the initial position p̃(0), using Eq. (31) we can
then calculate the positions of all particles at each collision p̃(k)
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(a) (b)

FIG. 2. The trajectories associated with eigenvalue λ1 in the
(p1,p2) phase plane for the sequence M2M3M1M3M1 and e = 1/2.
A consistent trajectory must be confined inside the triangle ABC.
(a) For m1 = 1, m2 = 2, and m3 = 10, the orbit is consistent. (b) For
m1 = 10, m2 = 1, and m3 = 5, the trajectory is inconsistent.

for k = 1,2, . . . ,n. However, obtaining a solution to Eq. (35)
does not necessarily imply that a periodic orbit exists. This is
because the solution of Eq. (35) does not necessarily guarantee
that all of the particles remain in the correct spatial order,
namely

p̃
(k)
i � 0 and

N−2∑
i=1

p̃
(k)
i � 1 (36)

for i = 1,2, . . . ,N − 2 and k = 0,1, . . . ,n − 1. We refer to an
orbit as consistent if all of these conditions hold.

In Fig. 2, we plot the results of a three-particle system in
(p1,p2) space for two different parameter values. Collisions
between the first and second particles occur on the line p1 = 0,
collisions between the second and third particles occur on the
line p2 = 0, and collisions between the third and first particles
occur on the line p1 + p2 = 1. The trajectories must be
confined within the triangle ABC enclosed by the three lines.
Since there are three particles on the ring in a three-particle
system, any collision sequence Eq. (11) has two eigenpairs.
We label them as λ1 and λ2 according to the condition λ1 > λ2

when both of them are real. We can label them in either way
when they are complex. Figure 2 shows the trajectories for
solutions of Eq. (13) associated with eigenvalue λ1 in the
(p1,p2) phase space for the sequence M2M3M1M3M1 and
e = 1/2. Figure 2(a) is the result for masses: m1 = 1, m2 = 2,
and m3 = 10. Since the whole trajectory remains inside of
the triangle, the orbit is consistent. In Fig. 2(b), m1 = 10,
m2 = 1, and m3 = 5. Notice that a portion of the trajectory
in Fig. 2(b) goes to the outside of the triangle. This means
that the orbit is unphysical and inconsistent. Figure 3 is for
the trajectories associated with eigenvalue λ2 and for the same
collision sequence and the same parameters given in Fig. 2. In
this case, the trajectories shown in Figs. 3(a) and 3(b) are both
inconsistent. In Fig. 4, we show how the relative velocities ṗ1

and ṗ2 vary over the course of a periodic sequence for the
consistent orbit shown in Fig. 2(a).

Figures 2 and 3 demonstrate that for a given collision
sequence and a given eigenpair, the orbit can be consistent
for certain parameter values and inconsistent for others. In
Fig. 5, we show the domains in which consistent orbits exist

(a) (b)

FIG. 3. The trajectories associated with eigenvalue λ2 in the
(p1,p2) phase plane for the sequence M2M3M1M3M1 and e = 1/2.
A consistent trajectory must be confined inside the triangle ABC.
(a) For m1 = 1, m2 = 2, and m3 = 10, the trajectory is inconsistent.
(b) For m1 = 10, m2 = 1, and m3 = 5, the trajectory is also
inconsistent.

for each eigenpair for the collision sequence M2M3M1M3M1

and e = 1/2. Figure 5(a) is for the eigenpair associated with
λ1, and Fig. 5(b) is for the eigenpair associated with λ2. It
shows that for the collision sequence M2M3M1M3M1 and
parameter e = 1/2, the orbit associated with λ1 is consistent
over certain parameter regions and the orbit associated with λ2

is inconsistent for all values of m2/m1 and m3/m1.
For a given collision sequence, the corresponding matrix

may have eigenvalues λ that are positive, negative, or pairs
of complex conjugates. We now show that only orbits corre-
sponding to positive eigenvalues can be consistent. Suppose
that the eigenvalue λ is negative. Without loss of generality,
we assume that the first collision is between the (N − 1)th and
N th particles so that p

(0)
N−1 = 0. If the orbit is consistent, the

velocity after the collision must have the property ṗ
(0)
N−1 > 0,

since the particles must bounce back from each other. After
a periodic sequence, the position will be p

(n)
N−1 = 0 and the

velocity becomes ṗ
(n)
N−1 = λṗ

(0)
N−1, but if λ < 0, ṗ

(n)
N−1 will

be negative and so when the next collision occurs, the distance
between the (N − 1)th and N th particles, p

(n+1)
N−1 , will be

negative. This is unphysical, and therefore any orbit with
λ < 0 is inconsistent. A similar argument shows that complex
eigenvalues must also give inconsistent orbits.

(a) (b)

FIG. 4. The relative velocities of the particles are plotted against
time for the orbit shown in Fig. 2(a). The orbit is shown over one
period over which the velocities are reduced by a factor λ1.
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(a) (b)

FIG. 5. Domain of consistent orbits and that of inconsistent orbits
for the collision sequence M2M3M1M3M1 and e = 1/2. (a) For the
eigenpair associated with λ1, the orbits are consistent over certain
parameter regions. (b) For the eigenpair associated with λ2, the orbits
are inconsistent in the whole domain m2/m1 and m3/m1.

III. THREE-PARTICLE SYSTEM

In this section, we provide a detailed analysis for a three-
particle system. In this case, there are only three possible
interparticle collisions given by

M1 =
[−e 0

(1+e)m1
m1+m2

1

]
, M2 =

[
1 (1+e)m3

m2+m3

0 −e

]
,

(37)

M3 = 1

m1 + m3

[
m1 − em3 −(1 + e)m3

−(1 + e)m1 m3 − em1

]
.

It can readily be verified that Mi has the property that
det(Mi) = −e. We now consider a general sequence consisting
of n collisions given by Eq. (11). The eigenvalues of H are
determined by the quadratic equation

λ2 − tr(H )λ + det(H ) = 0. (38)

Since

det(H ) = det

[
n∏

k=1

Mik

]
=

n∏
k=1

det
(
Mik

) =
n∏

k=1

(−e) = (−e)n,

Eq. (38) becomes

λ2 − tr(H )λ + (−e)n = 0, (39)

with solutions given by

λ± = 1
2 [tr(H ) ±

√
[tr(H )]2 − 4(−e)n]. (40)

When n is odd, then (−e)n < 0 and both eigenvalues of H

are real with one being positive and the other negative. Only
the orbit corresponding to the positive eigenvalue can be
consistent. In particular, for the elastic case, e = 1, |λ| = 1
and so λ+ = 1 and λ− = −1.

For a collision sequence with even collisions, the only case
in which one can obtain real positive roots is if tr(H ) � 2en/2.
In this case, both eigenvalues are real and positive. If tr(H ) <

2en/2, both eigenvalues are negative or are complex conjugates
and so the corresponding orbit must be inconsistent.

Now we state the result that underlies the dramatic
difference between elastic and inelastic systems. Let ṗ(0) be
one of the eigenvectors of H , with associated eigenvalue
λ+. We will show that the position map will have the form

p̃(n) = λ−p̃(0) + b. Comparing this expression with Eq. (32),
we see that F = λ−. Similarly, if ṗ(0) is associated with λ−, the
position map will have the form p̃(n) = λ+p̃(0) + b. Therefore,
the eigenvalues of H are also the eigenvalues of F . The proof
of this statement is given in Appendix A.

This result allows us to show the sharp contrast between
inelastic and elastic systems. For a given collision sequence in
an inelastic system, a consistent self-similar orbit associated
with one of the eigenvectors, if it exists, is always unique. For
a given collision sequence in an elastic system, it is possible
to have a unique periodic orbit, no periodic orbit, or an infinite
family of periodic orbits. Below we derive this result. For an
inelastic system, when a consistent self-similar orbit exists, we
have

p(0) = p(n) = λbp
(0) + b.

Since |λb| < 1 for an inelastic particle system (e < 1), this
gives a unique solution

p(0) = b/(1 − λb). (41)

For an elastic system (e = 1), when n is odd, λ+ = 1 and
λ− = −1. If p(0) is associated with the eigenvalue λ− = −1, no
consistent orbit exists. If p(0) is associated with the eigenvalue
λ+ = 1, then

p(0) = p(n) = λ−p(0) + b = −p(0) + b,

which gives a unique solution p(0) = b/2. However, when n

is even, the only possible consistent orbits must have λ+ =
λ− = 1, and as shown in Sec. II, H must be diagonalizable
and hence must be the identity matrix. Then, any vector
can be an eigenvector of H . In this case, any vector is an
eigenvector, and so the velocity map is periodic for an infinite
family of velocities. However, for a periodic orbit the position
map must also be periodic. The position map is given by
p(n) = p(0) + b, where b depends on the particular eigenvector
under consideration. For a general eigenvector, b �= 0, and so
the position map will not have periodic solutions. However,
generically, one can find a particular eigenvector such that
b = 0 and in this case the position map will be periodic for
any position p(0). Hence, there is a particular eigenvector for

(a) (b)

FIG. 6. The trajectories in the (p1,p2) phase plane for the
sequence M2M3M1M2M3M1 and m1 = 1, m2 = 2, and m3 = 5.
(a) Elastic system with e = 1. In this case, there are an infinite family
of periodic orbits and we plot two of them, one as a solid line and the
other as a dashed line. (b) Inelastic system with e = 1/2. In this case,
there is only one periodic orbit.
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(a) e=0.1 (b) e=0.2 (c) e=0.3

(d) e=0.4 (e) e=0.5 (f) e=0.6

(g) e=0.7 (h) e=0.8 (i) e=0.9

FIG. 7. Domain of consistency and stability for collision sequence M2M3M1M3M1 with the eigenvalue λ+ for various values of e. The
dashed curve is the phase boundary for stability, and the solid curves are the phase boundary for consistency. The region labeled by S is stable
but inconsistent, the region labeled by C is consistent but unstable, and the regions labeled by N are neither consistent nor stable. There is no
consistent and stable region.

which there is an infinite family of periodic orbits. In Fig. 6(a),
we plot two members of such an infinite family of periodic
orbits for the collision sequence M2M3M1M2M3M1. This is
in sharp contrast to the unique orbit shown in Fig. 6(b) for an
equivalent inelastic system (e < 1).

Above, we have derived a number of results regarding the
existence of periodic orbits. We now turn our attention to their
stability. For an orbit to be stable, both the velocity and position
maps must be stable. We begin by considering the velocity
map. We consider a periodic sequence, whose collision matrix
for velocities is given by H . If H is diagonalizable, we write
H = UDU−1, where D is a diagonal matrix that contains the
eigenvalues. Starting with an arbitrary set of relative velocities
ṗ(0), after α periodic cycles, the relative velocities are given

by

ṗ(αn) = UDαU−1ṗ(0).

As α → ∞, Dα will be dominated by the eigenvalue with the
largest magnitude. If the eigenvalue with the largest magnitude
is unique, then the associated eigenvector will be stable
for the velocity map. The orbits associated with the other
eigenvalues will be unstable since small perturbations from
the orbit will ultimately dominate. If there is more than one
eigenvalue having the largest magnitude, then the associated
eigenvector will be neutrally stable if H is diagonalizable.
If H is nondiagonalizable, similar criteria can be derived by
considering the nature of the associated Jordan normal form
(see Appendix B for details). We also require that the position
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TABLE I. Elastic system (e = 1). All orbits are unstable. For odd n, there is always only one positive λ. For even n, either both λ are
positive or there is no positive λ. For each positive λ, we report the number of solutions and whether it is consistent. The entry “in certain
regions” means that, in the phase space of (m2/m1,m3/m1), it is consistent in certain regions and inconsistent in the other.

No. of No. of solution Consistent and
n H λ > 0 for each λ Consistent stable

3 M2M3M1 1 1 always never
∞ in certain regions never

4 M2M3M1M3 2 0 never
5 M2M3M1M3M1 1 1 in certain regions never

∞ in certain regions never
M2M3M1M2M3M1 2 0 never

∞ in certain regions never
6 M2M1M3M1M3M1 2 0 never

M2M1M3M2M3M1 0 0 never
M2M3M1M2M3M1M3 1 0 never

7 M2M1M3M2M3M1M3 1 0 never
M2M1M3M1M3M1M3 1 1 in certain regions never

map Eq. (A4) be stable. For e < 1, Eq. (A14) implies that
this is automatically satisfied since the eigenvalues of F are
also eigenvalues of the velocity map and hence must have
magnitude less than unity due to energy loss. For e = 1, the
stability is more subtle. The velocity map is always neutrally
stable since H is diagonalizable with |λ| = 1. For e = 1 and
n even, the position map Eq. (A4) only has a solution for
an eigenvector in a particular direction (corresponding to the
case of an infinite family of periodic orbits). However, if one
adds a perturbation to the velocity, the position map will
generically have b �= 0 and so the positions will be given
by p(αn) = p(0) + αb. Thus the size of the perturbation |αb|
increases with α and so the orbit is unstable.

For e = 1, we now show that all orbits with odd n are
unstable. We prove this by the method of the contradiction.
Assume that H with an odd number of collisions has a stable
orbit. We consider two adjacent periods of this orbit, which is
equivalent to considering the matrix H 2. Then the same orbit
is also stable for the repeated sequence H 2. However, H 2

contains an even number of collisions and therefore cannot
have stable orbits. Therefore, H must have no stable orbits.
Combining the results for both even and odd n, we have proven
that no stable periodic orbits can exist for elastic systems.

Now we summarize our procedure to determine the stability
and consistency of a collision sequence. For the purpose of
brevity, we only refer to the most fundamental equations. For
a given collision sequence, we do the following:

Step 1. We use Eqs. (9)–(11) to calculate the matrix H ,
which gives the velocity map. For three-particle systems, Mi

is given by Eq. (37).
Step 2. Based on Eq. (13), we calculate the eigenpairs of

H . The purpose is to compare the magnitudes of eigenvalues
and determine the stability of the orbits. Generically, only the
eigenvector with the largest magnitude eigenvalue is stable. For
three-particle systems, the eigenvalues are given by Eq. (39).
A necessary condition for consistency is that λ > 0. Therefore,
we will only consider the eigenpairs with positive eigenvalues.
Thus the remaining steps listed below are only carried out for
eigenpairs with positive eigenvalues.

Step 3. Based on Eqs. (29), (30), and (33), we calculate
F and b. Then based on Eq. (35), we determine the initial
position required to make the position vector periodic. For
three-particle systems, the initial position is given by Eq. (41).

Step 4. Based on Eq. (31), we determine the position
vector after the kth collision for k = 0,1,2,n − 1. If all these
position vectors satisfy Eq. (36), then the collision sequence
is consistent. Otherwise it is inconsistent.

As we have discussed, if ṗ(0) is an eigenvector of H with
eigenvalue λ, a necessary condition for consistency is that λ >

0 and the sufficient condition for the stability of orbit is that
|λ| is larger than the magnitude of all other eigenvalues of H .
Both conditions are functions of n and tr(H ) for three-particle
systems. Based on Eq. (40), it is easy to determine the sign
and stability of λ as a function of n and tr(H ).

Note that all these quantities are functions of
e,m1,m2, . . . ,mn. Since the value of the total mass of
the system does not affect the consistency and stability
of a collision sequence, the eigenpairs are functions of
e,m2/m1,m3/m1, . . . ,mn/m1 only. Therefore, for a given
e, in the phase space parametrized by the mass ratios, an
eigenvector can be either always consistent, always incon-
sistent, or consistent in certain regions and inconsistent in
others. We demonstrate this for a sequence with five collisions
M2M3M1M3M1 in a three-particle system. Since n is odd,
Eq. (40) shows that there is one positive and one negative
eigenvalue given by λ± = 1

2 [tr(H ) ±
√

[tr(H )]2 − 4(−e)n]. In
the parameter regions where tr(H ) > 0, |λ+| > |λ−|, and so
the solution associated with λ+ is stable. In the parameter
regions where tr(H ) < 0, |λ−| > |λ+|, and so the solution
associated with λ− is stable, but it is inconsistent since
λ− < 0. Therefore, the phase boundary which separates the
stable region from the unstable region in phase space is
determined by the condition tr(H ) = 0. In Fig. 7, we show
the domains of stability and instability and the domains of
consistency and inconsistency only for the positive eigenvalue
λ+ for various values of e. The dashed curve is the phase
boundary for stability, and the solid curves are the phase
boundary for consistency. The region labeled by S is stable but

026601-9



JONATHAN J. WYLIE, RONG YANG, AND QIANG ZHANG PHYSICAL REVIEW E 86, 026601 (2012)

TABLE II. Consistency and stability of orbits in inelastic systems (e < 1). The eigenvalues λ+ and λ− are given by Eqs. (40). The entry “in
certain parameter regions” means that, in the phase space of (e,m2/m1,m3/m1), it is consistent in certain regions and inconsistent in others.
The table shows that no orbit reported here is consistent and stable.

n H λ Consistent Consistent and stable

λ+ always never
3 M2M3M1 λ− never never

λ+ never never
4 M2M3M1M3 λ− in certain regions never

λ+ never never
5 M2M3M1M3M1 λ− in certain regions never

λ+ never never
M2M3M1M2M3M1 λ− in certain regions never

λ+ never never
6 M2M1M3M1M3M1 λ− in certain regions never

λ+ never never
M2M1M3M2M3M1 λ− in certain regions never

λ+ never never
M2M3M1M2M3M1M3 λ− in certain regions never

λ+ never never
7 M2M1M3M2M3M1M3 λ− in certain regions never

λ+ never never
M2M1M3M1M3M1M3 λ− in certain regions never

inconsistent, the region labeled by C is consistent but unstable,
and the regions labeled by N are neither consistent nor stable.
Figure 7 shows that there is no consistent and stable region for
the collision sequence M2M3M1M3M1. We have performed
further extensive tests of the parameter space and have found
that stable and consistent self-similar periodic orbits do not
exist for this sequence.

We carried out this type of study for all sequences up to
seven collisions for the three-particle system. The results are
shown in Table I for elastic particle systems and in Table II
for inelastic particle systems. Since all particles are on a ring,
certain collision sequences, such as M3M2M1 and M1M2M3,
are equivalent under particle relabeling. Only nonequivalent
sequences are shown in Tables I and II. In Table I, we report
a number of eigenvalues with positive λ (we note that if λ is
positive, we must have λ = 1 since the system is elastic). For
odd n, there is one and only one positive λ. For even n, either
both λ are positive or there is no positive λ. For each positive λ,
we report the number of solutions and whether it is consistent.
The entry “in certain parameter regions” means that, in the
phase space of (m2/m1,m3/m1), it is consistent in certain
regions and inconsistent in others. Table I clearly shows that,
for elastic systems, all three possibilities (no periodic orbits,
unique periodic orbits, or an infinite family of periodic orbits)
can exist.

For inelastic systems, the self-similar orbits are always
unique if the velocity is consistent. We need to check the
stability and consistency of velocity vectors and positions.
We report the results in Table II. Tables I and II show
that for both elastic and inelastic systems, depending on the
collision sequence, the orbits can be always consistent, always
inconsistent, or consistent only in certain parameter ranges.
Tables I and II show that, for all sequences up to seven
collisions, there is no stable consistent self-similar periodic
orbit for three inelastic particles on a ring.

We have also considered systems with four and five
particles. At first glance, there appear to be a large number
of possible orbits. However, using various symmetries of
sequences, one can dramatically reduce the number of orbits
one must consider. For example, for a four-particle system
with four collisions, one only needs to check two cases:
M1M2M3M4 and M1M2M4M3. For a four-particle system
with five collisions, one only needs to check two cases:
M1M2M1M3M4 and M1M3M2M1M4. For a five-particle
system with five collisions, one only needs to check two cases:
M1M2M3M4M5 and M1M2M3M5M4. We have performed
extensive parameter studies for all of the above sequences,
and we were also unable to find any stable consistent orbits.
We therefore conjecture that there is no stable consistent
self-similar periodic orbit for any sequence.

IV. CONCLUSION

In this paper, we have carried out a detailed study of
the motion of N particles of different masses on a ring.
For elastic systems, we have shown that periodic orbits
can exist. A periodic orbit has the properties that, after a
sequence of interparticle collisions, all particle velocities and
the relative particle positions return to the same values before
the collision sequence. For inelastic systems, we have shown
that self-similar orbits can exist. A self-similar orbit has the
same properties as a periodic orbit except that all particle
velocities are reduced by a constant factor after a collision
sequence. We developed a procedure to determine the periodic
and self-similar orbits for any given collision sequence. It
consists of solving an eigenvalue problem for the particle
velocities, solving a system of linear equations for the particle
positions, and checking the consistency of the solutions.
We have shown that the orbits of inelastic particles on a ring
are dramatically different from those of elastic particles on a
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ring. In inelastic systems, a self-similar orbit, if it exists, is
always unique for a given eigenvalue of the particle velocity.
However, for elastic systems, an infinite family of periodic
orbits can exist. This means that the detailed knowledge that
has been developed for elastic systems cannot even provide
a qualitative understanding of inelastic systems. In this paper,
we examined many periodic and self-similar orbits for systems
with three particles on a ring. We found that all examples of
periodic or self-similar orbits we have constructed are unstable.
This means any small disturbance to the periodic or self-similar
orbits will destroy the orbit. This leads us to conjecture that
there are no stable periodic or self-similar orbits for either
elastic or inelastic particles on a ring.
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APPENDIX A

In this Appendix, we prove that if ṗ(0) is one of the
eigenvectors of H associated with the eigenvalue λa , then
the position map must have the form p(n) = λbp

(0) + b, where
λb is the other eigenvalue of H .

For a three-particle system, Eqs. (15) and (20) become

ξ1 = [1,0], ξ2 = [0,1], ξ3 = [1,1],
(A1)

R1 = [0,1], R2 = R3 = [1,0].

We consider a general collision sequence given by Eq. (11).
For any two adjacent collisions Mik+1Mik in the sequence, it is
easy to check, from Eqs. (19), (29), and (30), that

F (k) = s(k) ξik ṗ
(k)

ξik+1 ṗ
(k)

and

b(k) =
{

ξ1ṗ
(k)

ξ3ṗ(k) if ik+1 = 3,

0 if ik+1 �= 3.
(A2)

Here s(k) can be either 1 or −1. The rule for determining the
value of s(k) is as follows: there are only three particles, and so
one of the particles must be involved in both of the collisions
Mik+1 and Mik (since adjacent collisions cannot be the same).
If the third particle is involved in both collisions, then s(k) = 1,
otherwise s(k) = −1. We comment that since H is an orbit with
period n, it follows that Mi0 = Min , Min+1 = Mi1 , ξi0 = ξin , and
s0 = sn, which is determined by Mi1Min .

One can readily check that ξik is a left eigenvector of Mik

with eigenvalue e, that is, ξikMik = −eξik . Using this result
and ṗ(k) = Mik ṗ

(k−1) in Eq. (A2), we have

F (k) = s(k) −eξik ṗ
(k−1)

ξik+1 ṗ
(k)

. (A3)

From the position map Eq. (34) with the collision sequence
given by Eq. (11), we have

p(n) = Fp(0) + b, (A4)

where

F = F (n−1)F (n−2) · · · F (1)F (0) (A5)

and

b =
n−1∑
k=0

[
n−1∏

i=k+1

F (i)

]
b(k). (A6)

In Eq. (A5), we replace the terms F (n−1), F (n−2), . . ., F (1) by
the expression in Eq. (A3) to obtain

F = s(n−1) −eξin−1 ṗ
(n−2)

ξin ṗ
(n−1)

s(n−2) −eξin−2 ṗ
(n−3)

ξin−1 ṗ
(n−2)

· · · s(1) −eξi1 ṗ
(0)

ξi2 ṗ
(1)

F (0).

Since the sequence is periodic, we have ξi0 = ξin , and so using
Eq. (A2) to replace F (0), we obtain

F = s(n−1) −eξin−1 ṗ
(n−2)

ξin ṗ
(n−1)

s(n−2) −eξin−2 ṗ
(n−3)

ξin−1 ṗ
(n−2)

· · · s(1) −eξi1 ṗ
(0)

ξi2 ṗ
(1)

s(0) ξin ṗ
(0)

ξi1 ṗ
(0)

= (−e)n−1 ξin ṗ
(0)

ξin ṗ
(n−1)

n−1∏
k=0

s(k). (A7)

Since there are three particles on the ring, any periodic or
self-similar orbits must have at least three collisions. We now
prove that for n � 3,

∏n−1
k=0 s(k) always equals 1. For n = 3,

one can easily check that the factor s(2)s(1)s(0) in Mi3Mi2Mi1

is always 1. We now proceed by the method of induction.
We assume that

∏n−1
k=0 s(k) = 1 and we examine a sequence

of length (n + 1). Any sequence of length (n + 1) can be
constructed by attaching Min+1 to the end of a sequence of
length n. Suppose

Sn = MinMin−1 · · ·Mi1 (A8)

and

Sn+1 = Min+1MinMin−1 · · · Mi1 . (A9)

Using the induction assumption, we have sn−1 · · · s1s0 = 1.
Comparing the sequences in Eqs. (A8) and (A9) with adjacent
pairs of collisions, one can easily see that the sequence Sn+1

does not have the pair Mi1Min , but has two additional pairs
Min+1Min and Mi1Min+1 . There are two possibilities: collisions
Mi1Min involve the third particle either once or twice. If the
pair of collisions Mi1Min involves the third particle once, then
s(0) = −1 in Sn. In this case, the third particle only appears
once in one of the collision pairs Min+1Min and Mi1Min+1 , and
twice in the other pair. This implies that s(n)s(0) = −1 in Sn+1.
This means Sn and Sn+1 have the same sign. If the pair of
collisions Mi1Min involves the third particle twice, then s(0) =
1 in Sn. In this case, the third particle must appear once in each
of the collision pairs Min+1Min and Mi1Min+1 . This implies that
s(n) = s(0) = −1 in Sn+1. Again, this means Sn and Sn+1 have
the same sign. This gives

∏n
k=0 sk = 1 for all n � 3. Thus,

Eq. (A7) becomes

F = (−e)n−1 ξin ṗ
(0)

ξin ṗ
(n−1)

. (A10)

Let λa be one of the eigenvalues, either λ+ or λ−, and let
λb be the other eigenvalue. Let ṗ(0) be an eigenvector of H
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associated with eigenvalue λa , namely

ṗ(n) = Hṗ(0) = Min · · ·Mi1 ṗ
(0) = λaṗ

(0), (A11)

which gives

ṗ(0) = ṗ(n)

λa

= Minṗ
(n−1)

λa

. (A12)

After substituting Eq. (A12) into Eq. (A10), we have

F = (−e)n−1 ξinMin ṗ
(n−1)

λaξin ṗ
(n−1)

. (A13)

Since ξinMin = −eξin , we have

F = (−e)n−1 −eξin ṗ
(n−1)

λaξin ṗ
(n−1)

= (−e)n

λa

= λb. (A14)

The last equality in the above equation comes from the relation
det(H ) = λaλb = (−e)n. This completes the proof.

APPENDIX B

The velocity map Eq. (13) is characterized by the collision
matrix H . If H has p distinct eigenvalues, then it can be
written in Jordan normal form H = UJU−1, where J can be
expressed as a block-diagonal matrix,

J =

⎡⎢⎢⎣
J1

J2

. . .
Jp

⎤⎥⎥⎦ , (B1)

and each block Ji is given by

Ji =

⎡⎢⎢⎢⎢⎢⎢⎣
λi 1

λi 1
. . .

. . .

. . . 1
λi

⎤⎥⎥⎥⎥⎥⎥⎦ , (B2)

where Ni is the multiplicity of the eigenvalue of λi .
Starting with an arbitrary set of relative velocities ṗ(0), after α periodic cycles, the relative velocities are given by

ṗ(αn) = UJαU−1ṗ(0).

Since the matrix J is a block-diagonal matrix, J α can be written in block-diagonal form as

J α =

⎡⎢⎢⎢⎣
J α

1
J α

2
. . .

J α
p

⎤⎥⎥⎥⎦ , (B3)

where J α
i are upper triangle matrices given by

J α
i =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λα
i B1,αλα−1

i B2,αλα−2
i B3,αλα−3

i · · · · · ·
λα

i B1,αλα−1
i B2,αλα−2

i

. . .
...

λα
i B1,αλα−1

i

. . . B3,αλα−3
i

λα
i

. . . B2,αλα−2
i

. . . B1,αλα−1
i

λα
i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (B4)

and Bi,α is the binomial coefficient given by

Bi,α = α!

i!(α − i)!
.

For the inelastic case (e < 1), all the eigenvalues of H must
have |λi | < 1. As α → ∞, according to Eq. (B4), each J α

i will
be dominated by the element in the top right-hand corner. This

element is associated with the generalized eigenvector at the
end of the Jordan chain. If the Jordan block associated with
the largest magnitude eigenvalue is unique, then the associated
generalized eigenvector at the end of that Jordan chain will
be stable for the velocity map. The orbits associated with
all other generalized eigenvectors will be unstable. If there
is more than one Jordan block having the largest magnitude
eigenvalue (which we denote by Jmax1 ,Jmax2 , . . . ,Jmaxi

), then
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we need to consider the dimension of these Jordan blocks.
From Eq. (B4), we immediately see that, if there is a unique
Jmaxj

whose dimension is larger than all the others, then
only the generalized eigenvector at the end of the Jordan
chain associated with that block will be stable and all other

generalized eigenvectors will be unstable. If there are multiple
Jmaxj

with largest dimension, then the generalized eigenvectors
at the ends of the Jordan chains associated with those blocks
will be neutrally stable and the other generalized eigenvectors
will be unstable.
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