
PHYSICAL REVIEW E 86, 026403 (2012)

Thin-foil expansion into a vacuum with a two-temperature electron distribution function
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Centre de Physique Théorique, École Polytechnique, Centre National de la Recherche Scientifique, 91128 Palaiseau, France
(Received 5 June 2012; published 7 August 2012)

A kinetic theory of the expansion into a vacuum of a plasma thin foil with initially a hot and a cold Maxwellian
electron population is examined with a one-dimensional kinetic code. Whereas hot electrons always lose energy
to expanding ions, cold electrons can either gain or lose energy depending on the initial temperature and density
ratios and on time. When the cold electrons’ density is not too large, they experience initially an adiabatic
compression by the electric field associated with the rarefaction wave. The corresponding temperature increase
can be as large as a factor of a few tens. Later on, as expected, the cold electrons eventually lose energy to the
expansion. When cold electrons are numerically dominant, a rarefaction shock appears during the first phase of
the expansion. Hot electrons cool down faster than cold electrons, thus reducing the effective temperature ratio.
Furthermore, the amplitude of the rarefaction shock and the dip that it causes on the ion velocity spectrum tend
to be smoothed out by the expansion.
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I. INTRODUCTION

The interactions of an ultraintense laser pulse with a
solid target can generate ion beams with interesting optical
properties [1], high laminarity [2], low divergence [3], and a
high energy spectrum [4], which open up many opportunities
for their applications in fields such as fast ignition [5], cancer
therapy [6], and radiology [7]. Such prospects renew the
interest in theoretical studies of plasma expansion into a
vacuum [8–13].

In particular, the expansion into a vacuum of a plasma made
up of two electron populations, characterized by two electron
temperatures, has been the subject of several analytical and nu-
merical works [13–19]. For a semi-infinite plasma, Bezzerides
et al. [15] demonstrated the occurrence of a rarefaction shock
in a plasma composed of two populations of electrons when
the ratio of the hot to the cold electron temperatures is larger
than 5 + √

24. A recent paper [19] extended this work and
gave a complete description of the structure of the rarefaction
shock and of its influence on the ion acceleration mechanism.

For a thin foil, contrary to the semi-infinite case, one
cannot consider that there is an infinite source of particles and
energy. In particular the electron hot and cold temperatures
become time dependent [13,17], as electrons globally transfer
their energy to the ions during the expansion. Moreover, one
may expect that each electron population deviates from a
Maxwellian distribution function, an effect not usually taken
into account in simple fluid models such as those used in
Refs. [13,17]. Such kinetic effects in plasma expansion have
already been observed in the case of a one-temperature electron
distribution function and lead to strong deviations with respect
to a Maxwellian distribution function of the same mean energy
and to a surprising acceleration of the rarefaction wave [20,21].

In this paper we extend this work by considering kinetic
effects in the one-dimensional collisionless expansion into
a vacuum of a thin foil with two electron populations.
Initially each electron population is described by a Maxwellian
distribution function, but the expansion does not preserve the
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Maxwellian character of each population. We study both the
case where the cold electron density is lower than the hot
electron density and the more realistic case where the cold
electron density is larger than the hot electron density.

II. ELECTRON KINETIC MODEL FOR PLASMA
EXPANSION

A. General features

We performed simulations with a nonrelativistic ki-
netic code describing the collisionless expansion of a one-
dimensional plasma slab. The code is fully described in
Ref. [20]; it has been validated by detailed comparisons
with particle-in-cell simulations. Here we only recall its most
peculiar features. The electron dynamics is described by the
Vlasov equation, which reads in one-dimensional geometry as

∂fe

∂t
+ v

∂fe

∂x
+ e

me

∂�

∂x

∂fe

∂v
= 0, (1)

where fe(x,v,t) is the electron distribution function, e is the
elementary charge, me is the electron mass, and �(x,t) is the
electrostatic potential. The ions are initially at rest. They are
treated as particles and their movement is governed by the
equation of motion

dvi

dt
= −Ze

mi

∂�

∂x
, (2)

where vi is the ion velocity, Z is the ion charge number, and mi

is the ion mass. The electrostatic potential � satisfies Poisson’s
equation

∂2�

∂x2
= e

ε0
(ne − Zni), (3)

where ne is the electron density and ni is the ion density.
In order to solve the Vlasov equation we use a method of

separation of time scales [22] between the characteristic time
of variation of the potential and the transit time of an electron
into this potential. This time scale separation is a consequence
of the smallness of the mass ratio me/mi . It allows us to build
an adiabatic motion invariant so that we can reconstruct the
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distribution function of the electrons at any time and at any
position by following the time evolution of the total energy
of a limited number of electrons (typically less than 100).
The time step �t is chosen to satisfy the plasma stability and
in most cases is such that �t = 0.2/ max(ωpih,ωpic), where
ωpih = (Znh0e

2/miε0)1/2 and ωpic = (Znc0e
2/miε0)1/2.

We consider the expansion into a vacuum of a plasma slab
with initial width L. The initial ion density is defined as ni =
n0 for |x| � L/2 and ni = 0 for |x| > L/2, where x is the
direction normal to the target (x = 0 corresponds to the center
of the foil). As the expansion is symmetric with respect to the
target center, one may restrict the calculation to the positive
part of the plasma slab.

The electron population is composed of a hot component
and a cold component corresponding respectively to distribu-
tion functions fh(x,v,t) and fc(x,v,t) and densities

nh,c(x,t) =
∫

fh,c(x,v,t)dv, (4)

with fe = fh + fc and ne = nh + nc. Initially these two com-
ponents are represented by Maxwellian distribution functions
fh0 and fc0 with

fh0(x,v) = nh0

(
me

2πkBTh0

)1/2

exp

(
− E

kBTh0

)
, (5)

where kB is the Boltzmann constant, Th0 is the initial hot
temperature, and E is the total energy of the electron E =
1
2mev

2 − e�. A similar expression can be written for fc0(x,v),
with nh0 replaced by nc0 and Th0 replaced by Tc0, where Tc0 is
the initial cold temperature. The densities nh0 and nc0 verify
nh0 + nc0 = Zn0 and the electrostatic potential adjusts itself
so that Eq. (3) is verified everywhere and ∂�/∂x → 0 when
|x| → ∞ (which ensures global neutrality).

Though the distribution functions do not remain
Maxwellian during the expansion, it is still possible to define
a hot and a cold electron temperature at any time and any
position, with

kBTh(x,t) =
me

∫
v2fh(x,v,t)dv

nh(x,t)
, (6)

and a similar expression for Tc(x,t), with fh and nh replaced
by fc and nc. One can also define a global temperature Th(t)
by averaging Th(x,t) over the simulation box,

Th(t) =

∫
nh(x,t)Th(x,t)dx∫

nh(x,t)dx

, (7)

with a similar expression for the global temperature Tc(t), with
nh and Th replaced by nc and Tc.

For convenience we define the two dimensionless
parameters

y = nh0/nc0, α = Th0/Tc0. (8)

In all our simulations the ratio of the hot to cold electron
temperature satisfies α � 1.

The initial ion acoustic velocity is given by

cs0 = csh0

√
1 + y

α + y
, (9)

where csh0 is the ion acoustic velocity, which would be due to
hot electrons only,

csh0 =
√

ZkBTh0

mi

. (10)

We define the characteristic time

τ = L/csh0, (11)

which is approximately twice the disassembly time of the foil
in the absence of cold electrons [20,21,23]. Unless specified
otherwise, the plasma slab has an initial width L/2λDh0 = 20,
where λDh0 = (ε0kBTh0/nh0e

2)1/2.

B. Semi-infinite case

It is instructive to first recall the main results corresponding
to the semi-infinite case [15,19]. Figure 1 illustrates the profile
of the electrostatic potential obtained in the quasineutral limit
for a semi-infinite plasma, with α = 102 and y = 10−2. The
following regions are identified: the unperturbed plasma on
the left of the rarefaction wave situated in A, an expansion
dominated by cold electrons between A and B, the rarefaction
shock joining B and E, a plateau between E and F , and
an expansion dominated by hot electrons on the right of F .
The dashed line corresponds to the mathematical multivalued
solution obtained by solving ξ as a function of φ (see Ref. [19]
for details).

In the limit α � 1, the expressions of the density ratios
corresponding to the positions B and D are given by [19]

yB ≈ 2.22√
α

+ 4.57

α
, (12)

yD ≈ α2

2
− 3α (13)
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FIG. 1. Semi-infinite case (L → ∞). Electric potential φ as a
function of the self-similar parameter ξ = (|x| − L/2)/t , calculated
in the quasineutral limit for α = 102 and y = 10−2. Here ξ = 0
corresponds to the edge of the foil at t = 0. The curve shows
a rarefaction shock and a plateau on the downstream side of the
shock. Also shown (as a dashed line) is the mathematical multivalued
solution obtained by solving ξ as a function of φ. (This figure is
adapted from Fig. 2 of Ref. [19].)
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FIG. 2. Cold electron mean temperature as a function of time for
y = 104, L/2λDh0 = 20, and α = 10, 102, and 103.

and the position of the rarefaction shock ξB is given (for yB >

y) by

ξB ≈
[

ln

(
yB

y

)
+ y

2
− yB − 1

]
csh0√

α
. (14)

Depending on y, one may in fact distinguish three main
regimes [19].

(i) When yB > y, the structure of the flow is as depicted
in Fig. 1. The rarefaction wave moves towards the plasma
at the ion acoustic velocity cs0 ≈ csc0 = (ZkBTc0/mi)1/2. The
rarefaction shock moves towards either the vacuum when ξB >

0 or the plasma when ξB < 0. The two subregimes’ frontier is
given by setting ξB = 0 in Eq. (14), i.e., y ≈ 0.82/

√
α.

(ii) When yD > y > yB , the region of the flow dominated
by cold electrons disappears and the unperturbed plasma is
directly connected to the rarefaction shock. In addition, the
shock propagates inside the plasma at a supersonic velocity,
intermediate between cs0 and csh0.

(iii) When y > yD , the flow is entirely dominated by
hot electrons and there is no more rarefaction shock. The
rarefaction wave moves towards the plasma at the ion acoustic
velocity cs0 ≈ csh0. The cold electrons behave as test particles.

Regime (i) is relevant for most experiments where the hot
electrons are a minor fraction of the total number of electrons.
However, the two other regimes show interesting features,
which we will first present in the following section.

III. EXPANSION DOMINATED BY HOT ELECTRONS

In this section we consider the case where the expansion
is dominated by hot electrons, corresponding to regime
(iii) of the preceding section or to regime (ii) in the case
where the rarefaction shock amplitude is negligible. As a
first approximation, the thin-foil expansion is driven by hot
electrons only and is described in Ref. [21]. It can be separated
into two phases. In the first phase (t � 0.4 τ ), a rarefaction
wave progresses towards the center of the foil. For time
t � 0.4τ the whole foil disassembles.

The cold electrons can be considered as test particles as
they do not modify significantly the characteristics of the
expansion. Figure 2 shows the time evolution of the global
cold temperature Tc(t) for y = 104 and for different values of
α ranging from 10 to 103.

We observe a heating of the cold electron population during
the first phase. The cold temperature increases until a time that
corresponds approximately to the arrival of the rarefaction
wave at the center of the target, which is tr/τ ≈ 0.4. During
this first phase of the expansion, the hot electrons supply both
the expanding ions and the cold electrons with energy. Beyond
this time, the cold electrons start cooling down and both hot
electrons and cold electrons transfer their energy to the ions.
As expected, this heating is more efficient with higher values
of the temperature ratio α. The heating is as large as a factor of
15 for α = 103 when the rarefaction wave reaches the center
of the foil.

To interpret these results, we present simple analytic
considerations. Let us first consider the initial phase of the
expansion λDh0 � csh0t � L. A self-similar expansion is
established on both sides of the foil, with

e�(x,t) � −kBTh0[1 + (|x| − L/2)/csh0t]. (15)

One can use the results of Refs. [20,21,24] to calculate the
energy variation rate of a slow electron due to the energy
exchange in the time-varying electrostatic fields on both sides
of the foil,

dE/dt � 4E/τ, (16)

where E = 1
2mev

2 (E � kBTh0). To first order in t , one can
express the energy E(t) of a slow electron as a function of its
initial energy E0 and invert to obtain

E0 � (1 − 4 t/τ )E(t). (17)

Now using the fact that the value of the distribution function is
conserved along each electron trajectory, one gets in the inner
part of the foil (|x| + csh0t < L/2)

fc(x,v,t) �
(

1 + 2mev
2

kBTc0

t

τ

)
fc0(v) (18)

and

nc(t) � nc0(1 + 2 t/τ ), (19)

Tc(t) � Tc0(1 + 4 t/τ ). (20)

These two equations show that the cold electrons are adiabati-
cally compressed by the electrostatic potential, with Tc ∝ n

γ−1
c

and γ = 3. One can go a little bit further in the analysis by
noticing that the cold electrons are in fact confined by the
electrostatic potential to the region that has not been attained by
the rarefaction wave. The width of this region is approximately
given by

Lc(t) � L − 2csh0t = L(1 − 2 t/τ ). (21)

The cold electron density goes up as nc(t) � nc0L/Lc and the
cold electron temperature as Tc(t) � Tc0(L/Lc)2, i.e.,

Tc(t) � Tc0

(1 − 2 t/τ )2
. (22)

The first-order expansion of Eq. (22) in power of t/τ

coincides with Eq. (20). However, it is clear from Fig. 3, which
shows the numerical result and the two analytical expressions
(20) and (22), that Eq. (22) gives a better account of the
temperature behavior for intermediate time.
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FIG. 3. Temporal evolution of the cold and hot electron mean
temperatures for α = 102 and y = 104. The initial widths of the
plasma are L/2λDh0 = 20 (dashed lines) and L/2λDh0 = 100 (solid
lines). The plus sign line is the result of Eq. (20), while the black
circle line corresponds to Eq. (22).

The above analysis becomes invalid when the rarefaction
wave reaches the center of the foil. To estimate the maximum
temperature attained by the cold electrons, we assume that
when the rarefaction wave reaches the center of the foil the
electrostatic potential is still given by Eq. (15) with t = τ/2
and Th0 replaced by Th(t = τ/2) ≈ Th0/3, i.e.,

e�(x,t = τ/2) � −2

3
kBTh0

|x|
L

, (23)

and that the cold electrons extension Lc,min is such
that e|�(Lc,min/2)| ≈ kBTc,max, with again Tc,max(t) �
Tc0(L/Lc)2, so that

kBTc,max ≈ kBTc(α/3)2/3, (24)

in good agreement with the numerical results for
L/2λDh0 � 100.

Note here that the temperature increase we observe in Fig. 3
is not specific to the kinetic model, as it is also seen, though
with a smaller amplitude, with a hybrid code, where the hot
and cold distribution functions are forced to stay Maxwellian
at any time [23]. To illustrate this assertion, we plot in Fig. 4
the cold electron mean temperature versus time obtained with
the present kinetic code and with the hybrid code of Ref. [23],
for α = 102, y = 104, and L/2λDh0 = 20.
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FIG. 4. Temporal evolution of the cold electron mean temperature
for α = 102, y = 104, and L/2λDh0 = 20 for the kinetic (solid line)
and hybrid (dashed line) models.
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FIG. 5. Temporal evolution of the cold electron mean temperature
for intermediate values of y (y = 1 and 8 × 10−2) with α = 102 and
L/2λDh0 = 20.

IV. INTERMEDIATE REGIME

Figure 5 illustrates the time variation of the cold electron
mean temperature for y = 1 and 8 × 10−2. As can be seen,
the amplification process of the cold electron temperature
is reduced for y = 1 and vanishes for y = 8 × 10−2. This
can be understood easily. When y = 1, the rarefaction shock
propagates inside the plasma at a velocity that is larger than
cs0 but smaller than csh0 and the corresponding potential
jump compresses and adiabatically heats the cold electron
component, in a way similar to what was described in the
preceding section.

When y = 8 × 10−2 the rarefaction shock almost stays at
the edge of the plasma as ξB ≈ 0 according to Eq. (14) and
no cold electron compression and heating occur. Eventually,
as the hot electron temperature and density go down due to
the plasma expansion, the instantaneous value of ξB increases
with time, leading to a decrease of the cold electron density
and temperature.

V. REGIME DOMINATED BY COLD ELECTRONS

The studies of the preceding sections were somewhat
academic in the sense that the values of the initial ratios of
the densities y in the undisturbed plasma were quite different
from those that occur in the interaction of an ultrahigh intense
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FIG. 6. Temporal evolution of the hot (solid line) and cold
(dashed line) electron mean temperature for y = 10−2, α = 102, and
L/2λDh0 = 20.
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FIG. 7. Electron distribution function for a plasma slab with
initial parameters α = 102, y = 10−2, and L/2λDh0 = 20 and at
different times t/τ = 0, 0.1, 0.2, 0.5, and 1. The distribution function
is taken at the center of the plasma slab x = 0 and is normalized
to fh0.

laser with solid targets. In this section we propose to consider
more realistic values of the initial densities ratios, i.e., y � 1.

A. Global cooling of electrons

In Fig. 6 we show the time variation of the hot and
the cold electron mean temperature for y = 10−2, α = 102,
and L/2λDh0 = 20. Both the cold and hot electrons cool
down. However, the hot electrons cool down earlier than cold
electrons. The characteristic cooling time is τ for hot electrons
and τ

√
α for cold electrons (the rarefaction wave velocity is

approximatively cs0 ≈ csh0/
√

α). As the temperature behaves
as t−2 for large times, the two curves eventually tend to be
quite close.

Let us now discuss the evolution of the electron distribution
function for the case of Fig. 6. Figure 7 shows the electron
distribution function for a plasma slab with initial parameters
L/2λDh0 = 20, y = 10−2 and α = 102 at different times of
the expansion. The electron distribution function is taken at the
center of the plasma slab x = 0. For times t � τ , the structure
of the distribution function that is initially a bi-Maxwellian
function moves towards a two top-hat structure.

As demonstrated in Ref. [21] in the case of a single
temperature distribution function, the distortion of the electron
distribution function initially leads to an increase of the
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FIG. 8. Ion acoustic velocity at the center of the foil as a function
of time for α = 102, y = 10−2, and L/2λDh0 = 20.
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FIG. 9. Electric potential φ as a function of ξ = (|x| − L/2)/t

at times (a) ωpiht = 4, (b) ωpiht = 20, (c) ωpiht = 100, and
(d) ωpiht = 500. The plasma initial parameters are α = 102, y =
10−2, and L/2λDh0 = 20.

ion acoustic velocity and of the rarefaction wave. Once the
rarefaction wave has reached the center of the foil, the global
cooling of the electrons leads to a decrease of the ion acoustic
velocity. This behavior is illustrated in Fig. 8 for the case of
Figs. 6 and 7.

B. Spatial profiles

Figure 9 shows the electric potential as function of ξ =
(|x| − L/2)/t for y = 10−2 and at times ωpiht = 4, ωpiht = 20,
ωpiht = 100, and ωpiht = 500. One observes that the structure
of the rarefaction shock is still apparent at late time of the
expansion, but the value of the potential jump is declining
in time. For instance, at time ωpiht = 500, the value of the
jump of the rarefaction is reduced by more than three orders
of magnitude compared to its value for a semi-infinite case.
In comparison with the results obtained in the semi-infinite
case, we also remark that the expansion tends to reduce
the length of the plateau (compare Fig. 9 with Fig. 12 of
Ref. [19]).

Figure 10 shows the electric field as a function of ξ at times
ωpiht = 20 and 100. The electric field is normalized to E0 =
(nh0kBTh0/ε0)1/2. We observe two different peaks. The first
one corresponds to the rarefaction shock while the second one
is related to the ion front as shown in Refs. [19–21]. The inset
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FIG. 10. Electric field as a function of ξ = (|x| − L/2)/t at
times ωpiht = 20 and ωpiht = 100. The plasma slab initial param-
eters are α = 102 and y = 10−2. The inset is a zoom around
the rarefaction shock position. The electric field is normalized to
E0 = (nh0kBTh0/ε0)1/2.
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FIG. 11. Normalized ion velocity spectrum versus velocity v for
a plasma foil with the initial parameters α = 102 and y = 10−2 and
at times ωpiht = 20, 100, and 500.

of Fig. 10 represents a zoom of the peak of the electric field
in the rarefaction shock. Conversely to the semi-infinite case,
the peak associated with the rarefaction shock is not steady in
time, but moves slowly towards the vacuum. One also notes
that the amplitude of the electric field at the ion front decreases
faster than 2E0/ωpiht , which is the value corresponding to the
semi-infinite case.

C. Ion velocity distribution

The ion velocity distribution is shown in Fig. 11 for
y = 10−2, α = 102, and at times ωpiht = 20, 100, and 500.
We observe that the dip in the ion velocity spectra, which
increases with time in the semi-infinite case [19], tends to
decrease and to narrow here. We also see that the Dirac δ

function corresponding to the density and velocity plateau
of the self-similar solution shown in Ref. [19] seems to
completely disappear here.

VI. CONCLUSION

The expansion of a plasma foil composed of hot electrons
and cold electrons with an initially bi-Maxwellian electron
distribution function has been studied with a one-dimensional
kinetic code. Attention has been focused on the energy
exchange between electrons and ions and two mains cases
have been identified.

When the ratio of the hot to cold electron densities y is large
enough, typically for y � 10−1 when α = 102, we demonstrate
that the cold electron mean temperature first increases at the
expense of hot electrons, due to an adiabatic compression
by the electric potential. The cold electron heating takes
place during the first phase of the expansion, i.e., while the
rarefaction wave moves towards the center of the foil. When
the rarefaction wave arrives at the center of the foil, the cold
electrons start cooling.

In contrast, when y � 1, as in most experiments, we
observe a global cooling of both cold and hot electrons.
However, the hot electron temperature decreases initially
faster than the cold electron temperature, thus reducing the
temperature ratio.

As a result of the electron cooling, the amplitude of the
shock and the length of the plateau are deeply reduced. In
addition, the dip and the peak observed in the velocity spectrum
in the semi-infinite case are almost absent in the case of a thin
foil.

Finally, it is important to note that this paper is restricted
to a purely one-dimensional expansion. However, due to the
anisotropy of the electron distribution function, electromag-
netic (Weibel) instabilities are expected to develop during
the expansion of the plasma foil if the electron thermal
velocity is not too small compared with the light velocity.
The anisotropy might exist initially (when the longitudinal
electron temperature, i.e., perpendicular to the foil surface,
is larger than the transverse electron temperature, i.e., along
the foil surface) or appear as a result of the expansion itself
(when the longitudinal temperature becomes lower than the
transverse temperature, due to the cooling that affects only the
longitudinal temperature), as described in Ref. [25]. Though
the cold electrons tend to have a stabilizing effect in the early
time of the expansion, their role appears less important at long
time. The magnetic field due to the instability, by exchanging
energy between the longitudinal and the transverse dimen-
sions as binary collisions would do in a collisional plasma,
contributes to suppress the anisotropy and thus the source of
the instability that usually saturates. It thus gives the expansion
a three-dimensional character, with a characteristic adiabatic
parameter γ = 5/3 instead of γ = 3, eventually giving a time
dependence of the temperature T ∝ t−2/3 at late times rather
than T ∝ t−2. Further details would need a more precise
analysis, which is beyond the scope of the present paper.
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