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Boundary layer analysis in turbulent Rayleigh-Bénard convection in air:
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We report measurements and numerical simulations of the three-dimensional velocity and temperature fields
in turbulent Rayleigh-Bénard convection in air. Highly resolved velocity and temperature measurements inside
and outside the boundary layers have been directly compared with equivalent data obtained in direct numerical
simulations (DNSs). This comparison comprises a set of two Rayleigh numbers at Ra = 3 × 109 and 3 × 1010

and a fixed aspect ratio; this is the ratio between the diameter and the height of the Rayleigh-Bénard cell of � = 1.
We find that the measured velocity data are in excellent agreement with the DNS results while the temperature
data slightly differ. In particular, the measured mean temperature profile does not show the linear trend as seen in
the DNS data, and the measured gradients at the wall are significantly higher than those obtained from the DNS.
Both viscous and thermal boundary layer thickness scale with respect to the Rayleigh number as δv ∼ Ra−0.24

and δθ ∼ Ra−0.24, respectively.
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I. INTRODUCTION

A great variety of natural and technical turbulent flows
is driven by temperature differences. Rayleigh-Bénard (RB)
convection is one of the paradigmatic models to study the
details of this kind of turbulence. In its simplest setting an
infinitely extended fluid layer is enclosed by two isothermal
plates: a hot plate at the bottom and a cold plate at the
top. In experiments the finite flow volume is established by
additional thermally insulated side walls, which can form a
closed cylindrical cell. The focus of most experimental and
numerical studies in this configuration is a better understanding
of the mechanisms of turbulent heat transport [1,2]. Since
nonpermeable walls enclose the moving fluid, boundary layers
(BLs) do form for all turbulent fields involved. Although these
BLs become ever thinner when the driving of the convective
turbulence is increased, they cannot be neglected. The reason
is that all the upward directed flux of heat which is provided
from the isothermally heated bottom plate has to pass these tiny
layers at the bottom and top. Furthermore, it is well-known that
a large-scale circulation (LSC) builds up in closed cells, which
also interacts with the boundary layers. A better understanding
of the mechanisms of global turbulent heat transport at large
Rayleigh numbers remains thus intimately connected with a
better understanding of the physics inside the boundary layers.

Exactly this point is the main motivation of the present
work: a joint experimental and numerical analysis and direct
comparison of the structure of the BL of the velocity and
temperature fields in a cylindrical turbulent Rayleigh-Bénard
cell for convection in air at two Rayleigh numbers larger than
Ra = 109. In this paper we take a first step in this direction
and compare the statistics of time series of the turbulent fields
taken at points inside and outside the boundary layers, allowing
us to compose wall-normal profiles of the three velocity
components and temperature at a few different locations close
to the cooling plate of the cell. Experimentally it requires a
convection cell which is several meters high in order to take
mean profiles in a less-than-a-centimeter-thick BLs, such as in
the “Barrel of Ilmenau” (BOI) [3]. Numerically this enforces

comprehensive direct numerical simulations (DNSs) in which
the computational grid is fine enough to represent all structures
in the boundary layers [4].

The dynamics of the turbulent flow in a RB cell is
determined by three dimensionless parameters: the Rayleigh
number Ra = (αg�ϑH 3)/(νκ), the Prandtl number Pr = ν/κ ,
and the aspect ratio � = D/H . In response to the sustained
temperature difference a turbulent flow with a Reynolds
number Re = v̄H/ν is established. This flow enhances the
transport of heat far beyond the level that is achievable
by thermal diffusion. The Nusselt number quantifies ex-
actly this ratio and is defined as Nu = (4HQ̇)/(λπD2�ϑ).
In these definitions variables stand for the following physical
quantities: α is the isobaric expansion coefficient, g the
gravitational acceleration, �ϑ the temperature difference
between both horizontal plates, ν the kinematic viscosity, κ

the thermal diffusivity, D the diameter of the convection cell,
H its height, and v̄ the mean velocity. We denote Q̇ as the
convective heat flux and λ as the thermal conductivity.

Scaling theories of turbulent convection aim at predicting
transport laws for heat, Nu(Ra,Pr), and momentum, Re(Ra,Pr).
They require a physical model for the BLs as an input. While
the theory by Shraiman and Siggia [5,6] builds on existing
turbulent boundary layers close to the isothermal plates,
Grossmann and Lohse [7,8] assumed a Prandtl-Blasius-type
BL [9]. Our joint high-resolution BL analysis will allow us
to compare our findings with the assumptions and provides a
further motivation to the present work.

In the last few years a number of experiments have been
performed in various fluids and gases aiming to study the
temperature and the velocity field inside the BLs. Velocity and
temperature profile measurements in water using laser Doppler
anemometry (LDA) were reported in Qiu and Tong [10], who
studied the LSC of the flow at Ra = 109. Later Sun, Cheung,
and Xia [11] and Zhou and Xia [12] studied the BL profiles
by particle image velocimetry (PIV) for convection in water
at Pr = 4.3. They found that the Prandtl-Blasius solution is a
good approximation for the velocity BL for Rayleigh numbers
between 109 and 1010. Their Cartesian convection cell was,
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however, very narrow in the third direction such that the LSC
is confined to a quasi-two-dimensional flow. BL measurements
for convection in air up to a Ra = 1011 have been conducted
with a two-component LDA measurement [13,14]. In these
experiments deviations from the Prandtl-Blasius case were
detected. Three aspects turn out to improve the agreement
with the classical Prandtl-Blasius theory: the switch to a
quasi-two-dimensional experiment or two-dimensional DNS
that constrains the LSC, an increase in the Prandtl number,
and a rescaling by an instantaneously defined BL thickness. All
these directions in various combinations have been discussed
in Refs. [12,15]. Recent DNSs for Rayleigh numbers up to
2 × 1012 found, however, that the differences grow for the BL
profiles of the temperature field [16].

The outline of the paper is as follows. In Sec. II the exper-
imental facility and the measurement technique is described.
In Sec. III we summarize the DNS model. In Sec. IV we
compare results of the mean velocity and temperature profiles
and their fluctuations. We compare experimental data at Ra =
3.44 × 109, �T = 2.4 K, with DNS data at Ra = 3 × 109.
Furthermore, experimental data at Ra = 2.88 × 1010, �T =
20 K, can be compared with DNS data at Ra = 3 × 1010. In this
section we also include BL analysis from other experimental
data records in order to discuss trends for the scaling of the BL
thickness and shear Reynolds number in a range of Rayleigh
numbers varying from Ra = 3.44 × 109 to 9.97 × 1011. These
studies are followed by investigations of the LSC, the mean
angle of its rotation, and autocorrelation functions of the
azimuthal angle. We summarize our work in Sec. V.

II. EXPERIMENT

All measurements were conducted in the BOI, a large-
scale Rayleigh-Bénard experiment. It consists of a virtually
adiabatic cylinder of D = 7.15 m filled with ambient air. It
is heated from below and cooled from above by two plates
with uniform temperature. The bottom plate consists of two
parts: an electrical underfloor heating system embedded in a
5 cm floating screed layer and isolated to the ground with

0.3 m polyurethane plates and an overlay in which water
circulates. The water circulation inside this overlay makes
the temperature at the surface of the heating plate uniform
and balances the various convective heat flux at the plate-air
interface. Both layers are thermally coupled by a 2 mm
silicon pad. The free-hanging cooling plate consists of 16
segments with an internal water circulation. The deviation of
any local temperature at the surface of both plates from the
global mean temperature was typically less than 0.5 K. Over
the period of one measurement the mean surface temperature
varies in a band of 0.02 K. A detailed description of the
facility can be found in Refs. [13,14]. The lowest accessible
Ra in this facility at aspect ratio one is Ramin = 5 × 1010,
which is larger than the maximum Rayleigh number in the
numerical simulations, Rasim = 3 × 1010. In order to match
the experimental parameters to those from the DNS for the
case of � = 1, a cylindrical inset with a diameter of 2.5 m and
a height of 2.5 m has been installed between the heating and
the cooling plates. The smaller plexiglass cell is located inside
the big barrel and is very well sealed by the upper cooling
plate and lower heating plate. The surrounding environment
of the smaller cell has the same temperature difference as
the inside volume of the BOI. Thus no thermal exchange
across the side walls is present, and the adiabatic side wall
boundary condition is well established. Four windows are
located at different positions of the cooling plate (see left
panel of Fig. 1) permitting access for the optical device and
temperature sensors.

A. Velocity measurement setup

We study the three-dimensional (3D) velocity field by
combining a one-dimensional (1D) Nd-YAG-laser probe (λ =
532 nm) and a two-dimensional (2D) argon-ion-laser probe
(λ = 514.5 nm, λ = 488 nm). Both make up the so-called
FiberFlow-LDA system from Dantec Dynamics and work in
the back-scattering mode. Figure 1(b) shows the arrangement
of the probes above the cooling plate where a glass window
permits the optical access to the boundary layer. This window

FIG. 1. (Color online) Description of the experiment. (a) Sketch of “Barrel of Ilmenau” with the new inset cell of 2.5 m height and 2.5 m
diameter. In this paper we present the results at center and side window 1, 2, and 3. (b) Setup of the 3D-laser Doppler anemometry measurement,
which is mounted above the cooling plate. u, v, and w are the desired velocity components in Cartesian coordinates.
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is of good thermal conductivity and stuck into the cooling plate
using a highly conducting adhesive. Thus, the temperature
of the glass window is very close to the temperature of the
cooling plate. The 2D and 1D probes are mounted with certain
angles; α2D is approximately equal to α1D . The specific values
result from a precise optical alignment. The two probes are
mounted on a high precision traverse system which can be
moved in wall-normal z direction in steps of �z = 0.01 mm.
By moving the probes up and down, the velocity can be
measured at various distances from the wall. We defined the
lower surface of the glass plate as the position z = 0 mm.
It grows with increasing distance from the plate. In order to
determine this position in our experiment the near-wall domain
of the measured mean velocity profile has been extrapolated by
a linear function, and the intersection point with zero velocity
has been set to z = 0 mm.

First, the measurement of the velocity profiles was per-
formed with a focal length of the probes of 160 mm. In this
configuration the size of the measurement volume, the region
where the laser beams interfere, amounts to lmvx

= 75 μm,
dmvz

= 200 μm. This is 50 times smaller than the typical
thickness of the viscous BL in our experiment. The angle
between the optical axes in this configuration was α1D =
α2D = 24.5◦. The measuring depth of the profile is confined
by the frame size (φ = 95 mm) of the observation window,
which is embedded in the cooling plate. As a consequence,
an additional measurement with a longer focal length of
500 mm is necessary to measure the whole profile up to
a distance of 180 mm. The angle in this configuration was
α1D = α2D = 6.5◦. To guarantee a sufficiently high number of
statistically independent measurements, the experiment time
for each position was set to 1 hr. Cold-atomized droplets of
Di-Ethyl-Hexyl-Sebacat (DEHS) with a size of about 1 μm
have been injected through an opening in the convection cell.
They serve as tracers for the LDA measurement, and they are
basically free of inertia. The particles have been added at least
1 min before we start a new measurement to give the flow
sufficient time to mix them.

The LDA burst signal rate depends on the concentration
of the DEHS particles and the distance to the wall. It varies
between 1 and 200 Hz. In order to obtain reliable data free of
statistical errors it is required to have a relatively high burst
signal rate of each channel even at the position where the
velocity is almost zero. Therefore the “noncoincidence” burst
mode was used. When a seeding DEHS particle is passing
through the outskirts of the measuring volume it generates a
velocity sample burst on all channels simultaneously. This is
denoted the “coincidence” burst mode, otherwise it is denoted
“noncoincidence” burst mode. After the acquisition of the data
a three-step process is required to obtain the Cartesian velocity
components u, v, and w. It includes the following:

(1) Detection and elimination of obvious outliers
(2) Resampling of the “skewed” time series u1(t), u2(t),

u3(t) to make them equidistant
(3) Transformation into Cartesian components u(t), v(t),

and w(t).
In the first step obvious outliers were detected and elim-

inated. One of the reasons for the outliers is the scattering
of the laser light at the glass window. This happens mostly
when measurements are conducted in the vicinity of the

cooling plate. As the distance to the plate increases the number
of outliers decreases significantly. The outliers have to be
removed since they may cause statistical errors. A moving
average Gi has been calculated for a window of 20 measured
values:

Gi = 1

20

i+9∑
j=i−10

xj for i > 10 . (1)

The bounds have been set according to three times the standard
deviation of this interval:

σi =
√√√√ 1

20

i+9∑
j=i−10

(xj − Gi)2 for i > 10 . (2)

All samples outside this band have been removed from the
time series. It should be noted here that the number of outliers
turns out to be only a very small fraction of the total number
of samples within every time series. Thus, the elimination of
these values is justified.

The second step is the interpolation and the resampling
of the nonequidistant data to make it equidistant. We have
tested three different sampling rates fs = 25, 50, and 75
Hz, and we found that at fs = 50 Hz the Fourier spectrum
shows a sufficiently small but well-pronounced plateau.
Four different interpolation methods have been investigated:
interpolation of the nearest neighbors, linear interpolation,
cubic Hermite interpolation, and cubic spline interpolation.
The first interpolation method was not further used since the
trend between the measured values is ignored. The linear and
cubic Hermite interpolation resulted in smoother and closer
interpolated curves than the cubic spline interpolation when
compared with the original sample. The Hermite interpolation
was eventually taken.

In the third step the velocity components u, v, and w are
calculated according to the following transformation matrix:⎛

⎜⎝
u

v

w

⎞
⎟⎠ =

⎛
⎜⎝

1 0 0

0 − sin α2
sin(α1−α2)

sin α1
sin(α1−α2)

0 cos α2
cos(α1−α2) − cos α1

cos(α1−α2)

⎞
⎟⎠

⎛
⎜⎝

u1

u2

u3

⎞
⎟⎠. (3)

This angular transformation matrix is used in correspondence
with the software user guide manual of the LDA equip-
ment [17]. In the measurement we measured three random
components “u1, u2, and u3”; our desired components “u,
v, and w” were corrected by this matrix afterwards. In
Fig. 1, measurement setup and coordinate system are shown.
With the measurement arrangement, one of the horizontal
velocity components u1 is measured directly. The angles were
measured with an uncertainty of 0.5◦, which is sufficient for
the present measurement setups.

Regarding the wall-normal velocity component, we met
some technical difficulties during the measurement. From the
transformation matrix, the wall-normal velocity component
w is calculated as the weighted difference of u2 and u3.
In this case it is very important that the two probes should
be vertically very well aligned. If this is not the case, an
“increasing” wall-normal velocity results, which is caused
rather by the adjustment error than by the flow. Therefore
a careful LDA calibration by a laser beam diagnostic system is
necessary. Coherent LaserCam-HR and the height difference
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FIG. 2. Orientation of the horizontal velocity vector. (a) Experi-
ment and (b) DNS data are taken at the center line. Times from the
DNS have been recalculated to the experimental ones.

can be limited within 0.1 mm. Note also that the error of the
wall-normal velocity is proportional to the longitudinal size
of the measuring volume. One way to avoid these biases is to
measure the wall-normal velocity component by the shorter
focal length lens. The increased angle between the probes
α gives then a five times smaller weighting factor for w.
Furthermore, the smaller measuring volume can be guided
closer the cooling plate.

Due to the arbitrary and fluctuating orientation of the LSC
in the cylindrical cell (see, e.g., Resagk et al. [18]), we study
the magnitude of the horizontal velocity

U =
√

u2 + v2 , (4)

instead of one of the single velocity components, u or v.
In Fig. 2 time series of the instantaneous angle of the
horizontal velocity vector at the center line are plotted. While
the orientation of the velocity vector (and thus that of the
LSC) seems to be locked in the experiment due to small
imperfections of the RB cell [see Fig. 2(a)], the oscillation
of the vector drifts slowly in the DNS [see Fig. 2(b)].

B. Temperature measurement

The temperature was measured by a small, glass-
encapsulated microthermistor of a size of 125 μm. It should
be noted that the typical thickness of the boundary layers is of
the order of 10 mm at the Rayleigh numbers covered in this
work. The size of the sensor is thus very small compared with
the typical BL thickness. All measurements were performed at
the corresponding positions where the velocity measurements
have been done. Each single measurement covers the distance

between z = 70 μm (corresponding half of the diameter of
the microthermistor) and z = 150 mm. The thermistor is
connected to the tips of two 0.3 mm supports by 18 μm wires.
In order to reduce the measurement error we have redesigned
the temperature sensor taking care that the connecting wires
were aligned parallel to the plates and along the isosurfaces of
constant mean temperature in the flow. Furthermore, the sensor
has been calibrated in a calibration chamber using a Resistance
Temperature Detector (RTD) of PT 100 type certified by
the Deutsche Kalibrierdienst as reference. The measurement
uncertainty of the RTD is specified with 0.02 K in the range
between 0◦ and 100◦. The microthermistor is connected to a
special resistance bridge with an internal amplifier providing a
very low current of ITh = 5 μA sufficiently small to keep the
self-heating of the sensor as low as 10 mK. The bridge was
connected to a PC-based multichannel data acquisition system
with a resolution of 10−4 K and a sampling rate of 200 s−1.

III. DIRECT NUMERICAL SIMULATION

In the direct numerical simulations the three-dimensional
Boussinesq equations are solved, which are given by

∂ �u
∂t

+ (�u·∇)�u = − 1

ρ0
∇p + ν∇2 �u + gαT �ez, (5)

∂T

∂t
+ (�u·∇)T = κ∇2T , (6)

∇·�u = 0 . (7)

Here �u = (u,v,w) is the velocity field, p is the pressure field,
and T the temperature field. The characteristic velocity is the
free-fall velocity Uf = √

gα�ϑH . The characteristic time
is the free-fall time Tf = H/Uf . Owing to the cylindrical
geometry we switch from Cartesian to cylindrical coordinates,
(x,y,z) to (r,ϕ,z). Boundary conditions are the no-slip con-
dition for the velocity at all walls, isothermal top and bottom
plates, and adiabatic side walls for the temperature. The grid
sizes are Nr × Nϕ × Nz = 301 × 513 × 360 for the smaller
Ra and 513 × 1153 × 861 for the larger one. We use the DNS
scheme by Verzicco and Orlandi in which the equations are
solved on a staggered grid with a second-order finite difference
scheme [19,20]. The pressure field p is determined by a two-
dimensional Poisson solver after applying a one-dimensional
fast Fourier transform in the azimuthal direction. The time
advancement is done by a third-order Runge-Kutta scheme.
The grid spacings are nonequidistant in the axial and radial di-
rections. The grid resolutions are chosen sufficiently large (see
Ref. [21] for more details). The thermal BL is resolved with 18
grid planes for Ra = 3 × 109 and with 35 grid planes for Ra =
3 × 1010.

In order to compare the results with the experiments in
BOI we follow their measurement procedure and take time
series of the turbulent fields at several locations in the cell,
which allow us to determine wall-normal mean profiles of
the turbulent fields. For the lower Ra there are four arrays
containing 40 measurement points each. They have been
seeded in order to track fully resolved time series of the three
velocity components and the temperature. The probe array
center is located in the center line. Probe arrays 1, 2, and 3 are
arranged at r = 0.88 R and ϕ = 0, π and 3π/2 as can be seen
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FIG. 3. (Color online) Sketch of the arrays with the measurement
locations. Probe array entitled center is located at the center line
(r , ϕ) = (0, 0), array 1 at (0.88 R, 0), array 2 at (0.88 R, π ), and array
3 at (0.88 R, 3π/2).

in Fig. 3. This setup is designed in correspondence with the
arrangement in the BOI. There are 100 measurement points
for larger Ra run.

IV. RESULTS

A. Velocity profiles at center line

We present first the mean velocity profiles at Ra = 3 ×
109 and 3 × 1010 and start with the comparison of the mean
horizontal velocity profiles at the center line, 〈U (z)〉, as shown
in Fig. 4. The symbol 〈·〉 stands for an average over the time
series taken in the studies, and U is defined by Eq. (4). The
experimental mean velocity profiles at Ra = 3 × 109 and 3 ×
1010 are plotted as closed circles, and the corresponding DNS
results as open circles. They are normalized by the maximum
mean velocity. Additionally the Blasius solution of the two-
dimensional BL equations [9] is plotted. The data show that
the measured and numerical mean velocity profiles agree well
for both Rayleigh numbers. In the case of Ra = 3 × 109, both
mean velocity profiles show a linearly increasing fraction of
the profile; they have a maximum difference of 9% at a height
that corresponds with BL thickness.

Additionally, we can address the question whether the
profiles of the mean velocity of turbulent RB convection match
with the laminar Prandtl-Blasius prediction [9]. It has been
already found in a previous study by du Puits et al. [22] that
the Blasius profile does not provide a good approximation
to the measured profiles of the mean horizontal velocity
in turbulent RB convection. These measurements covered a

range of Rayleigh numbers of one order of magnitude around
Ra = 1011. In the present work we can extend this range and
show results at lower Rayleigh numbers of Ra = 3 × 109 and
3 × 1010. In both cases, the near-wall part of the profiles grows
almost linearly and coincides with the Prandtl-Blasius solution
as visible in the inset of Fig. 4(a) and 4(b). Following their
shape toward larger distances, the profiles noticeably start to
deviate from the theoretical prediction of the laminar shear
layer, especially for the velocity at the lower Ra. We can
thus conclude that the Blasius profile cannot perfectly describe
the profiles of the mean velocity in turbulent RB convection
for the range of Rayleigh numbers which is accessible in
the measurements and simulations. The dynamic rescaling
which has been suggested in Ref. [12] has been discussed
in Ref. [21] for the DNS. It cannot be performed in the
measurements since the time series for the profiles are taken
point by point. The interesting phenomenon is that all the
horizontal velocity profiles are systematically smaller than
Prandtl-Blasius prediction, within the investigated Ra numbers
between Ra = 109 and 1012. A reason might be the extraction
of kinetic energy from the horizontal motion in order to supply
the wall-normal disturbances.

The standard deviation (or root-mean-square) of the hor-
izontal velocity, σU (z) is shown in Fig. 4(c) and 4(d). The
profiles are normalized by their maximum values respectively.
The comparison of the data at Ra = 3 × 109 and 3 × 1010

indicates a very good agreement except for a sudden drop
(see also Ref. [14] for a detailed discussion) in the measured
profile at Ra = 3 × 1010. The local maximum of the profile
is for both places at about the same distance from the wall
although the BL gets thinner. Again the agreement seems to
improve slightly for the larger Rayleigh numbers.

The mean profiles of the wall-normal velocity component,
〈w(z)〉, are plotted in Fig. 5(a) and 5(b). The good agreement
between the measured data and the DNS data gives us the
information that at Ra = 3 × 109 and 3 × 1010, the mean
wall-normal velocities tend to zero, namely, there is no mean
vertical velocity. Our result is in agreement with the PIV
measurements by Sun et al. [11]. Note that this is, however,
in contrast to the classical Prandtl-Blasius solutions for an
incompressible fluid, which obey a vertical velocity profile
due to the displacement effect of the BL. The jump of
the data is the place where we switched from the short to
the long focal length lens. Due to the specific arrangement
of the LDA probes the wall-normal velocity component is
extremely sensitive to small misalignments. The change in
the lenses requires a complete readjustment of the probes,
and the result shown in the plot is actually the best one that
we can achieve. Nevertheless, the profile shows a clear trend
of a zero mean wall-normal velocity, which is consistent
with a 3D flow structure in an incompressible flow setting.
As we can also see, the wall-normal standard deviations,
σw(z), are not zero right above the wall. This can be seen
from the data compared in Fig. 5(c) and 5(d). The fluctuations
keep increasing to magnitudes that are comparable to the
horizontal components. The bump of the experimental data at
z/h < 10−3 is the error caused by the scattering light reflected
by the glass window surface. This problem is inevitable for
all LDA measurements very close to a solid surface.
The profiles of the root mean square (rms) of the vertical
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component in the experiment and DNS fit well to being zero
at both Rayleigh numbers in the region 0 < z/H < 10−3,
i.e., well within BL. For z/H > 10−3 the rms value σw(z) is
strongly increasing. For completeness, the measured viscous
BL thicknesses are δv,d/H = 3.8 × 10−3 for Ra = 3 × 109

and δv,d/H = 1.7 × 10−3 for Ra = 3 × 1010. This implies
that the fluctuations of the vertical velocity component start
to increase rapidly at the edge of the BL. The viscous BL
thickness δv,d is here calculated by the displacement method,
which will be discussed below.

B. Temperature profiles at center line

Having discussed the mean profiles of the velocity compo-
nents so far, we now turn to the mean temperature profiles,
〈T (z)〉, which are displayed in Figs. 6(a) and 6(b). The
mean temperature profiles are normalized by the temperature
difference as measured between the bulk and cooling plate. The
agreement between the measurement and the numerical data
is not as perfect as for the velocity data but still satisfactorily
good. A very detailed view close to the plate surface, however,
shows that the measured mean temperature gradients at the
wall d〈T (z)〉/dz|z=0 strongly differ from the DNS data. It
exceeds the value from the DNS by a factor of 2.5 at
Ra = 3 × 109 and by a factor of 1.5 at Ra = 3 × 1010. In
other words, the local heat flux in the experiment is 2.5 (1.5)
times larger than the numerical one. Currently we do not have
a conclusive explanation for this difference. We can state here
only that measurements and DNS have been performed with

the highest possible diligence and the results are verified in
multiple ways. We are also aware about this difference with
other RB convection measurements [23,24] and other very
recent DNS results [12,25]. However, we believe that our
measurements are well verified for the following reasons [26]:

(1) Each sensor has passed a complex calibration process
resulting in an accuracy of better than ±10 mK.

(2) In addition to the profile measurement with the mi-
crothermistor the plate temperature at the cell center and the
temperature in the bulk have been measured with two indepen-
dent temperature probes. The measured values coincide very
well.

(3) The size of the sensor is very small compared with the
typical boundary layer thickness and amounts only to about
1/100 of the one.

(4) The plate surface within a radius of 0.5 m around the
measurement position is smooth. The roughness amounts to
less than 5 μm corresponding 0.05% of the minimal boundary
layer thickness.

We have also investigated if the Pohlhausen prediction [27]
for the temperature profile fits with our results. The Pohlhausen
solution builds on the Blasius solution for the laminar BL
and assumes that the temperature is passively advected in
the flow. We found that both the experimental and numerical
mean profiles, deviate from this prediction. In Ref. [21] it
is demonstrated that one reason for these deviations are the
permanent detachments of fragments of the thermal BL into
the bulk, the so-called thermal plumes. The standard deviation
of the temperature, σT (z), is plotted Figs. 6(c) and 6(d). They
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FIG. 6. Profiles of the mean temperature (a,b) and the standard deviation (c,d) measured in the experiment (closed circles) and obtained
from the DNS (open circles) at Ra = 3 × 109 (a,c) and Ra = 3 × 1010 (b,d). The insets show the entire mean temperature profile in logarithm
scale. Here ϑb and ϑcp denote the mean bulk temperature and the surface temperature of the cooling plate.
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are normalized by maximum amplitude. It can be seen that
they have the same trend in both panels. At Ra = 3 × 109, the
temperature fluctuations have 10%–20% difference from each
other before they approaching their maximum fluctuation, for
larger distances away from the wall the difference gets smaller
to about 5%. At Ra = 3 × 1010, the fluctuations agree quite
well, especially up to the maximum fluctuation. For larger z,
we find a difference by about 10% in comparison to the DNS.

C. Boundary layer scaling

1. Viscous and thermal boundary layer thicknesses

We now turn to the scaling analysis of the local BL
thickness with respect to the Rayleigh number. We compute
the displacement thicknesses for the horizontal velocity U and
the temperature T according to the following definitions [28]:

δv,d =
∫ ∞

0

[
1 − 〈U (z)〉

Umax

]
dz, (8)

δθ,d =
∫ ∞

0

[
1 − 〈T (z)〉 − ϑcp

ϑb − ϑcp

]
dz, (9)

where ϑb and ϑcp are the mean temperature in the bulk and
the fixed temperature at the surface of the cooling plate. The
displacement thickness is one of the possible measures of
the boundary layer thickness. It is defined as the distance
by which the surface has to be displaced to compensate the
reduction in flow rate due to the effect of the boundary layer.
We compute the integrals numerically by a trapezoidal rule.
In Fig. 7 we summarize the obtained BL thickness values
versus the corresponding Rayleigh numbers in a range between
Ra= 109 to 1012. The data points at Ra = 3 × 109 and 3 × 1010

are from the present work, and the data points at the higher
Ra numbers are from our previous work [22]. The plots are
given in double logarithmic axes such that a possible algebraic
scaling becomes visible right away. The viscous and thermal
BL thicknesses are normalized by the constant height of the
cylindrical cell H = 2.55 m.

The measured values of both BL thicknesses, the viscous
and the thermal one, agree perfectly with the data from
the DNS. Adding the experimental data from the previ-
ous work both quantities scale with Ra as well as with
Reg according to power laws δv,d/H = C1,dRaβ , δθ,d/H =
C2,dRaγ , δv,d/H = C3Reε

g , and δθ,d/H = C4Reη
g; the prefac-

tors and the exponents have been computed as C1,d = 0.66 ±
0.51, C2,d = 0.76 ± 0.33, C3 = 0.64 ± 0.66, C4 = 0.54 ±
0.13, β = −0.24 ± 0.03, γ = −0.24 ± 0.02, ε = −0.54 ±
0.09, and η = −0.51 ± 0.02. The obtained exponent β is quite
different from those of previous experiments, β = −0.16,
made in water [29]. Recall, however, that the BL thickness
of experiment with water is only about 1 mm and thus poses
much higher requirements on the resolution. We conclude that
the discrepancy is mostly due to different aspect ratios and
Pr numbers. It should also be noted that our scaling laws
describe the behavior of the local BL thickness at the central
axis of the cylindrical cell and must not necessarily agree with
the prediction of the global scaling. Nevertheless, β perfectly
fits the prediction of the global exponent according to the
phenomenological scaling theory of Grossmann and Lohse [7].
The exponent γ is slightly lower than expected from the global
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θ,
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FIG. 7. Displacement thickness of the viscous (a) and thermal
(b) boundary layers versus Ra. Experimental results are displayed as
closed symbols, DNS data points are open symbols. The solid lines in
each of the graphs correspond to power laws δv,d/H = 0.66 Ra−0.24

and δθ,d/H = 0.76 Ra−0.24, respectively.

scaling Nu ∼ Raγ ′′, and the exponent ε is slightly higher than
from δv = 0.25LRe−0.5. Moreover it should be mentioned
that both the viscous and the thermal boundary layers exhibit
approximately the same thickness, which is consistent with the
Prandtl number of about unity.

It is useful to complement the analysis of the BL scaling by
the slope method [30] for the computation of the BL thickness.
The latter is more widely used in the RB convection flow.
The principles of both displacement and slope methods are
sketched in the insets of Fig. 7(a) and Fig. 8(a). Although this
method is very popular in the RB community, the results are
more uncertain than for the displacement thickness. The slope
method is based on the near-wall gradient of the velocity and
the temperature profile. First, we extrapolate the linear part
of the velocity profile; then we get the viscous BL thickness
from the intersection value of the extrapolation and the first
local maximum of the mean velocity. For the thermal BL
thickness, we fit the mean temperature profile in the range
of 0 < z < 2.07 mm by the function y = ax2 + bx + c, then
compute the thermal BL thickness by the gradient, namely,
δθ,s = 1/b. According to power laws δv,s/H = C1,sRaβ′,
δθ,s/H = C2,sRaγ ′; the prefactors and the exponents are
C1,s = 0.90 ± 1.22, C2,d = 0.42 ± 0.09, β ′ = −0.24 ± 0.03,
γ ′ = −0.24 ± 0.01. The slope method does not change the BL
scaling exponent compared to the displacement method. In the
case of the thermal BL, it unravels the differences between
the DNS and the experiment, which have been discussed
already in Sec. IV. The conclusion is that we have the same
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FIG. 8. Thickness of the viscous (a) and thermal (b) boundary
layers versus Ra according to the slope method. Experimental results
are displayed as closed symbols, DNS data points are open symbols.
The solid lines in each of the graphs correspond to power laws
δv,s/H = 0.90 Ra−0.24 and δθ,s/H = 0.42 Ra−0.24, respectively.

exponents of scaling laws even by the slope method, though
the BL thicknesses calculated by this method are thinner than
computed by displacement method.

2. Shear Reynolds number

The shear Reynolds number has been defined as a criterion
to judge about the potential transition of a BL from the laminar
toward the turbulent state [31]. It is given by

Res = δvU

ν
, (10)

where δv is the viscous BL thickness, U is a typical velocity
of the outer velocity BLs, and ν is the kinematic viscosity.
For an isothermal, zero-pressure BL according to the model of
Prandtl and Blasius, the authors in Ref. [31] estimated a critical
value of Res ≈ 420. In turbulent RB convection the stability of
the BL may not only be disturbed by the shear which increases
with rising velocity but also by thermal plumes detaching
from the BL or by coherent structures in the flow field. These
effects may lower the stability limit of the BL and may induce
a transition towards a turbulent regime even at significantly
smaller Res (e.g., Preston predicted Res = 320, based on
momentum boundary layer thickness [32]). In Fig. 9 we plot
shear Reynolds numbers in a range between Ra = 109 and
1012. Res keeps increasing with Ra, and, again, experimental
and numerical data fit very well. In order to estimate the
Ra numbers at which the trend crosses the critical limits
Res = 320 or Res ≈ 420 we extrapolated the data points using
a regression Res ∼ Ra0.267±0.0386. According to this fit the
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FIG. 9. Shear Reynolds number Res versus Ra from experiment
(closed circles) and DNS (open circles). The solid line is the fit to all
data.

lowest possible Ra number for a transition to a turbulent
state amounts to Rac ≈ 2 × 1012, which would be below the
prediction of Grossmann and Lohse in Ref. [7] and the recent
experimental findings by Funfschilling et al. [33]. However,
it cannot be ruled out that due to the plume inside the BLs
as well as the strongly three-dimensional flow in turbulent
RB convection and the complex dynamics of the LSC this
transition may take place at even lower Rayleigh numbers.
The exact parameters and the results can be found in Tables I
and II.

D. Boundary layer out of center

In RB cells of aspect ratio one and smaller the sidewall
significantly affect the flow inside the cylindrical enclosure.
Therefore, it is justified to ask whether or not the results
obtained at the center of the cooling plate can be generalized to
the entire area. We will discuss measurements and numerical

TABLE I. Set of parameters and selected results of the velocity
measurements (� = 1, Pr = 0.7). Ra is the Rayleigh number adjusted
during the measurements, respectively, v̄max is the maximum of the
velocity, Res is shear Reynolds number, Reg is global Reynolds num-
ber, δv,d and dimensionless δv,d/H are the displacement thicknesses
for the viscous boundary layer.

v̄max δv,d

Ra (m/s) Res Reg (mm) δv,d/H

3.44 × 109 0.097 68 1.49 × 104 9.532 0.00381
1.42 × 1010 0.168 79 2.57 × 104 5.863 0.00235
2.88 × 1010 0.224 99 3.41 × 104 4.335 0.00173
1.23 × 1011 0.179 133 7.36 × 104 11.35 0.00180
1.68 × 1011 0.212 112 8.71 × 104 8.12 0.00129
1.98 × 1011 0.220 124 9.00 × 104 8.66 0.00137
2.62 × 1011 0.262 118 1.06 × 105 6.99 0.00111
3.39 × 1011 0.301 134 1.21 × 105 6.97 0.00111
4.14 × 1011 0.339 162 1.34 × 105 7.61 0.00121
5.38 × 1011 0.404 149 1.57 × 105 5.95 0.00094
6.40 × 1011 0.435 129 1.67 × 105 4.87 0.00078
7.48 × 1011 0.503 195 1.89 × 105 6.52 0.00103
8.64 × 1011 0.545 167 2.00 × 105 5.28 0.00084
9.77 × 1011 0.607 251 2.17 × 105 7.27 0.00115
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TABLE II. Set of parameters and selected results of the tempera-
ture measurements (� = 1, Pr = 0.7). Ra is the Rayleigh number
adjusted during the measurements, respectively, Reg is global
Reynolds number, δθ,d and dimensionless δθ,d/H are the displacement
thicknesses for the thermal boundary layer.

δθ,d

Ra Reg (mm) δθ,d/H

3.44 × 109 1.49 × 104 10.391 0.00416
2.88 × 1010 3.41 × 104 7.211 0.00288
1.08 × 1011 6.73 × 104 12.678 0.00201
1.42 × 1011 7.77 × 104 11.063 0.00176
1.86 × 1011 8.95 × 104 10.391 0.00165
2.54 × 1011 1.05 × 105 9.875 0.00157
3.34 × 1011 1.22 × 105 9.034 0.00143
4.19 × 1011 1.37 × 105 7.857 0.00125
5.42 × 1011 1.57 × 105 7.844 0.00125
6.37 × 1011 1.71 × 105 7.532 0.00120
7.76 × 1011 1.90 × 105 6.775 0.00108
8.59 × 1011 2.00 × 105 6.955 0.00110
9.78 × 1011 2.14 × 105 6.734 0.00107

results obtained at three other positions, 1, 2, and 3 (see Fig. 3).
In our experiment with the small cell, we tried to lock the
wind in a certain direction. We realized this by stretching the
plexiglass sidewall along the diameter for about 1% on each
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FIG. 10. Mean horizontal velocity profiles at side window 1, 2,
and 3, which are located at r = 0.88 R and ϕ = 0, π , and 3π/2;
see Fig. 3. (a) Profiles of the measured data at Ra = 2.88 × 1010,
at window 1 (circle), window 2 (triangle), and window 3 (star).
(b) Profiles of the DNS data at Ra = 3 × 1010 at array 1 (circle),
array 2 (triangle), and array 3 (star).
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FIG. 11. Mean wall-normal velocity profiles at side window 1,
2, and 3. (a) Profiles of the measured data at Ra = 2.88 × 1010,
at window 1 (circle), window 2 (triangle), and window 3 (star).
There is a clear pair of upwelling and downwelling mean velocities.
(b) Profiles of the numerical data at Ra = 3 × 1010 at array 1 (circle),
array 2 (triangle), and array 3 (star).

side. Locking the wind in this way, we can assign certain
positions at the plate to areas of upwelling and downwelling
plumes (positions 1 and 2) as well as outside of the large-scale
circulation (position 3). This assignment is not possible in the
DNS since the mean angle of the LSC plane slowly drifts,
and these distinct areas are not well defined (see Fig. 2).
Because of the different behavior of the LSC we will, therefore,
not directly compare the data from the experiment with the
numerical ones in this section.

First, we present the experimental and DNS mean hori-
zontal velocity profiles at Ra = 3 × 1010 in Fig. 10(a) and
10(b). In order to show a potential deviation from the profile
at the central axis the velocity is normalized by the same
value Umax as used in Figs. 4 and 5. The maximum of
the velocity at the outer positions is significantly below the
value at the center line. This implies a reduction of the local
heat transfer coefficient and, hence, a decrease of the local Nu.
In this work we do not quantify this effect, but it is certainly
one topic that deserves closer attention in the future. All three
measured profiles rise with a different gradient toward their
maximum, and the thickness of the viscous BL varies. Unlike
at the central axis of the experiment the mean wall-normal
velocity at the windows 1 and 2 (begin and end of the path of
the LSC along the cooling plate) clearly deviates from zero.
At the area of upwelling plumes (1) a positive w component
has been measured, while this velocity component is negative
at the area of downwelling plumes. At window 3, which is

026315-10



BOUNDARY LAYER ANALYSIS IN TURBULENT . . . PHYSICAL REVIEW E 86, 026315 (2012)

outside the LSC, the mean of w tends to zero. Since in the
DNS areas of up- and downwelling plumes are not assigned
with distinct positions at the cooling plate the observed effect
is weaker, but clearly visible too [see Fig. 11(b)]. The viscous
and thermal boundary layer thicknesses at these three locations
have been calculated as well. Generally the thermal boundary
layer thickness is always thicker than viscous boundary layer
thickness, in our case at Pr = 0.7. We found that boundary
layer thickness is not uniform, and it is strongly dependent
on its location. From the thinnest to the most thick boundary
layers at all four locations we have measured, they have about
a factor of 1.25 of their thicknesses.

V. CONCLUSIONS

The velocity and the temperature fields close to the
horizontal plates in turbulent RB convection in air have been
studied experimentally and numerically. At two Rayleigh
numbers, Ra = 3 × 109 and 3 × 1010, highly resolved mea-
surements of all three velocity components and the temperature
inside and outside the BL have been carried out. Localized
high-resolution velocity and temperature results have been
compared directly with data obtained from DNSs.

In summary, the measured velocity data agree very well
with the DNS results, while the temperature data slightly
differ. The mean horizontal velocity as well as the mean of the
wall-normal component are in an excellent agreement. Both
differ from the Blasius solution of a laminar nonisothermal
shear layer. At the center line of the experiment the mean
of the wall-normal velocity component holds at zero over a
long range of the wall distance z. However, this component
strongly fluctuates. Out of the center, particularly at the areas
where the plumes hit or leave the horizontal plates a nonzero
mean wall-normal velocity unequally from zero has been
detected. We also found that the viscous BL thickness scales
with the Ra as δv ∼ Ra−0.24, i.e., with the same exponent as
predicted by Grossmann and Lohse [7]. In order to have a
sufficiently long range in the Ra we added velocity data from
previous experiments covering eventually Rayleigh numbers
between Ra = 109 and 1012. We also discussed the shear
Reynolds number and its trend with growing Ra since this

quantity is one of the potential indicators of a transition
towards a turbulent BL. Up to the highest Ra, Ra = 1012, it
remains below the predicted transition limits Res,c = 320 [32]
or Res,c = 420 [31]. Recall that both predictions have been
made.

The measured mean temperature profiles slightly differ
from the numerical results. In particular, the measured tem-
perature gradients at the wall are significantly higher than
those computed from the DNS. Furthermore, both measured
profiles do not show the clear linear trend as seen in the DNS
data. Even though the measurements have been carried out
very carefully and the used microthermistor probes have been
calibrated precisely, we do not have an explanation for these
deviations. The local thickness of the thermal BL in the center
line is found to scale with respect to the Ra as δθ ∼ Ra−0.24,
again slightly different from the global prediction in this range
of Ra. The BL thickness is not constant; it depends on the
different locations and time periods.

One task that had to remain open until now is the distribution
of the heat flux into its diffusive and its convective fraction
and how this ratio depends on the wall distance z. While the
diffusive fraction can easily obtained from the gradient of the
mean temperature a direct determination of the convective
part requires simultaneous measurements of the wall-normal
velocity component and the temperature at the same point.
Recent DNSs by Wagner et al. show that the BL thickness
of both the velocity and temperature field and thus the local
heat flux vary significantly across the plated [34]. These
measurements will be part of our future work.
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