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Lubrication of textured surfaces: A general theory for flow and shear stress factors
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We report on a mean field theory of textured surface lubrication. We study the fluid flow dynamics occurring
at the interface as a function of the texture characteristics, e.g. texture area density, shape and distribution of
microstructures, and local slip lengths. The present results may be very important for the investigation of tailored
microtextured surfaces for low-friction hydrodynamic applications.
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The influence of surface properties on the fluid flow at
the interface between solids in stationary or sliding contact
is a topic of great importance both in nature and technology.
Common applications include leakage of seals, removal of
water from the tire-road footprint, and the low-friction lubri-
cation of pairs. Almost all surfaces in nature and most surfaces
of interest in tribology present roughness on many different
length scales and are often fractal-like, so that when a small
region is magnified (in general with different magnifications in
the parallel and orthogonal directions) it “looks the same” as
the unmagnified surface. This fractal behavior, called “contact
splitting” in biomimetic adhesive research, has attracted the
attention of a large number of scientists in the past couple
of decades and, as a result, the practice of tailoring surface
properties by micro (nano-)structures fabrication is nowadays
an established research activity [1]. Among those, many
applications involve the fluid dynamics occurring over an array
of single scale microstructures, such as microholes [2] for
low-friction bearings. However, a comprehensive theoretical
foundation for sliding texture hydrodynamics is still missing
in literature.

In the field of random roughness contact mechanics,
most of the fundamental understanding has been recently
unified under homogenized contact models, which allow us
to effectively capture most of the physics occurring in the
wet or dry interactions of real solids [3–8]. In particular, in
Refs. [5–8], the authors describe the interface of randomly
rough soft contacts as a two-dimensional time-transient porous
medium whose network of fluid-filled channels, generally
not corresponding to the available amount of interface free
volumes, is largely affected by the local fluid-asperity and
asperity-asperity interactions [5,6]. Phenomena as percolation
islands, roughness anisotropic deformation, and fluid-induced
roughness smoothing appear at the interface and strongly
determine the contact integral properties, such as friction [5,6].

However, as usually occurs, the process of tailoring surface
properties involves the fabrication of ordered one (or at most
two-)scale micro (nano-)structures, i.e., the roughness spectral
content is effectively quantized. In such cases, as expected,
random roughness contact mechanics should not apply due to
the different nature of the surface roughness and, therefore,
of the contact itself. In the field of fluid flow at confinement,
a number of studies has been devoted to the investigation of
the role of an array of surface microstructures on the effective

*michele.scaraggi@unisalento.it

fluid flow, wall friction, and slippage [9–11], especially for
microfluidic applications. Recently, an increasing attention
by researchers has been focused on the manipulation of
confined fluids at the interface of (macro-)sliding contacts
by means of an ordered lattice of microstructures [2], e.g.
with the purpose of minimizing the energy consumption at
contact pairs. Observe that, in such applications, the all-fluid
dynamics occurring from the micro- to the macroscale has to
be calculated in order to determine the macroscopic frictional
resistance. From a practical point of view, the numerical
resolution of the global fluid dynamics, even in the case of
the thin film Reynolds flow, is highly computing demanding
and, therefore, not suitable for the estimation (nor for the
optimization) of both the local and global effective fluid flow,
wall friction, and slippage properties of the sliding contact.

Here we present a homogenized theory for the evaluation of
the average texture hydrodynamics in fluids confined at the in-
terface of sliding solids. The model is based on the application
of the Bruggeman effective medium [12] (BEM) theory to the
thin film Reynolds flow. It allows us to analytically determine
the effect of local texture characteristics, e.g. hole ratio and slip
length, on the average flow dynamics in terms of correction
factors to be included in an effective thin film Reynolds flow
equation. The numerical resolution of the latter can be then
achieved with a negligible amount of computational efforts if
compared to fully deterministic approaches. The model will be
then applied to a texture case constituted by a squared lattice
of surface holes, and we will compare our model predictions
with the numerical (full scale) results obtained by independent
research [13].

We consider now the fluid flow at the interface between the
solids. We assume that the fluid is Newtonian and that the fluid
velocity field v(x,t) satisfies the Navier-Stokes equation:

∂v
∂t

+ v · ∇v = − 1

ρ
∇p + ν∇2v,

where ν = η/ρ is the kinetic viscosity and ρ the mass density.
For simplicity we will also assume an incompressible fluid so
that ∇ · v = 0. We assume that the nonlinear term v · ∇v can
be neglected (which corresponds to small Reynolds number),
which is usually the case of fluid flow between narrowly spaced
solid walls. We also assume the lower solid to be rigid with
a flat surface, while the upper solid is rigid with an array of
microstructures. Moreover, the lower solid moves with the
velocity v0 parallel to the upper (stationary) solid; see Fig. 1.

Let u(x,y) be the separation between the solid walls and
assume that u/L � 1, where L is the linear size of the nominal
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FIG. 1. Schematic (not in scale). A surface-structured solid
(block) in contact with a rigid solid (substrate) with a flat surface. The
substrate moves with the velocity v0 while the block is stationary.

contact region. In this case, one expects that the fluid velocity
varies slowly with the coordinates x and y as compared to the
variation in the orthogonal direction z. Assuming also a slow
time dependence the Navier-Stokes equations reduces to:

η
∂2v
∂z2

= ∇p. (1)

Here v = (vx,vy), x = (x,y), and ∇ = (∂x,∂y) are two-
dimensional vectors. Note that vz ≈ 0 and that p(x) is
independent of z to a good approximation. Of course, in the
immediate vicinity of the step walls, Eq. (1) is not applicable;
however, we observe that the locally averaged flow properties
are not sensibly affected by this approximation in most
practical cases [14]. The solution to the equation above can
be written, e.g., in the case of no-slip boundary conditions as

v = 1

2η
z[z − u(x)]∇p +

[
1 − z

u(x)

]
v0, (2)

so that v = v0 on the solid wall z = 0 and v = 0 for z = u(x).
Integrating over z [from z = 0 to z = u(x)] gives the fluid
flow vector:

J = −u3(x)

12η
∇p + 1

2
u(x)v0. (3)

More generally, a Navier’s boundary condition with slip
length l occurs on the microstructure (e.g., because of the
presence of local, subinclusion structures allowing for a local
Cassie-Baxter regime), resulting in this case:

J = −
(

1 + 3l

u + l

)
u3

12η
∇p + 1

2
u

(
1 + l

u + l

)
v0,

where the notation (x) has been suppressed for simplicity. In
the case of steady sliding, mass conservation demands that

∇ · J = 0. (4)

Equations (3) and (4) describe the thin film Reynolds flow
at the interface between sliding solids. One way to integrate
out the surface texture is by using the 2D BEM approach
[12,15]. The basic physics behind the effective medium theory
is illustrated in Fig. 2. The BEM approach for a thin film
Reynolds flow has been originally adopted for the case of
static flow through a generally porous medium [16] (i.e., a flow
driven by a fluid pressure difference) and more recently for the
static flow description of the two-dimensional porous medium

av

effective
medium

= σ

σeff σeff

FIG. 2. Schematic. Effective medium theories allow us to de-
scribe, at the macroscopic scale, the disorder in a physical system,
e.g., fluctuations in the interfacial separation u(x) or in the slip length
l(x). For a n-component system (e.g., in the case of an interfacial
separation u constituted by n different discrete values) the flow in
the effective medium should be the same as the average fluid flow
obtained when circular regions of the n-components are embedded
in the effective medium.

resulting from the interaction of elastic randomly rough bodies
[8]. Here we extend the BEM approach to sliding surfaces.

Consider now the general case of an elliptical homogeneous
inclusion in a homogeneous infinite medium, as shown in
the draft of Fig. 3. The inclusion represents, e.g., the generic
hole (or pillar) of the texturing, and it is characterized by
an ellipse semi-major axis aligned with an angle φ with
respect to the x-reference axis. The infinite medium is
instead characterized by a hydraulic (Poiseuille) conductivity
�, which is principally valued in the reference, and by a
sliding (Couette) conductivity �; see Fig. 3. In the easiest
case, where the inclusion is represented by a flat ended
hole (or pillar) we have �e = I [1 + 3lh/ (hh + lh)] h3

h/ (12η)
and �e = I [1 + lh/ (hh + lh)] hh, where η is the lubricant
viscosity, hh the inclusion height, lh the local slip length, and
I the identity matrix; see Eq. (3). From Eq. (4), the inclusion
lubrication problem can be then formulated as:

∇ · (�∇p) = ∇ · Q̄, (5)

where we have Q̄=0 outside the inclusion and Q̄=
−d�∇p + d�Um = − (�e−�) ∇p + (�e−�)Um elsewhere.
Um = v0/2 in our case. Equation (5) is subjected to the
boundary condition ∇p (|x| → ∞) = ∇p0 where ∇p0 is the

p

Γ,

mU

Λ

Γe,Λe

x

y

FIG. 3. A generic elliptical homogeneous inclusion immersed in
a homogeneous infinite medium. The medium hydraulic conductivity
� is principally valued in the reference, whereas the medium sliding
conductivity � is not. φ is the ellipse semi-major axis inclination
angle. The macroscopic flow driving terms ∇p0 and Um are also
showed. A Peklenik number γ = a/b can be defined as the ratio
between the ellipse semi-major axis a and the semi-minor axis b.
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externally applied pressure gradient. In the case of static flow,
Um = 0 and, therefore, Q̄= − d�∇p inside the inclusion,
resulting in the classical constant polarization vector solution
inside the inclusion [16]. However, in our case the inclusion
problem can be analytically similarly solved by adopting the
following variable change:

∇p = ∇f + d�−1d�Um. (6)

By substituting Eq. (6) in Eq. (5), the resulting inclusion
problem is formally equivalent to the static flow case, where
this time ∇f is the static flow pressure. Therefore, after
integrating Eq. (5) in ∇f , the real pressure gradient ∇p inside
the inclusion can be determined:

∇p = (I + E0d�)−1 ∇p0

+ [I − (I + E0d�)−1]d�−1d�Um, (7)

where the tensorial factor E0 = ∫
e
d2x̄∇∇K is a function of

the inclusion shape and orientation and of the effective medium
hydraulic conductivity. Observe that K is the Green function
of the planar orthotropic Laplace equation obtained by solving
the two-dimensional problem ∇ · [�∇K (x)] = δ (x).∫

e
d2x̄∇∇K = E0 can be calculated in the ellipse reference

system. In this case we have

E0 = [T (φ)]t Ē0T (φ) ,

where Ē0 = ∫
d2xe [∇∇K]xe

and T (φ) is the rotation matrix,
with Tij (φ) = ∂xe

i /∂xj . After performing the integration we
have:

Ēxx = 1√
�11�22

(
√

cxcy − d2 − cxγ )(cy − cxγ
2) + 2d2γ

(cy − cxγ 2)2 + 4d2γ 2

(8)

Ēyy = 1√
�11�22

(
√

cxcy − d2 − cyγ∗)(cx − cyγ
2
∗ ) + 2d2γ∗

(cx − cyγ 2∗ )2 + 4d2γ 2∗
(9)

Ēxy = 1√
�11�22

d

2
√

cxcy − d2 + cxγ + cyγ∗
, (10)

where γ∗γ = 1. Moreover,

cx = �m + �� cos 2φ

cy = �m − �� cos 2φ

d = − sin 2φ��,

with

�m = (�1 + �2) /2

�� = (�2 − �1) /2.

Equation (7) completely describes the flow dynamics oc-
curring inside the inclusion. It allows the effective flow 〈J 〉 to
be derived as superposition of the base flow (−�∇p + �Um),
the flow which would have been obtained without the inclusion
(i.e., when the domain was constituted by the medium), and
the flow difference introduced by the presence of the inclusion
inside the medium (−d�∇p + d�Um):

〈J 〉 = −�eff∇p + �effUm

= −�∇p + �Um − d�∇p + d�Um, (11)

where the effective flow conductivities �eff and �eff are,
respectively, the effective Poiseuille and Couette conductivity
tensors. Finally, according to the BEM approach, by replacing
� = �eff and � = �eff in Eq. (11), and by using Eq. (7), the
following couple of tensorial effective equations is obtained:

〈d�(I + E0d�)−1〉 = 0, (12)

〈d�(I + E0d�)−1d�−1d�〉 = 0, (13)

where the notation 〈φ〉 corresponds to 〈φ〉 = ciφi , and ci is
the area density of the generic ith component. From Eqs. (12)
and (13), the conductivities � and � can be determined as
a function of the texture conductivities �φ and �φ of each
component.

Finally, the BEM lubrication problem ∇ · 〈J 〉 = 0 is

∇ · [−�∇p + �Um] = 0. (14)

We are now interested in determining the average (effective)
shear stresses. The local fluid shear stress, acting on the lower
surface, is

τ = − v0η

u (x) + l (x)
− 1

2

[
1 + l (x)

u (x) + l (x)

]
u (x) ∇p (x) .

(15)

By averaging Eq. (15), the effective shear stress is

〈τ 〉 = −v0

η0

〈
η/η0

u + l

〉
− 1

2

〈(
1 + l

u + l

)
u∇p

〉
,

where 〈(η/η0) / (u + l)〉 can be easily calculated from the
texturing characteristics (e.g., in the case of shear-thinning
lubricant, η/η0 can be linked to the shear rate occurring
at the inclusion level), η0 is a reference fluid viscosity
(e.g., the low-pressure, low-shear viscosity value), and where
〈[1 + l/ (u + l)] u∇p〉 can be determined from Eq. (7).

In order to compare with existing full-scale numerical
calculations, the effective Eqs. (12) and (13) are now solved
in the simplest case of a two-component surface where
circular inclusions are embedded in an isotropic medium;
i.e., γ = 1 for both components. This results in isotropic
effective conductivities, i.e., � = �I and � = �I (we confuse
the tensor � with its diagonal element � for ease of reading).
Moreover, the no-slip boundary condition is assumed for both
components; i.e., li = 0. From Eqs. (8)–(10) we get

E0 = 1

2�
I, (16)

whereas from Eqs. (12) and (16), we get〈
� − �φ

� + �φ

〉
= 0, (17)

where �φ is the Poiseuille conductivity of each component;
i.e., for the holes (or pillar structure) �φ = �h = h3

h/12η

and for the substrate �φ = �f = h3
f /12η. By manipulating

Eq. (17), we get

�̃ = �

�f

= (2ph − 1)
�̃h − 1

2

+ 1

2

√
(1 − 2ph)2 (�̃h − 1)2 + 4�̃h, (18)
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FIG. 4. (Color online) Pressure flow factor �̃ for circular in-
clusions embedded in an isotropic medium, as a function of the
dimensionless hole ratio, and for different values of hole density
ph.

where �̃h = �h/�f = h3
h/h3

f in the case of constant fluid
viscosity, and where ph is the texture area density. From
Eqs. (13) and (16) the effective Couette conductivity can be
also determined: 〈

�φ − �

�φ + �

〉
= 0, (19)

where �φ is the Couette conductivity of each component, i.e.,
for the holes (or pillar structure) �φ = �h = hh and for the
substrate �φ = �f = hf . By manipulating Eq. (19), we get

�̃ = �/�f = �̃hph(1 + �̃) + (1 − ph)(�̃h + �̃)

ph(1 + �̃) + (1 − ph)(�̃h + �̃)
, (20)

where �̃h = �h/�f = hh/hf . The effective fluid Eq. (14)
simplifies then into

∇ ·
[
�̃

h3
f

12η
∇p

]
= ∇ · [

�̃hf Um

]
, (21)

where �̃ and �̃ correspond, respectively, to the pressure and
shear flow factors for circular inclusions distributed in an
isotropic medium. The pressure flow factor �̃ and the shear
flow factor �̃, are shown, respectively, in Figs. 4 and 5 as
a function of the dimensionless hole ratio hh/hf and for
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ph 0.4
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FIG. 5. (Color online) Shear flow factor �̃ for circular inclusions
embedded in an isotropic medium, as a function of the dimensionless
hole ratio, and for different values of hole density ph.

different values of hole density ph, respectively, ph = 0.1,
0.2, 0.4. Values of �̃ (and of �̃) have been also calculated
for pillar texturing, i.e., hh/hf < 1. Observe that the effective
Poiseuille flow, which is proportional to �̃, is always bounded
in between (1 − 2ph) and (1 − 2ph)−1 and in particular it is
monotonically increasing with hh/hf . The effective Couette
flow, proportional to �̃, shows instead a global maximum
for hh/hf ≈ 2. Interestingly, a further increase in the hole
ratio determines a reduction of �̃, in particular to the value
corresponding to the texture-free sliding. This is due to the
appearance at the texture scale of local flows, generated by
sliding-induced local pressure gradients, which are counter-
acting with respect to the sliding flow. Observe also that values
of �̃ > 1 correspond to an effective positive slippage on the
textured surface, whereas in the case of pillar microstructures,
for which �̃ < 1, the effective predicted slippage is negative.
Note that the effective slippage should be intended as occurring
at both the generic inclusion scale (described by the local
slip length lh) as well as at the macroscale, where it results
from the homogenization over multiple slippery (or not)
inclusions, as discussed earlier in the paper. At the scale of
the generic inclusion, however, the effective slip length lh
constitutes, together with the in-plane inclusion shape (i.e.,
ellipticity and a mayor axis direction), the local viscosity
(η) and the out-of-plane projection (represented by hh), the
inclusion-effective characteristic. In particular, local slippage
can be obtained by (subinclusion) chemical and/or physical
modifications, e.g., by recurring to the nowadays widely used
plasma process (see, e.g., Ref. [17]).

Equation (14) is now solved and the results compared to
those of a three-dimensional partially textured lubrication
problem (a thrust bearing macroscopic geometry) calculated,
with a full-scale numerical resolution of Eq. (4), in a recently
published paper [13]. In Fig. 6 we report the comparison, and,
in particular, we show the BEM-homogenized fluid pressure
(the smooth blue curve) in a bearing pad cross section, as

FIG. 6. (Color online) BEM-homogenized fluid pressure (the
smooth blue curve) as a function of x coordinate (sliding direction),
compared with the full scale numerical predictions partially adapted
from Ref. [13].
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compared to the numerical predictions of Ref. [13] (black
and red curves). The latter curves have been calculated with
the same texture areal density but with different hole in-plane
size [13]. It is interesting to notice that, as confirmed by
the full scale calculations, the local average fluid pressure
is not dependent on the hole in-plane size but only on the
texture areal density, in perfect agreement with our model.
Moreover, observe the very good agreement between our
predictions and the numerical results where differences must

be mainly ascribed to the different hole geometry, squared in
Ref. [13] and circular in our calculations. However, despite
this difference, our model is very effective in providing an
accurate estimation of the fluid pressure occurring in such a
hydrodynamic contact. Our theory may be a very useful tool
for the investigation of the surface texturing effects in the fluid
dynamics occurring at the interface of sliding solids, e.g.,
for the near-optimum design of low friction hydrodynamic
pairs.

[1] E. Stratakis, A. Ranella, and C. Fotakis, Biomicrofluidics 5,
013411 (2011).

[2] I. Etsion, Tribol. Lett. 17, 733 (2004).
[3] B. Persson, J. Chem. Phys. 115, 3840 (2001).
[4] B. Persson, B. Lorenz, and A. Volokitin, Eur. Phys. J. E 31, 3

(2010).
[5] M. Scaraggi, G. Carbone, B. Persson, and D. Dini, Soft Matter

7, 10395 (2011).
[6] M. Scaraggi, G. Carbone, and D. Dini, Soft Matter 7, 10407

(2011).
[7] B. Persson, J. Phys: Condens. Matter 22, 265004 (2010).
[8] B. Persson and M. Scaraggi, Eur. Phys. J. E 34, 113 (2011).
[9] A. Steinberger, C. Cottin-Bizonne, P. Kleimann, and E. Charlaix,

Nat. Mater. 6, 665 (2007).

[10] M. Sbragaglia and A. Prosperetti, J. Fluid Mech. 578, 435
(2007).

[11] C.-O. Ng and C. Y. Wang, Fluid Dynam. Res. 43, 065504
(2011).

[12] D. Bruggeman, Ann. Phys. 416, 636 (1935).
[13] S. Pei, S. Ma, H. Xu, F. Wang, and Y. Zhang, Tribol. Int. 44,

1810 (2011).
[14] M. Scaraggi, Tribol. Lett. (2012), doi:

10.1007/s11249-012-0025-6 (in press).
[15] S. Kirkpatrick, Rev. Mod. Phys. 45, 574 (1973).
[16] P. Fokker, Transp. Porous Media 44, 205

(2001).
[17] R. Di Mundo, F. Palumbo, and R. D’Agostino, Langmuir 26,

5196 (2010).

026314-5

http://dx.doi.org/10.1063/1.3553235
http://dx.doi.org/10.1063/1.3553235
http://dx.doi.org/10.1007/s11249-004-8081-1
http://dx.doi.org/10.1063/1.1388626
http://dx.doi.org/10.1140/epje/i2010-10543-1
http://dx.doi.org/10.1140/epje/i2010-10543-1
http://dx.doi.org/10.1039/c1sm05128h
http://dx.doi.org/10.1039/c1sm05128h
http://dx.doi.org/10.1039/c1sm05129f
http://dx.doi.org/10.1039/c1sm05129f
http://dx.doi.org/10.1088/0953-8984/22/26/265004
http://dx.doi.org/10.1140/epje/i2011-11113-9
http://dx.doi.org/10.1038/nmat1962
http://dx.doi.org/10.1017/S0022112007005149
http://dx.doi.org/10.1017/S0022112007005149
http://dx.doi.org/10.1088/0169-5983/43/6/065504
http://dx.doi.org/10.1088/0169-5983/43/6/065504
http://dx.doi.org/10.1002/andp.19354160705
http://dx.doi.org/10.1016/j.triboint.2011.07.005
http://dx.doi.org/10.1016/j.triboint.2011.07.005
http://dx.doi.org/10.1007/s11249-012-0025-6
http://dx.doi.org/10.1007/s11249-012-0025-6
http://dx.doi.org/10.1103/RevModPhys.45.574
http://dx.doi.org/10.1023/A:1010770623874
http://dx.doi.org/10.1023/A:1010770623874
http://dx.doi.org/10.1021/la903654n
http://dx.doi.org/10.1021/la903654n



